JPH03129664A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03129664A
JPH03129664A JP1267770A JP26777089A JPH03129664A JP H03129664 A JPH03129664 A JP H03129664A JP 1267770 A JP1267770 A JP 1267770A JP 26777089 A JP26777089 A JP 26777089A JP H03129664 A JPH03129664 A JP H03129664A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
fine fibrous
fibrous graphite
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1267770A
Other languages
Japanese (ja)
Other versions
JP2917317B2 (en
Inventor
Masayuki Nagamine
政幸 永峰
Naoyuki Date
伊達 尚幸
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17449348&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03129664(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1267770A priority Critical patent/JP2917317B2/en
Publication of JPH03129664A publication Critical patent/JPH03129664A/en
Application granted granted Critical
Publication of JP2917317B2 publication Critical patent/JP2917317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the voltage flatness of a nonaqueous electrolyte secondary battery during electric discharge and also realize a long life of the cycle of charge and discharge by using micro fibrous graphite as negative electrode material. CONSTITUTION:A negative electrode 4 using micro fibrous graphite of less than 1 deg. in X-ray diffraction peak mesial magnitude corresponding to spacing of a 002 face as carbon material and a positive electrode 1 are opposite to each other via a separator 8 and a nonaqueous electrolyte is injected into a container. The carbon material used in the negative electrode 4 has graphite structure obtained by further heat treatment of micro fiber carbon, wherein X-ray diffraction peak mesial magnitude corresponding to spacing of the (002) face is less than 1 deg.; during electric discharge, the voltage flatness of the nonaqueous secondary battery is thereby enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非水電解液二次電池に関し、特に負極材料に微
細繊維状黒鉛を用いた非水電解液二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a non-aqueous electrolyte secondary battery using fine fibrous graphite as a negative electrode material.

〔発明の概要〕[Summary of the invention]

本発明は、負極、正極及び非水電解液よりなる非水電解
液二次電池において、その負極材料にX線回折ピークの
半値幅が1°以下の微細繊維状黒鉛を用いたり、或いは
負極材料を微細繊維状黒鉛と炭素質材料の組合せとする
ことにより、放電電圧の平坦性の改善を図り、同時に優
れた充放電サイクル特性を実現しようとするものである
The present invention provides a non-aqueous electrolyte secondary battery consisting of a negative electrode, a positive electrode, and a non-aqueous electrolyte, in which fine fibrous graphite with an X-ray diffraction peak half width of 1° or less is used as the negative electrode material, or By using a combination of fine fibrous graphite and a carbonaceous material, the flatness of the discharge voltage is improved, and at the same time, excellent charge-discharge cycle characteristics are achieved.

〔従来の技術〕[Conventional technology]

近年の電子技術の目覚ましい進歩は電子機器の小型・軽
量化を次々と実現させている。それに伴い、携帯可能な
移動用電源としての電池に対しても、ますます小型・軽
量且つ高エネルギー密度のものが求められている。
Remarkable advances in electronic technology in recent years have made electronic devices increasingly smaller and lighter. Along with this, there is an increasing demand for batteries as portable power sources that are smaller, lighter, and have higher energy density.

従来、二次電池としては、−船釣に鉛電池、ニッケルカ
ドミウム電池等の水溶液系の電池が主流であるが、これ
らの電池は優れたサイクル特性を示すものの、電池重量
やエネルギー密度等の点で十分に満足できる特性とは言
えない。
Traditionally, aqueous batteries such as lead batteries and nickel-cadmium batteries have been mainstream as secondary batteries for boat fishing, but although these batteries have excellent cycle characteristics, they have some drawbacks in terms of battery weight, energy density, etc. This cannot be said to be a fully satisfactory characteristic.

このような状況から、リチウムあるいはリチウム合金を
負極に用いた非水電解液二次電池の研究開発が盛んに行
われ、一部商品化され始めている。
Under these circumstances, research and development of non-aqueous electrolyte secondary batteries using lithium or lithium alloys as negative electrodes has been actively conducted, and some of them have begun to be commercialized.

この電池は、高エネルギー密度を有し、軽量であり、し
かも自己放電も少ないという優れた特徴を持ち、前記移
動用電源として床机な利用が期待されている。
This battery has excellent features such as high energy density, light weight, and low self-discharge, and is expected to be used as a mobile power source for floor desks.

しかしながら、負極にリチウムあるいはリチウム合金を
用いると、充放電サイクルの繰り返しに伴いリチウムが
不活性化して粉末状に堆積すると共に、充電時にリチウ
ムがデンドライト状に結晶成長し、セパレータ膜の微孔
、あるいはセパレータ不織布の繊維間空隙を通過して正
極にまで到達し、内部短絡を引き起こす等の欠点があり
、実用化への大きな障害になっている。
However, when lithium or lithium alloy is used for the negative electrode, lithium is inactivated and deposited in powder form as charge and discharge cycles are repeated, and lithium crystals grow in the form of dendrites during charging, causing micropores in the separator film or It has drawbacks such as passing through the interfiber gaps of the separator nonwoven fabric and reaching the positive electrode, causing internal short circuits, which is a major obstacle to practical application.

これに対し、負極に炭素材料を使用した非水電解液二次
電池は、化学的、物理的方法等により予め炭素材料に担
持させたリチウム、正極活物質に用いた化合物の結晶構
造中のリチウム、あるいは電解液中に存在させたリチウ
ム等の、炭素六角網平面間へのインターカレーション/
デインターカレーションを利用するもので、充放電サイ
クルの繰り返しに伴うリチウム金属等のデンドライト析
出は見られず、数百回を越える優れた寿命性能を示す。
On the other hand, non-aqueous electrolyte secondary batteries that use a carbon material for the negative electrode use lithium that is supported on the carbon material in advance by chemical or physical methods, and lithium that is contained in the crystal structure of the compound used for the positive electrode active material. , or intercalation between the carbon hexagonal network planes of lithium, etc. present in the electrolyte/
Since it utilizes deintercalation, there is no dendrite precipitation of lithium metal or the like due to repeated charge/discharge cycles, and it has an excellent lifespan of over several hundred cycles.

〔発明が解決しようとするtl!!題〕ところで、負極
に炭素材料を使用した非水電解液二次電池においては、
使用する炭素材料の種類が電池の特性に大きく影響を及
ぼす。
[TL that the invention tries to solve! ! [Question] By the way, in non-aqueous electrolyte secondary batteries that use carbon materials for the negative electrode,
The type of carbon material used greatly affects the characteristics of the battery.

例えば、ある種の有機高分子化合物や複合物を不活性ガ
ス雰囲気下で高温焼成したものや、ピンチコークス等の
コークス類を粉砕した炭素質物を使用した場合、前述の
通り優れた寿命特性は示すものの、充放電カーブにおい
て放電深度による電圧変化が大きく、電池容量は放電終
止電圧の設定値に大きく依存することになる。
For example, when using a certain type of organic polymer compound or composite that is fired at high temperature in an inert gas atmosphere, or a carbonaceous material that is made by crushing coke such as pinch coke, excellent life characteristics are exhibited as described above. However, in the charge/discharge curve, the voltage changes greatly depending on the depth of discharge, and the battery capacity largely depends on the set value of the discharge end voltage.

人工黒鉛を使用した場合には、充放電時の電圧平坦性に
は優れるが、一般にLi等の軽金属イオンのインターカ
レーション/デインターカレーションできる量が少ない
だけでなく、サイクル毎に不活性化するリチウム量が多
(、非水電解液二次電池用の負極材料としては実用的で
はない。
When artificial graphite is used, it has excellent voltage flatness during charging and discharging, but in general, not only the amount of light metal ions such as Li that can be intercalated/deintercalated is small, but it is also inactivated with each cycle. It is not practical as a negative electrode material for non-aqueous electrolyte secondary batteries.

そこで本発明は、かかる従来の実情に鑑みて提案された
ものであり、放電時の電圧平坦性に優れ、しかも充放電
サイクル寿命に優れた非水電解液二次電池を提供するこ
とを目的とする。
The present invention was proposed in view of the above-mentioned conventional situation, and an object of the present invention is to provide a nonaqueous electrolyte secondary battery that has excellent voltage flatness during discharge and has an excellent charge/discharge cycle life. do.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、非水電解液二次電池用負極材料として種
々の炭素材料について検討した結果、微細繊維状黒鉛が
優れた特性を発揮することを見出した。
The present inventors investigated various carbon materials as negative electrode materials for non-aqueous electrolyte secondary batteries and found that fine fibrous graphite exhibits excellent properties.

本発明の非水電解液二次電池は、かかる知見に基づいて
完成されたもので、X線回折ピークの半値幅が1°以下
の微細繊維状黒鉛あるいは当該微細繊維状黒鉛と炭素質
材料を含有してなる負極と、正極と、非水電解液とから
なることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention was completed based on this knowledge, and uses fine fibrous graphite with an X-ray diffraction peak half width of 1° or less, or the fine fibrous graphite and a carbonaceous material. It is characterized by consisting of a negative electrode, a positive electrode, and a non-aqueous electrolyte.

本発明において、負極に使用される炭素材料は、種々の
炭化水素化合物を水素、アルゴン等のキャリアガスと共
に800〜1200 ’C程度に制御された反応管に導
入し、触媒(超微粒子のF e、F e/Ni合金等)
の存在下で管内に設置された黒鉛石英ガラス等の基板上
に炭素質として形成させるいわゆる気相成長法により得
られる微細繊維状炭素を、不活性ガス雰囲気下において
さらに1800〜3000°Cで加熱処理して微細繊維
状黒鉛としたものである。前記加熱処理することにより
黒鉛構造となり、X線回折ピークの半値幅がl°以下と
なる。
In the present invention, the carbon material used for the negative electrode is obtained by introducing various hydrocarbon compounds together with a carrier gas such as hydrogen or argon into a reaction tube controlled at about 800 to 1200'C, and then using a catalyst (ultrafine particles of Fe). , Fe/Ni alloy, etc.)
Fine fibrous carbon obtained by the so-called vapor phase growth method is formed as a carbonaceous material on a substrate such as graphite quartz glass installed in a tube in the presence of an inert gas atmosphere, and is further heated at 1800 to 3000 ° C. It is processed into fine fibrous graphite. The heat treatment results in a graphite structure, and the half width of the X-ray diffraction peak is 1° or less.

原料である炭化水素化合物としては、脂肪族炭化水素2
芳香族炭化水素、脂環族炭化水素並びにこれら炭化水素
に置換基の結合したもの、さらにはこれらの混合物等が
挙げられる。具体的には、メタン、プロパン、エチレン
、ベンゼン、ナフタレン、l  2−ジクロロエチレン
、1,2〜ジクロロエタン、1.2−ジブロモエタン、
エタノール、アントラセン、アセナフチレン、フルフリ
ルアルコール、フルフラール、フェノール、ジフェニル
等が挙げられ、なかでもベンゼン等の芳香族炭化水素が
好適である。
The raw material hydrocarbon compounds include aliphatic hydrocarbons 2
Examples include aromatic hydrocarbons, alicyclic hydrocarbons, these hydrocarbons with substituents bonded to them, and mixtures thereof. Specifically, methane, propane, ethylene, benzene, naphthalene, l2-dichloroethylene, 1,2-dichloroethane, 1,2-dibromoethane,
Examples include ethanol, anthracene, acenaphthylene, furfuryl alcohol, furfural, phenol, and diphenyl, among which aromatic hydrocarbons such as benzene are preferred.

また、使用する微細繊維状黒鉛は、直径1μm以下、長
さ1mm以下であることが好ましく、直径0、1 a 
m以下、長さ500am以下であることがより好ましい
。さらには、直径と長さの比がl:20を越えるものを
主体とすることが望ましい。
Further, the fine fibrous graphite used preferably has a diameter of 1 μm or less and a length of 1 mm or less, with a diameter of 0, 1 a
It is more preferable that the length be 500 am or less. Furthermore, it is desirable that the main material has a diameter to length ratio of more than 1:20.

前述の微細繊維状黒鉛は、単独で負極に用いてもよいが
、炭素質材料と併用しても良い、すなわち、微細繊維状
黒鉛の繊維間に炭素質物を担持させた複合材料を負極に
用いることで、放電時の電圧平坦性の良さや充放電サイ
クル寿命の良さに加えて、エネルギー密度を向上するこ
とができる。
The aforementioned fine fibrous graphite may be used alone for the negative electrode, but it may also be used in combination with a carbonaceous material. In other words, a composite material in which a carbonaceous material is supported between the fibers of fine fibrous graphite is used for the negative electrode. By doing so, it is possible to improve energy density in addition to good voltage flatness during discharge and good charge/discharge cycle life.

前記複合材料は、気相成長法により得た微細繊維状炭素
を不活性ガス雰囲気下、1800〜3000°Cに加熱
して黒鉛化した後、液状有機高分子材料あるいは固体有
機高分子材料を溶剤に溶解させた溶液に浸漬してこれを
含浸させ、さらに不活性ガス雰囲気下で800〜170
0°Cに加熱して炭素質物として繊維間に固定させたも
のである。
The composite material is produced by graphitizing fine fibrous carbon obtained by vapor phase growth at 1,800 to 3,000°C in an inert gas atmosphere, and then converting the liquid or solid organic polymer material into a solvent. 800 to 170 in an inert gas atmosphere.
It is heated to 0°C and fixed between fibers as a carbonaceous material.

以下、その製造方法の一例について述べる。An example of the manufacturing method will be described below.

前記複合材料の製造するに際して、常温において液状の
有機高分子材料を使用する場合には、そのまま、あるい
は溶剤で希釈し適当な粘度に調製したものを含浸させる
溶液として用いる。また、常温で固体の有機高分子材料
を使用する場合には、適切な溶剤に溶解させるか、適切
な分散媒に均一に粒子を分散させたものを含浸液として
用いる。
In producing the composite material, when an organic polymer material that is liquid at room temperature is used, it is used as it is or as a solution diluted with a solvent to an appropriate viscosity for impregnation. Further, when using an organic polymer material that is solid at room temperature, the impregnating liquid is prepared by dissolving it in an appropriate solvent or by uniformly dispersing particles in an appropriate dispersion medium.

そして、微細繊維状黒鉛の所定量を有機高分子材料を含
む含浸液中に浸漬する。このとき、必要量の有機高分子
材料を全て繊維間に移動させるため、液濃度を調整して
含浸液量を黒鉛繊維間に全て吸い上げられる量とするこ
とが望ましい。
Then, a predetermined amount of fine fibrous graphite is immersed in an impregnating liquid containing an organic polymer material. At this time, in order to transfer all the necessary amount of the organic polymer material between the fibers, it is desirable to adjust the liquid concentration so that the amount of impregnating liquid can be completely absorbed between the graphite fibers.

所定量の有機高分子材料を含浸させた微細繊維状黒鉛は
、溶剤あるいは分散媒が十分除去できる温度で乾燥する
。次いで、不活性ガス雰囲気下で800〜1700 ’
Cの温度に数時間保持し、微細繊維状黒鉛間に存在する
有機高分子材料を炭素質物として固定する。不活性ガス
雰囲気のまま室温付近まで放冷し、微細繊維状黒鉛/炭
素質物複合材料を取り出す。複合材料は、乳鉢、ボール
ミル振動旦ル等の粉砕機により粉砕した後、ふるいによ
り分級し、粗大粒子を取り除いて負極材料とする。
Fine fibrous graphite impregnated with a predetermined amount of organic polymeric material is dried at a temperature that allows sufficient removal of the solvent or dispersion medium. Then 800-1700' under an inert gas atmosphere
The organic polymeric material present between the fine fibrous graphite is fixed as a carbonaceous substance by holding at a temperature of C for several hours. Leave to cool to around room temperature in an inert gas atmosphere, and take out the fine fibrous graphite/carbonaceous material composite material. The composite material is pulverized using a pulverizer such as a mortar or a vibrating ball mill, and then classified using a sieve to remove coarse particles to obtain a negative electrode material.

炭素質物を得るための有機高分子材料としては、各種材
料が使用可能であるが、例えばポリアクリロニトリル樹
脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリ
ビニルアセクール樹脂、ABS11脂、ポリイミド樹脂
、ポリ塩化ビニリデン樹脂、フルフリルアルコール樹脂
、フラン樹脂、フェノール樹脂、ボリアミド樹脂、石油
系ピッチ、石炭系ピッチ等が用いられる。
Various materials can be used as the organic polymer material for obtaining the carbonaceous material, such as polyacrylonitrile resin, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acecool resin, ABS11 resin, polyimide resin, polyvinylidene chloride resin. , furfuryl alcohol resin, furan resin, phenol resin, polyamide resin, petroleum pitch, coal pitch, etc. are used.

また、含浸液を得るための溶剤1分散媒は、有機高分子
材料の種類に合わせてそれぞれ適切なものを選べば良い
Further, the solvent 1 dispersion medium for obtaining the impregnating liquid may be appropriately selected according to the type of organic polymer material.

上述の複合材14とする場合、複合材料中に占める微細
繊維状黒鉛の割合は、60重景%以上であることか好ま
しく、特にかさ密度から考えて容置が許容できる範囲を
考慮した場合、60〜80重量%であることがより好ま
しい。
In the case of the above-mentioned composite material 14, the proportion of fine fibrous graphite in the composite material is preferably 60% or more, especially when considering the allowable storage range in terms of bulk density. More preferably, it is 60 to 80% by weight.

一方、正極材料としては、この種の電池に使用されるも
のであれば如何なるものであってもよいが、特に十分な
量のLiを含んだ材料を使用することが好ましい。例え
ば、LiMr+z○4や一般弐LiMO,(ただし、M
はCo、Niの少なくとも1種を表す。したがって、例
えばLiCoO2やL i COo、@N io、zo
z等)で表される複合金属酸化物や、Liを含んだ眉間
化合物等が好適である。
On the other hand, the positive electrode material may be any material used in this type of battery, but it is particularly preferable to use a material containing a sufficient amount of Li. For example, LiMr+z○4, general 2 LiMO, (however, M
represents at least one of Co and Ni. Therefore, for example, LiCoO2, L i COo, @N io, zo
Composite metal oxides represented by z, etc.), lily-containing compounds, and the like are suitable.

非水電解液としては、有機溶媒と電解質を適宜組み合わ
せて調製されるが、これら有機溶媒や電解質もこの種の
電池に用いられるものであればいずれも使用可能である
The nonaqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, but any organic solvent or electrolyte that is used in this type of battery can be used.

例示するならば、有Ja if!媒としてはプロピレン
カーボネート、エチレンカーボネート、1,2ジメトキ
シエタン、1,2−ジェトキシエタン、γ−ブチロラク
トン、テトラヒドロフラン、2メチルテトラヒドロフラ
ン、1.3−ジオキソラン、4−メチル−1,3−ジオ
キソラン、ジエチルエーテル、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル、アニソー
ル等である。
To give an example, there is Ja if! As a medium, propylene carbonate, ethylene carbonate, 1,2 dimethoxyethane, 1,2-jethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, These include sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, and the like.

電解質としては、LiCj!04、L + A s F
 b、L iP F&、LiBFn、L i B(Ca
l(S)4、CHzS()+L i、、CF35olL
iSL i CQ。
As an electrolyte, LiCj! 04, L + A s F
b, LiP F&, LiBFn, LiB(Ca
l(S)4, CHzS()+L i,, CF35olL
iSL i CQ.

LiBr等である。LiBr etc.

〔実施例] 以下、本発明を具体的な実験結果に基づいて説明する。〔Example] The present invention will be explained below based on specific experimental results.

先ず、微細繊維状黒鉛を単独で負極に用いた非水電解液
二次電池の実施例について説明する。
First, an example of a non-aqueous electrolyte secondary battery using only fine fibrous graphite as a negative electrode will be described.

犬嵐史上 炭化水素化合物としてヘンゼンを使用し、10o o 
’cで気相成長させ、得られた微細繊維状炭素材料を不
活性ガス下、2000″Cで加熱処理し、微細繊維状黒
鉛を得た。
Inu Arashi history uses Hensen as a hydrocarbon compound, 10o o
The resulting fine fibrous carbon material was heat-treated at 2000''C under an inert gas to obtain fine fibrous graphite.

第1図にこの材料の黒鉛化処理前後のX線回折スペクト
ルを示す。測定に使用した装置は、理学電機社製、ガイ
ガーフレックスRAD [I C装置(対陰極: Cu
)である。
FIG. 1 shows the X-ray diffraction spectra of this material before and after graphitization treatment. The device used for the measurement was Geigerflex RAD [IC device (anticathode: Cu) manufactured by Rigaku Denki Co., Ltd.
).

この第1図より求められるX線バラメーク値は第1表の
通りである。
The X-ray variation values determined from FIG. 1 are shown in Table 1.

第1表 次いで、この微細繊維状黒鉛を用い、第2図に示すよう
なコイン型非水電解液系負極試験用二次電池を試作した
Table 1 Next, using this fine fibrous graphite, a coin-shaped non-aqueous electrolyte negative electrode test secondary battery as shown in FIG. 2 was fabricated.

先ず、微細繊維状黒鉛80重量部、結着剤であるポリフ
ッ化ビニリデン20重量部よりなる負極合剤0.035
 gを直径15閣、線径5oμmのステンレス製ネット
(5)とともに加圧成形し、直径15.3n++、厚さ
0.2閏の円板状の負極(4) とした。
First, 0.035 parts by weight of a negative electrode mixture consisting of 80 parts by weight of fine fibrous graphite and 20 parts by weight of polyvinylidene fluoride as a binder was prepared.
A negative electrode (4) in the form of a disc with a diameter of 15.3n++ and a thickness of 0.2mm was obtained by pressure molding the negative electrode (4) with a stainless steel net (5) having a diameter of 15 mm and a wire diameter of 5 μm.

この負極(4)は、外側にニッケルメッキを施したステ
ンレス製負極缶(7)の内側にスボント溶接された銅製
集電体(6)を介して電池外部への電気的導通がとられ
ている。
This negative electrode (4) is electrically connected to the outside of the battery via a copper current collector (6) spont welded to the inside of a stainless steel negative electrode can (7) with nickel plating on the outside. .

一方、正極(1)は、活物質であるLiCo0g85重
量部、導電剤であるグラファイト10重量部、結着剤で
あるポリテトラフルオロエチレン5重量部よりなる正極
合剤1gを直径15.3+++n、高さ1.7IIII
+の円板状に加圧成形したものである。正極(1)は、
外側にニッケルメッキを施したステンレス製正極缶(3
)の内側にスボント溶接されたアルミニウム製集電体(
2〉を介して電池外部への電気的導通がとられている。
On the other hand, for the positive electrode (1), 1 g of a positive electrode mixture consisting of 85 parts by weight of 0 g of LiCo as an active material, 10 parts by weight of graphite as a conductive agent, and 5 parts by weight of polytetrafluoroethylene as a binder was prepared with a diameter of 15.3+++n and a high Sa1.7III
It is press-molded into a + disc shape. The positive electrode (1) is
Stainless steel positive electrode can with nickel plating on the outside (3
) spont-welded aluminum current collector (
2> to the outside of the battery.

前記正極〈1)並びに負極(4)は、真空乾燥により残
留水分値を300pρm以下に調整した後、微孔性ポリ
プロピレンセパレータ(8)を介して対向させ設置した
The positive electrode (1) and the negative electrode (4) were placed facing each other with a microporous polypropylene separator (8) in between, after adjusting the residual moisture value to 300 ppm or less by vacuum drying.

電解液は、プロピレンカーボネートと1 2−ジメトキ
シエクンとの等体積混合溶媒にLiPF6を1モル/f
1.の割合で溶解させたものとし、これを残留水分値2
0ppm以下に調整してその200μlを注入した。
The electrolyte was a mixed solvent of equal volume of propylene carbonate and 12-dimethoxyecune with 1 mol/f of LiPF6.
1. The residual moisture value is 2.
The concentration was adjusted to 0 ppm or less, and 200 μl of the solution was injected.

なお、正極缶(3)と負極缶(7)との間には、表面に
アスファルトを塗布したポリプロピレン製ガスケット(
9)を配設した。したがって、このガスケット(9)が
正極缶(3)のカシメによって負極缶(7)との間で圧
縮され、電池内部の密閉性を保持している。
In addition, between the positive electrode can (3) and the negative electrode can (7), there is a polypropylene gasket (with asphalt coated on the surface).
9) was installed. Therefore, this gasket (9) is compressed between the cathode can (7) and the cathode can (7) by caulking the cathode can (3), thereby maintaining airtightness inside the battery.

上記構成により直径20m、高さ2.5恥のコイン型負
極試験電池(実施例電池1)を組み立てた。
A coin-shaped negative electrode test battery (Example Battery 1) with a diameter of 20 m and a height of 2.5 m was assembled using the above configuration.

比較史上 負極材料として市販の人工黒鉛(ロンザ社製。comparative history Commercially available artificial graphite (manufactured by Lonza) as a negative electrode material.

にS−15)を用い、他は実施例1と同様の方法でコイ
ン型負極試験電池(比較例電池1)を組み立てた。
A coin-shaped negative electrode test battery (Comparative Example Battery 1) was assembled in the same manner as in Example 1, except for using S-15).

且(し」4 負極材料として市販の炭素質材料(三菱油化社製、ピッ
チコークス)を用い、他は実施例1と同様の方法でコイ
ン型負極試験電池(比較例電池2)を組み立てた。
4 A coin-shaped negative electrode test battery (Comparative Example Battery 2) was assembled in the same manner as in Example 1, except that a commercially available carbonaceous material (Pitch Coke, manufactured by Mitsubishi Yuka Co., Ltd.) was used as the negative electrode material. .

止鮫貝主 負極材料として市販の炭素繊維(黒鉛化処理無し〉を用
い、他は実施例1と同様の方法でコイン型負極試験電池
(比較例電池3)を組み立てた。
A coin-shaped negative electrode test battery (Comparative Example Battery 3) was assembled in the same manner as in Example 1 except that commercially available carbon fiber (without graphitization treatment) was used as the main negative electrode material.

上述の各実施例及び比較例で組み立てた試験電池に対し
て、電極面積を基準にして1mA/cdの電流密度で黒
鉛材料1g当たり充電量210mAHまで定電流充電を
行った後、同じ<1mA/c+6のt流密度で2.9■
となるまで定電流放電を行うサイクルを繰り返し、充放
電効率及びサイクル寿命を検討した。なお、各サイクル
における充放電効率は、(2,9Vまでの放電容!/充
電容量)×100なる式より算出した。
The test batteries assembled in the above-mentioned Examples and Comparative Examples were subjected to constant current charging at a current density of 1 mA/cd based on the electrode area to a charge amount of 210 mAH per gram of graphite material, and then the same <1 mA/cd was applied. 2.9■ at t flow density of c+6
A cycle of constant current discharge was repeated until , and the charge/discharge efficiency and cycle life were examined. Note that the charging and discharging efficiency in each cycle was calculated from the formula (discharge capacity up to 2.9 V!/charge capacity) x 100.

第3図に実施例電池l並びに比較例電池1.比較例電池
2.比較例電池3の50サイクル目の充放電特性を示す
FIG. 3 shows Example Battery 1 and Comparative Example Battery 1. Comparative Example Battery 2. The charge/discharge characteristics of Comparative Example Battery 3 at the 50th cycle are shown.

実施例電池1及び比較例電池1は充放電カーブの電圧の
平坦性が良く、実用的な範囲において終止電圧の設定値
により放電容量が大きく変化することはない。これに対
して、比較例電池2や比較例電池3では、電圧が充放電
深度に依存して連続的に変化しており、終止電圧の設定
値により放電容量は大きく変化する可能性がある。
Example Battery 1 and Comparative Example Battery 1 have good voltage flatness in their charge/discharge curves, and the discharge capacity does not change significantly depending on the set value of the final voltage within a practical range. On the other hand, in Comparative Example Battery 2 and Comparative Example Battery 3, the voltage changes continuously depending on the depth of charge and discharge, and the discharge capacity may change greatly depending on the set value of the final voltage.

また、第4図にこれら電池の充放電サイクルの繰り返し
回数の進行に伴う充放電効率の変化を示す。
Further, FIG. 4 shows the change in charge/discharge efficiency of these batteries as the number of repetitions of charge/discharge cycles progresses.

一般的な人工黒鉛を負極材料に用いた比較例電池1では
、lサイクル目の充放電効率がほぼ零に近く、はとんど
放電できていない。2サイクル目以降は徐々に充放電効
率は上昇し、15サイクル目以降85〜87%で安定し
た。比較例電池3においても、初期の充放電効率が低い
傾向が見られる。
In Comparative Example Battery 1 in which general artificial graphite was used as the negative electrode material, the charge/discharge efficiency of the 1st cycle was almost zero, and the battery could hardly be discharged. The charge/discharge efficiency gradually increased from the second cycle onwards, and stabilized at 85 to 87% from the 15th cycle onwards. Comparative Example Battery 3 also shows a tendency for the initial charging and discharging efficiency to be low.

したがって、一般的な人工黒鉛を負極材料として用いた
場合には、放電カーブの電圧平坦性には優れるものの、
充放電サイクル劣化が大きく、サイクル寿命の短い電池
しか得られない。
Therefore, when general artificial graphite is used as a negative electrode material, although the voltage flatness of the discharge curve is excellent,
Charge/discharge cycle deterioration is significant, and only batteries with short cycle life can be obtained.

一方、一般的な炭素質材料であるピンチコークスを負極
材料として用いた比較例電池2では、充ti!1.電°
効率は高くサイクル寿命も長いが、第3図に示す結果か
ら放電電圧の平坦性が要求される用途には使用すること
ができない。
On the other hand, in Comparative Example Battery 2 using pinch coke, which is a common carbonaceous material, as the negative electrode material, the charging time was 1. 1. Electric °
Although the efficiency is high and the cycle life is long, the results shown in FIG. 3 indicate that it cannot be used in applications that require flatness of the discharge voltage.

これらに対して、実施例電池lは、lサイクル目の充放
電効率が67%と比較的高い値を示すばかりでなく、2
サイクル以降の効率の立ち上がりも早く、5〜10サイ
クルで99%以上の高い充放電効率に到達し安定した。
In contrast, Example battery 1 not only showed a relatively high charge/discharge efficiency of 67% at the 1st cycle, but also
The rise in efficiency after cycling was also quick, reaching a high charging/discharging efficiency of 99% or more in 5 to 10 cycles and becoming stable.

充放電効率が高いことはサイクルの繰り返しで充放電不
可能になる反応活物質量が少ないことを意味し、高容蟹
の実用電池の設計に有利である。また、実施例電池lは
、500サイクルを越えても安定して高い充放電効率を
維持しており、サイクル寿命も長いものであった。
A high charge/discharge efficiency means that the amount of reactive active material that becomes impossible to charge/discharge after repeated cycles is small, which is advantageous for designing a practical high-capacity crab battery. Furthermore, Example Battery 1 maintained stable high charge/discharge efficiency even after 500 cycles, and had a long cycle life.

次に、微細繊維状黒鉛と炭素質材料からなる複合材料を
負極に用いた非水電解液二次電池の実施例について説明
する。
Next, an example of a non-aqueous electrolyte secondary battery using a composite material made of fine fibrous graphite and a carbonaceous material as a negative electrode will be described.

先ず、以下に示す方法により微細繊維状黒鉛と炭素質材
料からなる複合材料を作成した。
First, a composite material consisting of fine fibrous graphite and a carbonaceous material was created by the method described below.

く複合材料A〉 微細繊維状黒鉛として、昭和電工社製、気相法炭素繊維
(商品名VACF)を用いた。
Composite Material A> Vapor grown carbon fiber (trade name: VACF) manufactured by Showa Denko Co., Ltd. was used as the fine fibrous graphite.

酢酸ビニル系樹脂(電気化学工業社製3商品名サクノー
ル)18gをN−メチルピロリドン42gに溶解させた
溶液に前記微細繊維状黒鉛3gを浸漬し、よく混合して
繊維間に吸液させた。混合物は自然対流式乾燥器内で1
40’C,24時間の乾燥を行った。
3 g of the fine fibrous graphite was immersed in a solution prepared by dissolving 18 g of a vinyl acetate resin (trade name: Sakunor, manufactured by Denki Kagaku Kogyo Co., Ltd., 3) in 42 g of N-methylpyrrolidone, mixed well, and allowed to absorb the liquid between the fibers. The mixture was dried in a natural convection dryer at 1
Drying was performed at 40'C for 24 hours.

次いで、この混合物を石英ガラス製のボートに移し、内
径90mmの石英ガラス製焼戒管内に設置した。焼成管
内を高純度窒素ガスで十分置換した後、さらに流量IN
/分の割合で高純度窒素ガスを流しながら横型管状炉に
より加熱を開始した。
Next, this mixture was transferred to a quartz glass boat and placed in a quartz glass baking tube having an inner diameter of 90 mm. After sufficiently replacing the inside of the firing tube with high-purity nitrogen gas, the flow rate is increased to
Heating was started in a horizontal tubular furnace while flowing high-purity nitrogen gas at a rate of 1/2 min.

炭化反応は先ず500 ’Cで3時間保持した後、さら
に昇温させ1000 ”Cで1時間行った。高純度窒素
ガスを流しながら室温まで冷却してから取り出したとこ
ろ、微細繊維状黒鉛/炭素質物複合材$44.3 gが
得られた。
The carbonization reaction was first maintained at 500'C for 3 hours, then further heated to 1000'C for 1 hour. When the carbonization reaction was cooled to room temperature while flowing high-purity nitrogen gas and then taken out, fine fibrous graphite/carbon was formed. A total of $44.3 g of material composite material was obtained.

これをメノウ乳鉢で十分粉砕した後、250メツシユの
ふるいによりふるい分け、通過分を複合材料Aとした。
After sufficiently crushing this in an agate mortar, it was sieved through a 250-mesh sieve, and the passed through material was designated as composite material A.

〈複合材料B〉 使用した微細繊維状黒鉛は、先の複合材料Aと同しであ
る。
<Composite material B> The fine fibrous graphite used is the same as in the composite material A above.

ボリイ逅ド樹脂(日本ポリ411社製5商晶名ケルイミ
ド)0.75gをN−メチルピロリドン4、25 gに
均一に懸濁させた分散液に前記微細繊維状黒鉛3gを浸
漬し、よく混合して十分に吸液させた。混合物は自然対
流式乾燥器内で140’C。
3 g of the fine fibrous graphite was immersed in a dispersion solution in which 0.75 g of Polyamide resin (manufactured by Nippon Poly 411, commercial name: Kelimide) was uniformly suspended in 4.25 g of N-methylpyrrolidone, and mixed well. to absorb the liquid sufficiently. The mixture was heated to 140'C in a natural convection dryer.

24時間の乾燥を行った。Drying was performed for 24 hours.

次いで、この混合物を石英ガラス製のポートに移し、内
径90mmの石英ガラス製焼成管内に設置した。焼成管
内を高純度窒素ガスで十分置換した後、さらに流量11
/分の割合で高純度窒素ガスを流しながら横型管状炉に
より加熱を開始した。
Next, this mixture was transferred to a quartz glass port and placed in a quartz glass firing tube with an inner diameter of 90 mm. After sufficiently replacing the inside of the firing tube with high-purity nitrogen gas, the flow rate was increased to 11
Heating was started in a horizontal tubular furnace while flowing high-purity nitrogen gas at a rate of 1/2 min.

炭化反応は先ず500℃で3時間保持した後、さらに昇
温させl 000 ’Cで1時間行った。高純度窒素ガ
スを流しながら室温まで冷却してから取り出したところ
、微細繊維状黒鉛/炭素質物複合材料3.5gが得られ
た。
The carbonization reaction was first maintained at 500° C. for 3 hours, and then further heated to l 000° C. for 1 hour. When it was cooled to room temperature while flowing high-purity nitrogen gas and then taken out, 3.5 g of fine fibrous graphite/carbonaceous material composite material was obtained.

これをメノウ乳鉢で十分ネ5)砕した後、250メツシ
ユのふるいによりふるい分け、通過分を複合材料Bとし
た。
This was sufficiently ground in an agate mortar (5) and then sifted through a 250-mesh sieve, and the passed through material was designated as composite material B.

く複合材料C〉 使用した微細繊維状黒鉛は、先の複合材科人と同じであ
る。
Composite material C> The fine fibrous graphite used was the same as the composite material scientist described above.

ポリイミド樹脂(日本ポリイミド社製、商品名ケルイミ
ド)5gをN−メチルピロリドン28.33gに均一に
懸濁させた分散液に前記微IIl繊維状黒鉛3gを浸漬
し、よく混合して十分に吸液させた。混合物は自然対流
式乾燥器内で140’C,24時間の乾燥を行った。
3 g of the fine IIl fibrous graphite was immersed in a dispersion in which 5 g of polyimide resin (manufactured by Nippon Polyimide Co., Ltd., trade name: Kelimide) was uniformly suspended in 28.33 g of N-methylpyrrolidone, and mixed well to ensure sufficient liquid absorption. I let it happen. The mixture was dried in a natural convection dryer at 140'C for 24 hours.

次いで、この混合物を石英ガラス製のボートに移し、内
径90同の石英ガラス製焼成管内に設置した。焼成管内
を高純度窒素ガスで十分子ftAした後、さらに流量1
ffi/分の割合で高純度窒素ガスを流しながら横型管
状炉により加熱を開始した。
Next, this mixture was transferred to a quartz glass boat and placed in a quartz glass firing tube with an inner diameter of 90 mm. After heating the inside of the firing tube with high-purity nitrogen gas, the flow rate was increased to 1
Heating was started in a horizontal tube furnace while flowing high purity nitrogen gas at a rate of ffi/min.

炭化反応は先ず500°Cで3時間保持した後、さらに
昇温させ1000°Cで1時間行った。高純度窒素ガス
を流しながら室温まで冷却してから取り出したところ、
微細繊維状黒鉛/炭素質物複合材#45.3gが得られ
た。
The carbonization reaction was first maintained at 500°C for 3 hours, and then further heated to 1000°C for 1 hour. After cooling it to room temperature while flowing high-purity nitrogen gas, it was taken out.
45.3 g of fine fibrous graphite/carbonaceous material composite material was obtained.

これをメノウ乳鉢で十分粉砕した後、250メンシユの
ふるいによりふるい分け、通過分を複合材料Cとした。
After thoroughly grinding this in an agate mortar, it was sieved through a 250-mesh sieve, and the passed through material was designated as composite material C.

微細繊維状黒鉛単独並びに上述の方法で得た微細繊維状
黒鉛/炭素質物複合材料(複合材料A〜複合材FI C
)の粉末X線回折スペクトルを第5図に示す。測定に使
用したX線回折装置は、理学電機社製、ガイガーフレッ
クスRADIIC(ターゲット: Cu)である。
Fine fibrous graphite alone and fine fibrous graphite/carbonaceous material composite materials obtained by the above method (composite material A to composite material FI C
) is shown in FIG. 5. The X-ray diffraction device used for the measurement was Geigerflex RADIIC (target: Cu) manufactured by Rigaku Denki.

この第5図より求めた炭素六角網面の面間距離は4種の
材料共3.40人と等しく、複合材料の製造過程におい
て基本となる微細繊維状黒鉛の結晶構造はほぼ変化しな
いことが確認された。
The distance between the carbon hexagonal network planes determined from Figure 5 is equal to 3.40 for all four materials, indicating that the crystal structure of the basic fine fibrous graphite remains almost unchanged during the manufacturing process of the composite material. confirmed.

上述の複合材料を負極材料に用いて、先の実施例1と同
様に第2図に示すようなコイン型非水電解液二次電池を
試作した。なお、各電池の構成は、電池容量とサイクル
寿命特性がバランス良く優れた二次電池特性を示すよう
それぞれの材料に対し最も適切なものとした。
Using the above-described composite material as a negative electrode material, a coin-type non-aqueous electrolyte secondary battery as shown in FIG. 2 was prototyped in the same manner as in Example 1 above. The configuration of each battery was determined to be the most appropriate for each material so that battery capacity and cycle life characteristics were well balanced and exhibited excellent secondary battery characteristics.

尖見餞主 複合材料A90重量部、結着剤であるポリフン化ビニリ
デン10重量部よりなる負極合I¥110.16gを直
径15帥に打ち抜いた線径0.05 +mnのステンレ
スl!!2ント(5)とともに加圧成形し、直径15.
5mm、厚さ0.83 mの円板状の負極(4)を作製
した。この負極(4)は、外側にニッケルメッキを施し
たステンレス製負極缶(7)の内側にスボント溶接され
た銅製集電体(6)を介して電池外部への電気的導通が
とられている。
A stainless steel wire with a wire diameter of 0.05 + mn was punched out of 110.16 g of negative electrode composite I consisting of 90 parts by weight of the main composite material A and 10 parts by weight of polyvinylidene fluoride as a binder. ! Pressure molded together with 2 nt (5), diameter 15.
A disc-shaped negative electrode (4) with a diameter of 5 mm and a thickness of 0.83 m was produced. This negative electrode (4) is electrically connected to the outside of the battery via a copper current collector (6) spont welded to the inside of a stainless steel negative electrode can (7) with nickel plating on the outside. .

正極(1)は、活物質であるLiCo0g85重量部、
導電剤であるグラフディト10重量部、結着剤であるポ
リテトラフルオロエチレン5!I!1部よりなる正極合
剤0.71gを直径15.5mm、高さ1.04Mの円
板状に加圧成形したものである。正極(1)は、外側に
ニッケルメッキを施したステンレス製正極缶(3〉 の
内側にスポット溶接されたアルくニウム製集電体(2)
を介して電池外部への電気的導通がとられている。
The positive electrode (1) contains 85 parts by weight of LiCo as an active material,
10 parts by weight of Graphite, which is a conductive agent, and 5 parts by weight of polytetrafluoroethylene, which is a binder. I! 0.71 g of positive electrode mixture consisting of 1 part was pressure-molded into a disk shape with a diameter of 15.5 mm and a height of 1.04 m. The positive electrode (1) consists of an aluminum current collector (2) spot-welded to the inside of a stainless steel positive electrode can (3) with nickel plating on the outside.
Electrical continuity to the outside of the battery is provided through the battery.

前記正極(1)並びに負極(4)は、真空乾燥により残
留水分値を3QQppm以下に調整した後、微孔性ポリ
プロピレンセパレータ[ポリプラスチックス社製、商品
名ジュラガード#2502](8)を介して対向させ設
置した。
After adjusting the residual moisture value of the positive electrode (1) and negative electrode (4) to 3QQppm or less by vacuum drying, the positive electrode (1) and negative electrode (4) were dried through a microporous polypropylene separator [manufactured by Polyplastics, trade name: Duraguard #2502] (8). They were installed facing each other.

電解液は、プロピレンカーボネートと1. 2ジメトキ
シエタンとの等体積混合溶媒にLiPF。
The electrolyte consists of propylene carbonate and 1. 2 LiPF in an equal volume mixed solvent with dimethoxyethane.

を1モル/I!、の割合で溶解させたものとし、これを
残留水分値20ppm以下に調整してその120μiを
注入した。
1 mol/I! This was adjusted to a residual moisture value of 20 ppm or less, and 120 μi of the solution was injected.

なお、正極缶(3)と負極缶(7)との間には、表面に
アスファルトを塗布したポリプロピレン製ガスケット(
9)を配設した。したがって、このガスケント(9〉が
正極缶(3〉のカシメによって負極缶(7)との間で圧
縮され、電池内部の密閉性を保持している。
In addition, between the positive electrode can (3) and the negative electrode can (7), there is a polypropylene gasket (with asphalt coated on the surface).
9) was installed. Therefore, the gasket (9) is compressed between the negative electrode can (7) and the negative electrode can (7) by caulking the positive electrode can (3), thereby maintaining the airtightness inside the battery.

上記構成により直径20間、高さ2.5 mmのコイン
型非水電解液二次電池(実施例電池2)を組み立てた。
A coin-type non-aqueous electrolyte secondary battery (Example Battery 2) having a diameter of 20 mm and a height of 2.5 mm was assembled using the above configuration.

実10組亀 複合材料B90ffi量部、ポリフッ化ビニリデンlO
重量部よりなる負極合剤0.15 gをステンレス製ネ
ットと共に直径15.5mm、高さ0.74 n+l′
llに加工成型した負極(2)と、実施例2と同し正極
合剤0.77 gを直径15.5wa、高さ1.3 m
mに加圧成型した正極(1)を用いたこと以外は実施例
2と同様の方法で直径20mm、高さ2.5 mmのコ
イン型非水電解液二次電池(実施例電池3)を組み立て
た。
Real 10 pairs of turtle composite material B90ffi quantity, polyvinylidene fluoride lO
0.15 g of the negative electrode mixture consisting of parts by weight was placed together with a stainless steel net to a diameter of 15.5 mm and a height of 0.74 n+l'.
A negative electrode (2) processed and molded into a size 1.1 mm, and 0.77 g of the same positive electrode mixture as in Example 2 were placed into a mold with a diameter of 15.5 wa and a height of 1.3 m.
A coin-shaped non-aqueous electrolyte secondary battery (Example Battery 3) with a diameter of 20 mm and a height of 2.5 mm was prepared in the same manner as in Example 2, except that the positive electrode (1) pressure-molded into the battery was used. Assembled.

亥1む1上 複合材料C90重量部、ポリフッ化ビニリデン10重量
部よりなる負極合剤0.15 gをステンレス製ネット
と共に直径15.5mm、高さ0.65 mmに加工′
成型した負極(2)と、実施例2と同し正極合剤0.8
3 gを直径15.5mm、高さ1.22 trtnに
加圧成型した正極(1)を用いたこと以外は実施例2と
同様の方法で直径20mff1.高さ2.5価のコイン
型非水電解液二次電池(実施例電池4)を組み立てた。
0.15 g of a negative electrode mixture consisting of 90 parts by weight of composite material C and 10 parts by weight of polyvinylidene fluoride was processed together with a stainless steel net into a diameter of 15.5 mm and a height of 0.65 mm.
Molded negative electrode (2) and the same positive electrode mixture as in Example 2 0.8
A positive electrode (1) having a diameter of 20 mff1. A coin-shaped non-aqueous electrolyte secondary battery (Example Battery 4) with a height of 2.5 was assembled.

大益拠立 負極(2〉 として微細繊維状黒鉛/炭素質物複合材料
である昭和電工社製2 SGカーボン円板状成形品(直
径15.5mm、高さ0.6帥)をそのまま使用した。
As the large-scale negative electrode (2), a 2SG carbon disk-shaped molded product (diameter 15.5 mm, height 0.6 cm) made by Showa Denko Co., Ltd., which is a fine fibrous graphite/carbonaceous material composite material, was used as it was.

正極(1)は実施例2と同し正極合剤0.82gを直径
15.5mm、高さ1.21mにカロ圧威型したもので
ある。それ以外は実施例2と同様の方法で直径20閣、
高さ2.5脇のコイン型非水電解液二次電池(実施例電
池5)を組み立てた。
The positive electrode (1) was the same as in Example 2, and was made by molding 0.82 g of the positive electrode mixture to a diameter of 15.5 mm and a height of 1.21 m. Other than that, the same method as in Example 2 was used to obtain a diameter of 20 cm.
A coin-shaped non-aqueous electrolyte secondary battery (Example Battery 5) with a height of 2.5 mm was assembled.

此1し4上 微細繊維状黒鉛である昭和電工社製5気相法炭素城維(
商品名VAGF)90重量部及びポリフッ化ビニリデン
10重量部よりなる負極合剤0.14gをステンレス製
ネットと共に直径15.5 nun高さ1.03 mL
lに加圧成型した負極(2)と、実施例2と同し正極合
剤0.57 gを直径15.5mm、高さ0、84 a
mに加圧成型した正極(1)を用いたこと以外は実施例
2と同様の方法で直径20+nm、高さ2゜0mのコイ
ン型非水電解液二次電池(比較例電池4)を組み立てた
This 1st and 4th fine fibrous graphite manufactured by Showa Denko 5 vapor phase carbon fiber (
0.14 g of a negative electrode mixture consisting of 90 parts by weight (trade name: VAGF) and 10 parts by weight of polyvinylidene fluoride was mixed with a stainless steel net into a container with a diameter of 15.5 nun and a height of 1.03 mL.
A negative electrode (2) pressure-molded into a 15.1 mm diameter and 0.57 g of the same positive electrode mixture as in Example 2 was placed in a mold with a diameter of 15.5 mm and a height of 0.84 mm.
A coin-shaped non-aqueous electrolyte secondary battery (comparative example battery 4) with a diameter of 20+ nm and a height of 2°0 m was assembled in the same manner as in Example 2, except that the positive electrode (1) pressure-molded to a diameter of 2.0 m was used. Ta.

なお、本例は微細繊維状黒鉛を単狸で負極に用いた場合
の実施例に相当するものであるが、ここでは複合材料を
負極とした場合と対比するために比較例とした。
Note that this example corresponds to an example in which fine fibrous graphite was used as a negative electrode, but a comparative example was used here in order to compare with a case in which a composite material was used as a negative electrode.

先ず、実施例電池2〜5並びに比較例電池4に用いた負
極の合剤充填密度を第2表に示す。
First, Table 2 shows the filling density of the negative electrode mixture used in Examples Batteries 2 to 5 and Comparative Example Battery 4.

第2表 微細繊維状黒鉛と結着剤だけからなるの負極の合剤充填
密度に対し、繊維間に炭素質物を固定させた複合材料を
使用した負極の合剤充填密度が高く、同し容積内に収納
可能な炭素材料の量が大きいことを示している。
Table 2 Compared to the mixture packing density of the negative electrode made only of fine fibrous graphite and a binder, the mixture packing density of the negative electrode using a composite material with carbonaceous material fixed between the fibers is higher, and the same volume This shows that the amount of carbon material that can be stored inside is large.

次に、実施例電池2〜5並びに比較例電池4に対して、
定電流充放電試験を行った。充電は上限電圧を4,0■
に設定し6mAで24時間行い、放電は2mAで2.9
■までとし、この充放電サイクルを繰り返し行った。
Next, for Example Batteries 2 to 5 and Comparative Example Battery 4,
A constant current charge/discharge test was conducted. For charging, set the upper limit voltage to 4.0■
It was set to 6 mA for 24 hours, and the discharge was 2.9 mA at 2 mA.
This charge/discharge cycle was repeated up to (2).

第6図に各電池のエネルギー密度のサイクル変化を示す
、それによると、複合材料を用いた各実施例電池は、微
細繊維状黒鉛を単独で用いた電池と比べて1〜5割程度
高いエネルギー密度を示し、またサイクル劣化は殆ど遜
色のないものであった。
Figure 6 shows the cycle change in energy density of each battery. According to it, each example battery using a composite material has energy that is about 10 to 50% higher than that of a battery using fine fibrous graphite alone. The density and cycle deterioration were almost comparable.

例えば、50サイクル経過時点のエネルギー密度は、比
較例電池4では10Wh/lであったのに対して、実施
例電池2では81Wh/ffiで比較例電池4に比べて
約16%増、実施例電池3では88Wh/ffiで約2
6%増、実施例電池4ではやはり88Wh/lで約26
%増、実施例電池5では103Wh/j2で約47%増
であった。
For example, the energy density after 50 cycles was 10 Wh/l in Comparative Example Battery 4, while it was 81 Wh/ffi in Example Battery 2, which is approximately 16% higher than Comparative Example Battery 4. For battery 3, 88Wh/ffi is about 2
6% increase, Example battery 4 is still 88Wh/l, about 26
% increase, and Example Battery 5 had an increase of about 47% at 103Wh/j2.

また、第7図に各電池(実施例電池2〜4並びに比較例
電池4)の10サイクル目の放電カーブを示したが、各
実施例電池はいずれも比較例電池4の放電電圧を全領域
に亘って上回っている。
In addition, Fig. 7 shows the discharge curve of each battery (Example Batteries 2 to 4 and Comparative Example Battery 4) at the 10th cycle. exceeds the total.

ところで、微細繊維状黒鉛/有機高分子材料混合物を坑
底して微細繊維状黒鉛/炭素質物複合材料としたときの
重量減少量から推定すると、複合材料中に占める微細繊
維状黒鉛の重量比は、複合材料Aで70%、複合材I−
IBで90%、複合材料Cで57%である。実施例電池
4の放電量は実施例電池3の放電量とほぼ等しいが、放
電カーブの平坦性では第7図で明らかなように劣ってい
る。
By the way, when estimating from the amount of weight loss when fine fibrous graphite/organic polymer material mixture is made into a fine fibrous graphite/carbonaceous material composite material at the bottom of a mine, the weight ratio of fine fibrous graphite in the composite material is , 70% for composite material A, composite material I-
It is 90% for IB and 57% for composite material C. The discharge amount of Example Battery 4 is almost equal to the discharge amount of Example Battery 3, but the flatness of the discharge curve is inferior as is clear from FIG. 7.

したがって、放電電圧の平坦性を重視する場合には、複
合材料中に占める微細繊維状黒鉛の重量比はより高い方
が良く、60%以上であることが望ましいと言える。
Therefore, when the flatness of the discharge voltage is important, the weight ratio of the fine fibrous graphite in the composite material should be higher, and preferably 60% or more.

また、実施例電池5として記載したように、微細繊維状
黒鉛/炭素質物複合材料に市販の材料を使用した場合に
も良好な結果が得られた。例えば、第2表に示したよう
に充填性が高いばかりでなく、円板状負極の全てが炭素
材料であり電池反応に関与できるので第6図に示したよ
うにエネルギー密度も高い。さらに、微細繊維状黒鉛を
使用しているので、第8図に示すように放電電圧の平坦
性も比較的良い。この市販の材料は、円板状の成形棒で
あり、硬度も高く電池組み立て時の作業性にも優れるも
のであった。
Furthermore, as described in Example Battery 5, good results were also obtained when a commercially available material was used for the fine fibrous graphite/carbonaceous material composite material. For example, not only is the filling property high as shown in Table 2, but also the energy density is high as shown in FIG. 6 because the disc-shaped negative electrode is entirely made of carbon material and can participate in battery reactions. Furthermore, since fine fibrous graphite is used, the flatness of the discharge voltage is also relatively good as shown in FIG. This commercially available material was a disc-shaped molded rod, and had high hardness and excellent workability during battery assembly.

以上、コイン型非水電解液二次電池を例に挙げて説明し
たが、これに限定されるものではなく、電池形状5寸法
等は任意である。例えば、ボタン型電池、円筒型電池、
渦巻式円筒型電池等においても先の実施例と同様良好な
結果が得られた。
Although the coin-type non-aqueous electrolyte secondary battery has been described above as an example, the present invention is not limited to this, and the battery shape 5 dimensions etc. are arbitrary. For example, button type batteries, cylindrical batteries,
Similar to the previous example, good results were obtained in the spiral cylindrical battery and the like.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においては、
負極に微細繊維状黒鉛あるいは微細繊維状黒鉛と炭素質
材料とからなる複合材料を用いているので、放電電圧の
平坦性に優れ、しかもサイクル劣化が少なく長寿命の二
次電池を提(1することができる。放電電圧の平坦性に
優れることは、電池使用i器の回路設計」二有利であり
、実用的な範囲において終止電圧の設定値が多少変動し
ても得られる放電容量に大きな差が生ずることもない。
As is clear from the above description, in the present invention,
Since fine fibrous graphite or a composite material consisting of fine fibrous graphite and carbonaceous material is used for the negative electrode, we can provide a secondary battery with excellent flatness of discharge voltage and little cycle deterioration and long life (1). The excellent flatness of the discharge voltage is advantageous in the circuit design of battery-based devices, and within a practical range, there is a large difference in the discharge capacity obtained even if the set value of the final voltage changes slightly. will not occur.

また、特に負極に微細繊維状黒鉛と炭素質材料とからな
る複合材料を用いることで、加工成形時の充填性を改善
することができ、エネルギー密度を向上することができ
る。
In addition, by using a composite material made of fine fibrous graphite and a carbonaceous material especially for the negative electrode, it is possible to improve the filling property during processing and molding, and it is possible to improve the energy density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微細繊維状炭素の黒鉛化処理前と黒鉛処理後の
X線回折スペクトルを示す特性図である。 第2図は組み立てたコイン型電池の構成を示す概略断面
図である。 第3図は微細繊維状黒鉛を単独で負極に用いた電池の5
0サイクル目の充放電特性を他の炭素材料を負極に用い
た電池と比較して示す特性図であり、第4図は充放電サ
イクルの繰り返し回数による充放電効率の変化を示す特
性図である。 第5図は微細繊維状黒鉛/炭素質物複合材料のX線回折
スペクトルを微細繊維状黒鉛単独のX線回折スペクトル
と対比して示す特性図である。 第6図は微細繊維状黒鉛/炭素質物複合材料を負極に用
いた電池のエネルギー密度のサイクル変化を微細繊維状
黒鉛を単独で負極に用いた電池のそれと比較して示す特
性図であり、第7図はIOサイクル目の放電カーブを示
す特性図である。 第8図は市販の微細繊維状黒鉛/炭素質物複合材料を負
極に用いた電池の10サイクル目の放電カーブを示す特
性図である。
FIG. 1 is a characteristic diagram showing the X-ray diffraction spectra of fine fibrous carbon before and after graphitization treatment. FIG. 2 is a schematic cross-sectional view showing the structure of the assembled coin-type battery. Figure 3 shows a battery using fine fibrous graphite alone as the negative electrode.
FIG. 4 is a characteristic diagram showing the charging and discharging characteristics at the 0th cycle in comparison with batteries using other carbon materials for the negative electrode, and FIG. 4 is a characteristic diagram showing changes in charging and discharging efficiency depending on the number of repetitions of charge and discharge cycles. . FIG. 5 is a characteristic diagram showing the X-ray diffraction spectrum of the fine fibrous graphite/carbonaceous material composite material in comparison with the X-ray diffraction spectrum of fine fibrous graphite alone. Figure 6 is a characteristic diagram showing the cycle change in energy density of a battery using fine fibrous graphite/carbonaceous material composite material as the negative electrode in comparison with that of a battery using fine fibrous graphite alone as the negative electrode. FIG. 7 is a characteristic diagram showing the discharge curve of the IO cycle. FIG. 8 is a characteristic diagram showing the discharge curve at the 10th cycle of a battery using a commercially available fine fibrous graphite/carbonaceous material composite material as a negative electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)X線回折ピークの半値幅が1°以下の微細繊維状
黒鉛を含有してなる負極と、正極と、非水電解液とから
なる非水電解液二次電池。
(1) A nonaqueous electrolyte secondary battery comprising a negative electrode containing fine fibrous graphite with an X-ray diffraction peak half width of 1° or less, a positive electrode, and a nonaqueous electrolyte.
(2)X線回折ピークの半値幅が1°以下の微細繊維状
黒鉛と炭素質材料とを含有してなる負極と、正極と、非
水電解液とからなる非水電解液二次電池。
(2) A non-aqueous electrolyte secondary battery comprising a negative electrode containing a carbonaceous material and fine fibrous graphite whose half-width of the X-ray diffraction peak is 1° or less, a positive electrode, and a non-aqueous electrolyte.
(3)負極中の微細繊維状黒鉛の割合が60重量%以上
であることを特徴とする請求項(2)記載の非水電解液
二次電池。
(3) The non-aqueous electrolyte secondary battery according to claim (2), wherein the proportion of fine fibrous graphite in the negative electrode is 60% by weight or more.
JP1267770A 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2917317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267770A JP2917317B2 (en) 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267770A JP2917317B2 (en) 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03129664A true JPH03129664A (en) 1991-06-03
JP2917317B2 JP2917317B2 (en) 1999-07-12

Family

ID=17449348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267770A Expired - Lifetime JP2917317B2 (en) 1989-10-13 1989-10-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2917317B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
EP0776055A1 (en) 1995-11-24 1997-05-28 PETOCA, Ltd Negative electrode material for use in lithium-ion secondary battery and process for producing the same
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541723B2 (en) 1999-04-28 2004-07-14 新神戸電機株式会社 Cylindrical lithium-ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
EP0776055A1 (en) 1995-11-24 1997-05-28 PETOCA, Ltd Negative electrode material for use in lithium-ion secondary battery and process for producing the same
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2917317B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
KR101568334B1 (en) Non-aqueous electrolyte secondary battery negative electrode material making method lithium ion secondary battery and electrochemical capacitor
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP3191394B2 (en) Manufacturing method of non-aqueous secondary battery and its negative electrode plate
JP5082207B2 (en) Method for producing negative electrode material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery using the same
US6106976A (en) Secondary battery or cell with a non-aqueous electrolyte
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JPH087885A (en) Lithium secondary battery
JPH09320600A (en) Electrochemical battery fined carbon
JP3499584B2 (en) Lithium secondary battery
JPH1154123A (en) Nonaqueous electrolyte secondary battery
US5900335A (en) Non-aqueous secondary battery and negative electrode for non-aqueous secondary battery
JP3311104B2 (en) Lithium secondary battery
JP6297746B2 (en) Carbonaceous molded body for battery electrode and method for producing the same
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH11317229A (en) Negative active material for lithium secondary battery, lithium secondary battery and production of negative active material for lithium secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH0589879A (en) Lithium secondary battery
JP3406843B2 (en) Lithium secondary battery
JPH03129664A (en) Nonaqueous electrolyte secondary battery
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JPH08162097A (en) Nonaqueous electrolytic secondary battery
JPH05307958A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11