JP2001160391A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001160391A
JP2001160391A JP34592299A JP34592299A JP2001160391A JP 2001160391 A JP2001160391 A JP 2001160391A JP 34592299 A JP34592299 A JP 34592299A JP 34592299 A JP34592299 A JP 34592299A JP 2001160391 A JP2001160391 A JP 2001160391A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
density
electrode layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34592299A
Other languages
Japanese (ja)
Inventor
Takashi Ogura
隆 小倉
Yuji Sugano
裕士 菅野
Tatsuya Nakamura
達也 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electronic Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Components Co Ltd filed Critical Sanyo Electronic Components Co Ltd
Priority to JP34592299A priority Critical patent/JP2001160391A/en
Publication of JP2001160391A publication Critical patent/JP2001160391A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery, in which better, higher rated discharge properties can be obtained, as compared with those of the conventional batteries. SOLUTION: This lithium ion secondary battery comprised of a positive electrode 11, configured by forming a positive electrode layer containing positive electrode active substance on the surface of a core, and a negative electrode 12 configured by forming a negative electrode layer containing negative active substance on the surface of the core, where the range of density for the positive layer is 2.2-2.9 mg/mm3 and the density of negative layer is 0.9-1.2 mg/mm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池等の非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion battery.

【0002】[0002]

【従来の技術】従来より、電力貯蔵用や電気自動車用の
電源として、急激な出力変動に対応可能な非水電解液二
次電池が開発されており、その中でも、高い出力密度を
得ることが出来るリチウムイオン電池が注目されてい
る。
2. Description of the Related Art Conventionally, non-aqueous electrolyte secondary batteries capable of coping with sudden output fluctuations have been developed as power supplies for electric power storage and electric vehicles, and among them, a high output density can be obtained. Attention is being paid to lithium ion batteries that can be used.

【0003】リチウムイオン電池などの非水電解液二次
電池においては、円筒缶等の密閉容器内に巻き取り電極
体が収容され、巻き取り電極体は、それぞれ帯状の正極
と負極の間にセパレータを介在させて、これらを渦巻き
状に巻き取って構成され、セパレータには、有機電解液
が含浸されている。正極は、正極活物質を含む正極層を
芯体の表面に形成して構成され、負極は、負極活物質を
含む負極層を芯体の表面に形成して構成されている。巻
き取り電極体の正極側及び負極側の端部は、それぞれ集
電体を介して、密閉容器に取り付けられた正負一対の電
極端子部に連結されて、巻き取り電極体が発生する電力
を両電極端子部から外部へ取り出すことが出来るように
なっている。
[0003] In a non-aqueous electrolyte secondary battery such as a lithium ion battery, a wound electrode body is accommodated in a closed container such as a cylindrical can, and a wound electrode body is formed between a strip-shaped positive electrode and a strip-shaped negative electrode. The separator is impregnated with an organic electrolyte solution. The positive electrode is formed by forming a positive electrode layer containing a positive electrode active material on the surface of a core, and the negative electrode is formed by forming a negative electrode layer containing a negative electrode active material on the surface of a core. The positive electrode side and the negative electrode side end of the winding electrode body are respectively connected to a pair of positive and negative electrode terminals attached to the closed container via a current collector, so that the electric power generated by the winding electrode body is supplied to both ends. It can be taken out from the electrode terminal part.

【0004】[0004]

【発明が解決しようとする課題】図5は、従来のリチウ
ムイオン二次電池の放電特性を表わしている。尚、測定
は、電解液を含浸させた18650サイズの巻き取り電
極体を用いて、以下の手順により行なった。先ず、巻き
取り電極体を定電流(0.06A)、定電圧(3.8V)で5
時間充電し、更に24時間放置して、巻き取り電極体に
活性化処理を施した。活性化処理後の巻き取り電極体を
電流値0.5Aで電圧値4.18Vまで充電し、更に、電
圧値4.18Vで2.5時間充電した。その後、巻き取り
電極体を電流値1.6A、3.2A、6.4A、或いは1
0Aで放電し、電圧値が2.5Vとなるまでの電圧値の
変化、及び電圧値が2.5Vとなるまでの時間を測定し
た。
FIG. 5 shows the discharge characteristics of a conventional lithium ion secondary battery. In addition, the measurement was performed by the following procedures using a winding electrode body of 18650 size impregnated with the electrolytic solution. First, the winding electrode body was set at a constant current (0.06 A) and a constant voltage (3.8 V) for 5 minutes.
The wound electrode body was charged for an hour and left for 24 hours to perform an activation process. After the activation treatment, the wound electrode body was charged at a current value of 0.5 A to a voltage value of 4.18 V, and further charged at a voltage value of 4.18 V for 2.5 hours. After that, the winding electrode body is set to a current value of 1.6 A, 3.2 A, 6.4 A, or 1
The battery was discharged at 0 A, and the change in the voltage value until the voltage value became 2.5 V and the time until the voltage value became 2.5 V were measured.

【0005】図5は、横軸に単位重量当たりの電力P
(以下、電力密度Pという)、縦軸に単位重量当たりのエ
ネルギーE(以下、エネルギー密度Eという)を採ったも
のである。ここで、電力密度Pは、上述の巻き取り電極
体の放電時において電圧値が2.5Vとなるまでの電圧
値の平均値にそのときの電流値を乗算して得られる電力
値を、巻き取り電極体の重量で除算したものである。
又、エネルギー密度Eは、前記電力値に電圧値が2.5
Vとなるまでの時間を乗算して得られるエネルギー値
を、巻き取り電極体の重量で除算したものである。図中
の3つのプロットは、左側から順に、巻き取り電極体を
電流値1.6A、3.2A、6.4Aで放電したときのエ
ネルギー密度Eを表わしている。尚、巻き取り電極体を
電流値10Aで放電したときのエネルギー密度Eは、1
0wh/kgよりも小さな値となった。
FIG. 5 shows the power P per unit weight on the horizontal axis.
(Hereinafter referred to as power density P), and the vertical axis represents energy E per unit weight (hereinafter referred to as energy density E). Here, the power density P is obtained by multiplying a power value obtained by multiplying the average value of the voltage values until the voltage value becomes 2.5 V by the current value at the time of discharging the above-mentioned winding electrode body, at the time of discharging. It is obtained by dividing by the weight of the electrode body.
Further, the energy density E is such that the voltage value is 2.5
The energy value obtained by multiplying the time required to reach V is divided by the weight of the winding electrode body. The three plots in the figure represent the energy densities E when the wound electrode body is discharged at current values of 1.6 A, 3.2 A, and 6.4 A in order from the left. The energy density E when the winding electrode was discharged at a current value of 10 A was 1
The value was smaller than 0 wh / kg.

【0006】従来のリチウムイオン二次電池において
は、図示の如く電力密度Pが高くなると、エネルギー密
度Eが急激に低下しており、良好なハイレート放電特性
が得られていない。本発明の目的は、従来よりも良好な
ハイレート放電特性が得られる非水電解液二次電池を提
供することである。
In the conventional lithium ion secondary battery, as shown in the figure, when the power density P increases, the energy density E sharply decreases, and good high-rate discharge characteristics cannot be obtained. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can obtain high-rate discharge characteristics better than conventional ones.

【0007】[0007]

【課題を解決する為の手段】そこで本発明者らは、ハイ
レート放電特性を改善すべく鋭意研究を行なった結果、
正極層及び負極層の密度がハイレート放電特性に影響を
及ぼすことを見出し、本発明の完成に至った。即ち、従
来のリチウムイオン二次電池においては、電池容量を増
大させるべく、正極層の密度が3.3mg/mm、負
極層の密度が1.4mg/mmと大きな値に設定され
ており、これらの大きな密度がハイレート放電特性を低
下させているのである。
The present inventors have conducted intensive studies to improve high-rate discharge characteristics.
The inventors have found that the densities of the positive electrode layer and the negative electrode layer affect the high-rate discharge characteristics, and have completed the present invention. That is, in the conventional lithium ion secondary battery, the density of the positive electrode layer is set to a large value of 3.3 mg / mm 3 and the density of the negative electrode layer is set to a large value of 1.4 mg / mm 3 in order to increase the battery capacity. These large densities lower the high-rate discharge characteristics.

【0008】本発明に係る非水電解液二次電池は、正極
活物質を含む正極層を芯体の表面に形成してなる正極
と、負極活物質を含む負極層を芯体の表面に形成してな
る負極とを具えたものであって、正極層の密度が、2.
2〜2.9mg/mmであり、負極層の密度が、0.9
〜1.2mg/mmである。
A nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode having a positive electrode layer containing a positive electrode active material formed on the surface of a core, and a negative electrode layer having a negative electrode active material formed on the surface of the core. And a negative electrode having a density of 2.
2 to 2.9 mg / mm 3 and the density of the negative electrode layer is 0.9
11.2 mg / mm 3 .

【0009】正極層の密度が2.2mg/mmを下回
る場合、或いは負極層の密度が0.9mg/mmを下
回る場合、電池容量が従来のリチウムイオン二次電池に
比べて著しく減小すると共に、良好なハイレート放電特
性が得られない。一方、正極層の密度が2.9mg/m
を上回る場合、或いは負極層の密度が1.2mg/
mmを上回る場合、良好なハイレート放電特性が得ら
れない。従って、正極層及び負極層の密度は夫々、上記
範囲に設定することが好ましい。尚、正極層及び負極層
の密度をそれぞれ上記範囲に設定することによって良好
なハイレート放電特性が得られることは、後述の実験に
より確認されている。
When the density of the positive electrode layer is lower than 2.2 mg / mm 3 or when the density of the negative electrode layer is lower than 0.9 mg / mm 3 , the battery capacity is significantly reduced as compared with the conventional lithium ion secondary battery. And good high-rate discharge characteristics cannot be obtained. On the other hand, the density of the positive electrode layer is 2.9 mg / m
m 3 or the density of the negative electrode layer is 1.2 mg /
If it exceeds 3 mm, good high-rate discharge characteristics cannot be obtained. Therefore, it is preferable that the densities of the positive electrode layer and the negative electrode layer are respectively set in the above ranges. It has been confirmed by experiments described later that good high-rate discharge characteristics can be obtained by setting the densities of the positive electrode layer and the negative electrode layer in the above ranges.

【0010】[0010]

【発明の効果】本発明に係る非水電解液二次電池によれ
ば、従来よりも良好なハイレート放電特性が得られる。
According to the non-aqueous electrolyte secondary battery according to the present invention, better high-rate discharge characteristics can be obtained than before.

【0011】[0011]

【発明の実施の形態】以下、本発明を図1に示すリチウ
ムイオン二次電池に実施した形態につき、図面に沿って
具体的に説明する。図1は、本発明を実施すべき186
50サイズの正極容量支配のリチウムイオン二次電池
(1)の構造を表わしており、正極(11)、負極(12)、セパ
レータ(13)、正極リード(14)、負極リード(15)、正極外
部端子(16)、負極缶(17)、及び封口蓋(18)等から密閉構
造の二次電池が構成されている。正極(11)及び負極(12)
は、セパレータ(13)を介して渦巻き状に巻き取られた状
態で負極缶(17)に収容されており、正極(11)は正極リー
ド(14)を介して封口蓋(18)に、負極(12)は負極リード(1
5)を介して負極缶(17)に接続されている。負極缶(17)と
封口蓋(18)との接合部には絶縁性のパッキング(20)が装
着されて、電池(1)の密閉化が施されている。正極外部
端子(16)と封口蓋(18)との間には、コイルスプリング(1
9)が設けられ、電池内圧が上昇したときに圧縮されて電
池内部のガスを大気中に放出し得る様になっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention for a lithium ion secondary battery shown in FIG. 1 will be specifically described with reference to the drawings. FIG. 1 illustrates a 186 in which the present invention is to be implemented.
Lithium-ion rechargeable battery with 50 size positive electrode capacity
The structure of (1) is shown, and a positive electrode (11), a negative electrode (12), a separator (13), a positive electrode lead (14), a negative electrode lead (15), a positive electrode external terminal (16), a negative electrode can (17), A secondary battery having a sealed structure is constituted by the sealing lid (18) and the like. Positive electrode (11) and negative electrode (12)
Is housed in a negative electrode can (17) in a state of being spirally wound via a separator (13), and the positive electrode (11) is connected to a sealing lid (18) via a positive electrode lead (14), and the negative electrode is (12) is the negative lead (1
It is connected to the negative electrode can (17) via 5). An insulating packing (20) is attached to the joint between the negative electrode can (17) and the sealing lid (18) to hermetically seal the battery (1). A coil spring (1) is inserted between the positive external terminal (16) and the sealing lid (18).
9) is provided so that when the internal pressure of the battery rises, it is compressed and the gas inside the battery can be released to the atmosphere.

【0012】上記リチウムイオン二次電池は、次の様に
して作製される。先ず、正極活物質としてのLiCoO
粉末、導電材としての炭素粉末、結着剤としてのPV
DF(ポリフッ化ビニリデン)、及び有機溶媒としてのN
MP(N−メチル−2−ピロリドン)を重量比14:0.
9:1:12の比率で混合して、ペースト状の正極材料
混合材を調製する。次いで、この正極材料混合材を、ア
ルミニウム箔からなる芯体の表面に塗布し、正極材料混
合材に乾燥を施した後、圧延を施して正極層を形成す
る。ここで、正極層の密度は、2.2〜2.9mg/mm
の範囲に設定する。この様にして得られた電極板を所
定の幅及び長さに切断して正極を作製する。
The above lithium ion secondary battery is manufactured as follows. First, LiCoO as a positive electrode active material
2 powder, carbon powder as conductive material, PV as binder
DF (polyvinylidene fluoride) and N as an organic solvent
MP (N-methyl-2-pyrrolidone) was added at a weight ratio of 14: 0.
By mixing at a ratio of 9: 1: 12, a paste-like positive electrode material mixture is prepared. Next, this positive electrode material mixture is applied to the surface of a core made of aluminum foil, and after drying the positive electrode material mixture, rolling is performed to form a positive electrode layer. Here, the density of the positive electrode layer is 2.2 to 2.9 mg / mm.
Set to the range of 3 . The electrode plate thus obtained is cut into a predetermined width and length to produce a positive electrode.

【0013】その後、負極活物質としての炭素粉末、結
着剤としてのPVDF、及び有機溶媒としてのNMPを
重量比9:1:9.4の比率で混合して、ペースト状の
負極材料混合材を調製する。次いで、この負極材料混合
材を、銅箔からなる芯体の表面に塗布し、負極材料混合
材に乾燥を施した後、圧延を施して負極層を形成する。
ここで、負極層の密度は、0.9〜1.2mg/mm
範囲に設定する。この様にして得られた電極板を所定の
幅及び長さに切断して負極を作製する。そして、上述の
如く作製された正極及び負極を、図1に示すリチウムイ
オン二次電池に組み込む。尚、セパレータとしてはポリ
プロピレン製のものを、電解液としては、EC(エチレ
ンカーボネート)とDMC(ジメチルカーボネート)の混
合溶液を用いることが出来る。
[0013] Thereafter, carbon powder as a negative electrode active material, PVDF as a binder, and NMP as an organic solvent are mixed at a weight ratio of 9: 1: 9.4 to form a paste-like negative electrode material mixture. Is prepared. Next, the negative electrode material mixture is applied to the surface of a core made of copper foil, and after drying the negative electrode material mixture, rolling is performed to form a negative electrode layer.
Here, the density of the negative electrode layer is set in the range of 0.9 to 1.2 mg / mm 3 . The electrode plate thus obtained is cut into a predetermined width and length to produce a negative electrode. Then, the positive electrode and the negative electrode manufactured as described above are incorporated in the lithium ion secondary battery shown in FIG. The separator may be made of polypropylene, and the electrolyte may be a mixed solution of EC (ethylene carbonate) and DMC (dimethyl carbonate).

【0014】次に、本発明の効果を確認するために行な
った実験の内容及び結果について説明する。 (1)正極層の密度−ハイレート放電特性巻き取り電極体の作製 正極活物質としてのLiCoO粉末、導電材としての
炭素粉末、結着剤としてのPVDF、及び有機溶媒とし
てのNMPを重量比14:0.9:1:12の比率で混
合して、ペースト状の正極材料混合材を調製した。この
正極材料混合材を、正極芯体であるアルミニウム箔の両
面に塗布し、正極材料混合材に乾燥を施した後、圧延を
施して正極層を形成した。ここで、正極層の密度を種々
変化させて、複数種類の電極板を作製した。この様にし
て作製した複数種類の電極板をそれぞれ所定の幅及び長
さに切断して、18650サイズの正極を作製した。
Next, an experiment was conducted to confirm the effects of the present invention.
The details and results of the experiment performed will be described. (1) Density of positive electrode layer-high rate discharge characteristicsFabrication of the wound electrode body  LiCoO as positive electrode active material2Powder, conductive material
Carbon powder, PVDF as a binder, and organic solvent
All NMP in a weight ratio of 14: 0.9: 1: 12.
In this way, a paste-like mixed material of the positive electrode material was prepared. this
Mix the positive electrode material mixture with the aluminum foil that is the positive electrode core.
After applying to the surface and drying the positive electrode material mixture, rolling
To form a positive electrode layer. Here, the density of the positive electrode layer is varied.
By changing, a plurality of types of electrode plates were produced. Like this
Each of the multiple types of electrode plates prepared in
Then, a positive electrode of 18650 size was produced.

【0015】負極活物質としての炭素粉末、結着剤とし
てのPVDF、及び有機溶媒としてのNMPを重量比
9:1:9.4の比率で混合して、ペースト状の負極材
料混合材を調製した。この負極材料混合材を、負極芯体
である銅箔の両面に塗布し、負極材料混合材に乾燥を施
した後、圧延を施した。ここで、負極層の密度は、1.
1mg/mmに設定した。この様にして得られた電極
板を所定の幅及び長さに切断して、18650サイズの
負極を作製した。
A paste-like negative electrode material mixture is prepared by mixing carbon powder as a negative electrode active material, PVDF as a binder, and NMP as an organic solvent at a weight ratio of 9: 1: 9.4. did. This negative electrode material mixture was applied to both surfaces of a copper foil serving as a negative electrode core, and the negative electrode material mixture was dried and then rolled. Here, the density of the negative electrode layer is 1.
It was set to 1mg / mm 3. The electrode plate thus obtained was cut into a predetermined width and length to prepare a 18650-size negative electrode.

【0016】上述の如く作製した正極と負極の間に、ポ
リプロピレン製のセパレータを挟んで、これらを渦巻き
状に巻回し、18650サイズの複数種類の巻き取り電
極体を作製した。
A polypropylene separator was sandwiched between the positive electrode and the negative electrode produced as described above, and these were spirally wound to produce a plurality of 18650-size wound electrode bodies.

【0017】測定 これら複数種類の巻き取り電極体をグローブボックスの
内部に収容して、ECとDECとを体積比率1:2で混
合してなる電解液をセパレータに含浸させた後、これら
の巻き取り電極体をそれぞれ定電流(0.06A)、定電
圧(3.8V)で5時間充電し、更に24時間放置して、
巻き取り電極体に活性化処理を施した。活性化処理後の
巻き取り電極体を電流値0.5Aで電圧値4.18Vまで
充電し、更に、電圧値4.18Vで2.5時間充電した。
その後、巻き取り電極体を電流値10Aで放電し、電圧
値が2.5Vとなるまでの電圧値の変化、及び電圧値が
2.5Vとなるまでの時間を測定した。
[0017]Measurement  These plural kinds of winding electrode bodies are
EC and DEC are mixed at a volume ratio of 1: 2
After impregnating the separator with the combined electrolyte,
Constant current (0.06A), constant current
Charge (3.8V) for 5 hours, leave for another 24 hours,
The winding electrode body was subjected to an activation treatment. After activation
Winding electrode body with current value of 0.5A to voltage value of 4.18V
The battery was charged, and further charged at a voltage value of 4.18 V for 2.5 hours.
Thereafter, the wound electrode body was discharged at a current value of 10 A,
The change of the voltage value until the value becomes 2.5 V, and the voltage value becomes
The time until 2.5 V was measured.

【0018】測定結果 図3は、上記測定値を用いて、従来と同様の手法により
エネルギー密度を算出し、正極層の密度とエネルギー密
度の関係を表わしたものである。図示の如く、正極層の
密度が2.2〜2.9mg/mmの範囲で、70wh/
kg以上の高いエネルギー密度が得られている。特に、
正極層の密度が2.55mg/mmの付近で高いエネ
ルギー密度が得られている。以上の結果から、正極層の
密度は、2.2mg/mm以上2.9mg/mm以下
に設定することが望ましいと言える。
[0018]Measurement result  FIG. 3 shows the results obtained by using the above measured values in the same manner as in the related art.
Calculate the energy density and determine the density of the positive electrode layer and the energy density.
It shows the relationship between degrees. As shown in FIG.
The density is 2.2 to 2.9 mg / mm370 wh /
High energy density of over kg is obtained. In particular,
The density of the positive electrode layer is 2.55 mg / mm3High energy near the
Lugie density is obtained. From the above results, the positive electrode layer
The density is 2.2 mg / mm32.9 mg / mm3Less than
It can be said that it is desirable to set to.

【0019】(2)負極層の密度−ハイレート放電特性巻き取り電極体の作製 正極層の密度を2.55mg/mmに設定した以外
は、上記正極と同様にして、18650サイズの正極を
作製した。負極層の密度を種々変化させた以外は、上記
負極と同様にして、18650サイズの複数種類の負極
を作製した。この様にして作製した正極と負極の間に、
ポリプロピレン製のセパレータを挟んで、これらを渦巻
き状に巻回し、18650サイズの複数種類の巻き取り
電極体を作製した。
(2) Density of negative electrode layer-high-rate discharge characteristicsFabrication of the wound electrode body  The density of the positive electrode layer is 2.55 mg / mm3Other than set to
Is a positive electrode of 18650 size in the same manner as the above positive electrode.
Produced. Other than changing the density of the negative electrode layer variously,
In the same manner as the negative electrode, a plurality of types of 18650-size negative electrodes
Was prepared. Between the positive electrode and the negative electrode thus produced,
These are swirled with a polypropylene separator in between.
And rolled up in 18650 size
An electrode body was produced.

【0020】測定 これら複数種類の巻き取り電極体をグローブボックスの
内部に収容して、ECとDECとを体積比率1:2で混
合してなる電解液をセパレータに含浸させた後、これら
の巻き取り電極体に上記同様の活性化処理を施した。活
性化処理後の巻き取り電極体を電流値0.5Aで電圧値
4.18Vまで充電し、更に、電圧値4.18Vで2.5
時間充電した。その後、巻き取り電極体を電流値10A
で放電し、電圧値が2.5Vとなるまでの電圧値の変
化、及び電圧値が2.5Vとなるまでの時間を測定し
た。
[0020]Measurement  These plural kinds of winding electrode bodies are
EC and DEC are mixed at a volume ratio of 1: 2
After impregnating the separator with the combined electrolyte,
Was subjected to the same activation treatment as described above. Activity
The wound electrode body after the oxidizing treatment was applied with a current value of 0.5 A and a voltage value of 0.5 A.
The battery was charged to 4.18V, and then 2.5V at 4.18V.
Charged for hours. Thereafter, the current value of the wound electrode body was set to 10 A.
And discharge until the voltage reaches 2.5V.
And the time until the voltage value becomes 2.5V
Was.

【0021】測定結果 図4は、上記測定値を用いて、従来と同様の手法により
エネルギー密度を算出し、負極層の密度とエネルギー密
度の関係を表わしたものである。図示の如く、負極層の
密度が0.9〜1.2mg/mmの範囲で、80wh/
kg以上の高いエネルギー密度が得られている。特に、
負極層の密度が1.05mg/mmの付近で高いエネ
ルギー密度が得られている。以上の結果から、負極層の
密度は、0.9mg/mm以上1.2mg/mm以下
に設定することが望ましいと言える。
[0021]Measurement result  FIG. 4 shows the results obtained by using the above measured values in the same manner as in the related art.
Calculate the energy density and determine the density of the negative electrode layer and the energy density.
It shows the relationship between degrees. As shown in FIG.
Density 0.9-1.2mg / mm380 wh /
High energy density of over kg is obtained. In particular,
The density of the negative electrode layer is 1.05 mg / mm3High energy near the
Lugie density is obtained. From the above results, the negative electrode layer
The density is 0.9mg / mm31.2 mg / mm3Less than
It can be said that it is desirable to set to.

【0022】(3)放電特性巻き取り電極体の作製 正極層の密度を2.55mg/mmに設定した以外
は、上記正極と同様にして、18650サイズの正極を
作製した。負極層の密度を1.1mg/mmに設定し
た以外は、上記負極と同様にして、18650サイズの
負極を作製した。この様にして作製した正極と負極の間
に、ポリプロピレン製のセパレータを挟んで、これらを
渦巻き状に巻回し、18650サイズの巻き取り電極体
を作製した。
(3) Discharge characteristicsFabrication of the wound electrode body  The density of the positive electrode layer is 2.55 mg / mm3Other than set to
Is a positive electrode of 18650 size in the same manner as the above positive electrode.
Produced. The density of the negative electrode layer is 1.1 mg / mm3Set to
Other than the above, the 18650 size
A negative electrode was produced. Between the positive electrode and negative electrode produced in this way
Then, with a polypropylene separator in between,
18650 size wound electrode body wound in a spiral shape
Was prepared.

【0023】測定 上述の如く得られた巻き取り電極体をグローブボックス
の内部に収容して、ECとDECとを体積比率1:2で
混合してなる電解液をセパレータに含浸させた後、該巻
き取り電極体に上記同様の活性化処理を施した。活性化
処理後の巻き取り電極体を電流値0.5Aで電圧値4.1
8Vまで充電し、更に、電圧値4.18Vで2.5時間充
電した。その後、巻き取り電極体を電流値1.6A、3.
2A、6.4A、10A、或いは16Aで放電し、電圧
値が2.5Vとなるまでの電圧値の変化、及び電圧値が
2.5Vとなるまでの時間を測定した。
[0023]Measurement  Glove box with the wound electrode body obtained as described above
And EC and DEC in a volume ratio of 1: 2
After impregnating the separator with the mixed electrolyte solution,
The same activation treatment as described above was performed on the scraped electrode body. activation
After the treatment, the wound electrode body was set to a current value of 0.5 A and a voltage value of 4.1.
Charged to 8V, and further charged at 4.18V for 2.5 hours
I turned on. Thereafter, the wound electrode body was set to a current value of 1.6 A, 3.
Discharge at 2A, 6.4A, 10A or 16A, voltage
The change of the voltage value until the value becomes 2.5 V, and the voltage value becomes
The time until 2.5 V was measured.

【0024】測定結果 図2は、上記測定値を用いて、従来と同様の手法により
電力密度P及びエネルギー密度Eを算出し、電力密度P
とエネルギー密度Eの関係を表わしたものである。図中
の5つのプロットは、左側から順に、巻き取り電極体を
電流値1.6A、3.2A、6.4A、10A、16Aで
放電したときのエネルギー密度Eを表わしている。
[0024]Measurement result  FIG. 2 shows the results obtained by using the above measured values in the same manner as in the related art.
The power density P and the energy density E are calculated, and the power density P is calculated.
And the energy density E. In the figure
In the five plots, the winding electrode body is
With current values of 1.6A, 3.2A, 6.4A, 10A, 16A
It shows the energy density E at the time of discharge.

【0025】図示の如く電力密度Pが高い場合において
も、電力密度Pが低い場合と同程度の高いエネルギー密
度Eが得られており、良好なハイレート放電特性が得ら
れている。
As shown in the figure, even when the power density P is high, the same high energy density E as when the power density P is low is obtained, and good high-rate discharge characteristics are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施すべきリチウムイオン二次電池の
断面図である。
FIG. 1 is a sectional view of a lithium ion secondary battery in which the present invention is to be implemented.

【図2】上記リチウムイオン二次電池の放電特性を表わ
すグラフである。
FIG. 2 is a graph showing discharge characteristics of the lithium ion secondary battery.

【図3】正極層の密度−ハイレート放電特性を表わすグ
ラフである。
FIG. 3 is a graph showing a density-high rate discharge characteristic of a positive electrode layer.

【図4】負極層の密度−ハイレート放電特性を表わすグ
ラフである。
FIG. 4 is a graph showing a density-high rate discharge characteristic of a negative electrode layer.

【図5】従来のリチウムイオン二次電池の放電特性を表
わすグラフである。
FIG. 5 is a graph showing discharge characteristics of a conventional lithium ion secondary battery.

【符号の説明】[Explanation of symbols]

(1) リチウムイオン二次電池 (11) 正極 (12) 負極 (13) セパレータ (1) Lithium ion secondary battery (11) Positive electrode (12) Negative electrode (13) Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲村 達也 大阪府大東市三洋町1番1号 三洋電子部 品株式会社内 Fターム(参考) 5H014 AA02 EE08 EE10 HH08 5H029 AJ03 AK03 AL06 AM01 BJ02 BJ14  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Tatsuya Nakamura 1-1, Sanyocho, Daito-shi, Osaka F-term (reference) in Sanyo Electronics Co., Ltd. 5H014 AA02 EE08 EE10 HH08 5H029 AJ03 AK03 AL06 AM01 BJ02 BJ14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を含む正極層を芯体の表面に
形成してなる正極と、負極活物質を含む負極層を芯体の
表面に形成してなる負極とを具えた非水電解液二次電池
において、正極層の密度が、2.2〜2.9mg/mm
であることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte comprising a positive electrode having a positive electrode layer containing a positive electrode active material formed on the surface of a core, and a negative electrode having a negative electrode layer containing a negative electrode active material formed on the surface of the core. In the liquid secondary battery, the density of the positive electrode layer is 2.2 to 2.9 mg / mm 3
Non-aqueous electrolyte secondary battery characterized by the following.
【請求項2】 正極活物質を含む正極層を芯体の表面に
形成してなる正極と、負極活物質を含む負極層を芯体の
表面に形成してなる負極とを具えた非水電解液二次電池
において、負極層の密度が、0.9〜1.2mg/mm
であることを特徴とする非水電解液二次電池。
2. A non-aqueous electrolyte comprising a positive electrode having a positive electrode layer containing a positive electrode active material formed on the surface of a core, and a negative electrode having a negative electrode layer containing a negative electrode active material formed on the surface of the core. In the liquid secondary battery, the density of the negative electrode layer is 0.9 to 1.2 mg / mm 3
Non-aqueous electrolyte secondary battery characterized by the following.
【請求項3】 正極活物質を含む正極層を芯体の表面に
形成してなる正極と、負極活物質を含む負極層を芯体の
表面に形成してなる負極とを具えた非水電解液二次電池
において、正極層の密度が、2.2〜2.9mg/mm
であり、負極層の密度が、0.9〜1.2mg/mm
あることを特徴とする非水電解液二次電池。
3. A non-aqueous electrolyte comprising a positive electrode having a positive electrode layer containing a positive electrode active material formed on the surface of a core, and a negative electrode having a negative electrode layer containing a negative electrode active material formed on the surface of the core. In the liquid secondary battery, the density of the positive electrode layer is 2.2 to 2.9 mg / mm 3
And a density of the negative electrode layer is 0.9 to 1.2 mg / mm 3 .
JP34592299A 1999-12-06 1999-12-06 Nonaqueous electrolyte secondary battery Pending JP2001160391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34592299A JP2001160391A (en) 1999-12-06 1999-12-06 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34592299A JP2001160391A (en) 1999-12-06 1999-12-06 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001160391A true JP2001160391A (en) 2001-06-12

Family

ID=18379913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34592299A Pending JP2001160391A (en) 1999-12-06 1999-12-06 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001160391A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342958A (en) * 1991-05-21 1992-11-30 Japan Storage Battery Co Ltd Negative electrode for battery with non-aqueous electrolyte
JPH0574494A (en) * 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH05290848A (en) * 1992-04-10 1993-11-05 Mitsubishi Kasei Corp Secondary battery and manufacture thereof
JPH07105935A (en) * 1993-10-07 1995-04-21 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH08315855A (en) * 1995-05-23 1996-11-29 Dai Ichi Kogyo Seiyaku Co Ltd Solid electrolyte lithium ion secondary battery and its manufacture
JPH10261415A (en) * 1997-03-17 1998-09-29 Sony Corp Nonaqueous electrolyte secondary battery
JPH10284060A (en) * 1997-04-11 1998-10-23 Hitachi Maxell Ltd Lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342958A (en) * 1991-05-21 1992-11-30 Japan Storage Battery Co Ltd Negative electrode for battery with non-aqueous electrolyte
JPH0574494A (en) * 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH05290848A (en) * 1992-04-10 1993-11-05 Mitsubishi Kasei Corp Secondary battery and manufacture thereof
JPH07105935A (en) * 1993-10-07 1995-04-21 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH08315855A (en) * 1995-05-23 1996-11-29 Dai Ichi Kogyo Seiyaku Co Ltd Solid electrolyte lithium ion secondary battery and its manufacture
JPH10261415A (en) * 1997-03-17 1998-09-29 Sony Corp Nonaqueous electrolyte secondary battery
JPH10284060A (en) * 1997-04-11 1998-10-23 Hitachi Maxell Ltd Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5618698B2 (en) Non-aqueous electrolyte battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2000113909A (en) Storing method for lithium secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JPH11283667A (en) Lithium ion battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2001307735A (en) Lithium secondary battery
WO2021100272A1 (en) Secondary battery and method for producing same
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP2000106171A (en) Battery
JPH0696801A (en) Thin non-aqueous electrolyte battery
JP2021182478A (en) Non-aqueous electrolyte secondary battery
JP2001160391A (en) Nonaqueous electrolyte secondary battery
JPH11265700A (en) Nonaqueous electrolyte secondary battery
JPH06290774A (en) Nonaqueous electrolyte secondary battery
JP2000149979A (en) Sealed battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JP2002231312A (en) Nonaqueous electrolyte secondary battery
JPH04269465A (en) Nonaqueous electrolyte secondary battery
JPH0696802A (en) Thin non-aqueous electrolyte battery
JP2003203636A (en) Conductive assistant for non-aqueous electrolyte secondary battery positive electrode and positive pole plate using the same, and non-aqueous secondary battery
KR200364044Y1 (en) Lithium Ion Battery of High Rate and High Capacity
JP2699364B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100916