JPH0433261A - Manufacture of electrode composition material - Google Patents

Manufacture of electrode composition material

Info

Publication number
JPH0433261A
JPH0433261A JP2137814A JP13781490A JPH0433261A JP H0433261 A JPH0433261 A JP H0433261A JP 2137814 A JP2137814 A JP 2137814A JP 13781490 A JP13781490 A JP 13781490A JP H0433261 A JPH0433261 A JP H0433261A
Authority
JP
Japan
Prior art keywords
electrode
powder
slurry
electrode composition
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2137814A
Other languages
Japanese (ja)
Other versions
JP2973469B2 (en
Inventor
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2137814A priority Critical patent/JP2973469B2/en
Priority to US07/706,234 priority patent/US5190695A/en
Publication of JPH0433261A publication Critical patent/JPH0433261A/en
Application granted granted Critical
Publication of JP2973469B2 publication Critical patent/JP2973469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a homogeneous electrode composition material by adding a polyether compound, which is obtained by adding ethylene oxide and butyl oxide to a polyamine compound, into slurry. CONSTITUTION:Thermoplastic resin is dissolved in a lipophillic solvent to obtain a solution, a polyether compound is added, electrode active material powder, solid electrode powder, conductive powder as necessary, or a mixture mixed with electrode active material powder and solid electrolyte powder and conductive material powder as necessary at preset mixing ratios in advance are added, and it is crushed and mixed by a mixing crusher to obtain electrode slurry. This slurry is molded as it is, or it is extended or coated and molded on a supporter, then the solvent is dispersed to obtain an electrode composition material. Ethylene oxide and butylene oxide are added to an polyamine compound to obtain the polyether compound used above.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 固体電池 キャパシ久 センサ、表示素子
、記録素子などの固体の電気化学素子に用いる電極組成
物の製造方法に関すも さらに詳しくは 特定のポリエ
ーテル化合物を電極活物質粒子、固体電解質粒子、熱可
塑性樹脂を含む溶媒中に添加するものであも 従来の技術 固体電解質を用いることで液漏れがなく、小形薄形化の
電池 電気二重層キャパシタなどの固体の電気化学デバ
イスを得ることができもしかしなが叙 弾性に欠ける固
体物質で素子が構成されていることか収 機械的衝撃に
対してはきわめて脆く、破損しやすい欠点があムこのよ
うな欠点を解決するた八 特開昭63−245871号
公報にあるようへ 合成ゴムなどの熱可塑性樹脂を固体
電解質や電極活物質に混合することで可撓性を付与し 
機械的衝撃に対しても破損しにくい素子が提案されてい
も この暇電極活物質および固体電解質は電気絶縁性の
熱可塑性樹脂と混合され電極組成物として用いられも発
明が解決しようとする課題 このような電極活物質粉末 固体電解質粉末および熱可
塑性樹脂よりなる電極組成物ζよ 一般に熱可塑性樹脂
を溶解した溶剤中におのおのの粉末を分散してスラリー
状とし これを成形した後あるいは成形しながら溶剤を
散逸させて得も この際 固体電解質粉末はイオン性で
あるので水アルコ−/k  アセトンなどの親水性溶剤
または極性溶剤を用いて分散させると固体電解質粉末が
前記溶剤に僅かながら溶解しまた変質するのでトルエン
などの親油性の非極性溶剤が用いられも 従って、親水
性である固体電解質粉末は二次粒子を形成して熱可塑性
樹脂中に不均一に分散することが多く、電極活物質粉末
と均一に混合されず、とくく 電極組成物の電気容量を
大きくするために混合する固体電解質粉末の量を少なく
した゛場合、電極組成物内で十分なイオン伝導性が保持
され負電極の利用率が極端に低下するという問題点かあ
も また 均質な大面積の電極組成物を得ることが困難
であa 本発明はこのような問題点を解決するものて 
均質な電極組成物を得る電極組成物の製造法を提供する
ことを目的とすも 課題を解決するための手段 本発明の電極組成物の製造法は上記問題点を解決するも
ので、ポリアミン化合物にエチレンオキサイドとブチレ
ンオキサイドを付加して得られるポリエーテル化合物を
電極活物質粉末 固体電解質粉末 および熱可塑性樹脂
を含む溶媒中に添加するものであ4 作用 このようにして得られる電極組成物は ポリエーテル化
合物が分散剤として作用し電極活物質粉末および固体電
解質粉末を均一に混合・分散させるためイオン伝導のた
めの経路が電極組成物内で均一に構築されることとなも 実施例 以下、本発明の一実施例をさらに詳細に説明する力t 
本発明は以下の実施例に限定されるものではな(〜 ま
な 以下の実施侭 比較例において服%はと(に断わら
ない限り重量餓 重量X 重量比を表わす。
[Detailed Description of the Invention] Industrial Fields of Application The present invention relates to a method for producing an electrode composition for use in solid electrochemical devices such as solid-state batteries, capacitors, sensors, display elements, and recording elements. Conventional technology, in which a polyether compound is added to a solvent containing electrode active material particles, solid electrolyte particles, and thermoplastic resin.By using a solid electrolyte, there is no leakage, making the battery smaller and thinner.Electric double layer. Although it is possible to obtain solid-state electrochemical devices such as capacitors, the disadvantage is that the elements are constructed of solid materials that lack elasticity, making them extremely brittle and easily damaged by mechanical shock. In order to solve these drawbacks, as described in Japanese Patent Application Laid-Open No. 63-245871, flexibility can be imparted by mixing a thermoplastic resin such as synthetic rubber into the solid electrolyte or electrode active material.
Although an element that is not easily damaged by mechanical shock has been proposed, the problem to be solved by the invention is that the electrode active material and the solid electrolyte are mixed with an electrically insulating thermoplastic resin and used as an electrode composition. An electrode active material powder such as an electrode composition ζ consisting of a solid electrolyte powder and a thermoplastic resin is generally prepared by dispersing each powder in a solvent in which a thermoplastic resin is dissolved to form a slurry, which is then molded into a solvent after or during molding. In this case, since the solid electrolyte powder is ionic, if it is dispersed using a hydrophilic or polar solvent such as acetone, the solid electrolyte powder will dissolve slightly in the solvent and change its quality. Therefore, although a lipophilic non-polar solvent such as toluene is used, the hydrophilic solid electrolyte powder often forms secondary particles and is unevenly dispersed in the thermoplastic resin, and the electrode active material powder If the amount of solid electrolyte powder mixed is reduced in order to increase the capacitance of the electrode composition, sufficient ionic conductivity is maintained within the electrode composition, making it difficult to use the negative electrode. In addition, it is difficult to obtain a homogeneous electrode composition with a large area.The present invention solves these problems.
An object of the present invention is to provide a method for producing an electrode composition that yields a homogeneous electrode composition.Means for Solving the ProblemsThe method for producing an electrode composition of the present invention solves the above-mentioned problems. A polyether compound obtained by adding ethylene oxide and butylene oxide to a polyether is added to a solvent containing an electrode active material powder, a solid electrolyte powder, and a thermoplastic resin. Since the ether compound acts as a dispersant and uniformly mixes and disperses the electrode active material powder and the solid electrolyte powder, paths for ion conduction are uniformly constructed within the electrode composition. A power to explain one embodiment of the invention in further detail
The present invention is not limited to the following examples.

本実施例の電極活物質として(よ 金属鍼 金属鉱 金
属リチウムなどの単体金riLLi−Al、 LaNi
5などの合金; 硫化楓 硫化机 銅シュブレル化合轍
 銀シュブレル化合法 硫化チタン、硫化ニオス 硫化
モリブデンなどの金属硫化物; 二酸化マンガン、酸化
バナジウム 酸化コバルト、酸化クロムなどの金属酸化
物; 塩化区 ヨウ化舷 フッ化カーボンなどのハロゲ
ン化物; 活性炭、黒縁カーボンブラックなどの炭素材
料など常温で固体状の材料をあげることができも 平均
粒径が1μm以下の超微粒子から数10μmの粒子のも
のまで何れも用いることができも 固体電解質粉末として(&  MCu* b−++Ch
+x(x=o。
As the electrode active material of this example (metal acupuncture, metal ore, elemental gold such as metal lithium, riLLi-Al, LaNi
Alloys such as 5; maple sulfide, sulfide machine, copper Chevrell compound track, silver Chevrell compound method, titanium sulfide, nios sulfide, metal sulfides such as molybdenum sulfide; metal oxides such as manganese dioxide, vanadium oxide, cobalt oxide, chromium oxide; chloride, iodide Halides such as fluorinated carbon; materials that are solid at room temperature such as activated carbon and carbon materials such as black edge carbon black; It can also be used as solid electrolyte powder (&MCu*b-++Ch
+x (x=o.

2!r1.o、 M−Rb、 K、 NH4またはそれ
らを混合したもの)やCub−Cu2e−Mossガラ
スなどの銅イオン伝導性固体電解質、RbAg4I5、
Ag*Si、 AgI−Ag20−Mootガラ入 A
g・l4WOaなどの銀イオン伝導性固体電解覧 Li
l5LiI−H2O,Li−β−A 120s、LiI
−Liar−Bus$、PE0−LiCFm5Osなど
のリチウムイオン伝導性固体電解覧HsMo+tPOn
* ・29HRQ、 HaW+tPO1・29H20な
どのプロトン導性固体電解質を用いることができも 平
均粒径が1μm以下の超微粒子から数10μmの粒子の
ものまで何れも用いることができも 平均粒径が1μm
以下の超微粒固体電解質粉末であっても均一に分散でき
も 熱可塑性樹脂としてζ1 1.4−ポリブタジェン
、天然ゴな ポリイソプレン、 SBR,NBR,SB
S、  SIS、  SE B S、  プチルゴベ 
フォスファゼンゴベ ポリエチレン、ポリプロピレン、
ポリエチレンオキシド、ポリスチレン、 1,2−ポリ
ブタジェン、ポリテトラフルオロエチレンなどを使用す
るのが好ましく℃ 電極組成物の製造にあたっては分散媒として、n−ヘキ
サン、n−へブタン、n−オクタン、シクロヘキサン、
ベンゼン、 トルエン、キシレン、酢酸エチ)I−、)
リクレンなどの親油性の非吸水性の固体電解質と反応し
ない飽和炭化水素系溶剋 芳香族炭化水素系溶剋 ハロ
ゲン化炭化水素溶剋 エステル系溶剤が用いられも ポリアミン化合物にエチレンオキサイドとブチレンオキ
サイドを付加して得られるポリエーテル化合物番表  
ポリアミン化合物をアルカリ触媒下で100−180t
、  1〜10気圧でエチレンオキサイドおよびブチレ
ンオキサイドを付加反応することにより得ることができ
も ポリアミン化合物として(よ ポリエチレンイミン
、ポリアルキレンポリアミンまたはそれらの誘導体を用
いることができも ポリアルキレンポリアミンとして、
ジエチレントリアミン、 トリエチレンテトラミン、ヘ
キサメチレンテトラミン、ジプロピレントリアミンなど
をあげることがができる。エチレンオキサイドとブチレ
ンオキサイドの付加モル数はポリアミン化合物の活性水
素1個当り2〜150モルであム 付加するエチレンオ
キサイド(EO)とブチレンオキサイド(BO)との比
は 80/20〜10/90  (=EO/BO)であ
ム ポリエーテルの平均分子量は1000〜100万で
あも 本実施例の電極組成物は次のようにして得られも 熱可
塑性樹脂を親油性の溶剤に溶解し1〜20%の溶液とし
たものへ ポリエーテル化合物をスラリー全体に対して
0.1〜20%の割合になるように加え 電極活物質粉
末と固体電解質粉末必要に応じ導電剤粉末と、またはあ
らかじめ所定の配合比で電極活物質粉末と固体電解質粉
末と必要に応じ導電剤粉末とを混合した混合物を加えボ
ールミ)k  ディスパーサなどの混合粉砕機により粉
砕混合して固形分含量が5〜95%の電極スラリーを調
製すム またζ友 ポリエーテル化合物を溶解した親油
性の溶剤に電極活物質粉末と固体電解質粉末 必要に応
じ導電剤粉末と、またはあらかじめ所定の配合比で電極
活物質粉末と固体電解質粉末と必要に応じ導電剤粉末と
を混合した混合物を分散したスラリーと、熱可塑性樹脂
を親油性の溶剤に溶解した溶液とを混合分散することで
電極スラリーを得ることもできも 次へ このようにして得たスラリーをそのまま成急 ま
たはテフロン板とかナイロンメツシュシートとかの支持
体上に流延または塗布して成形した喪 溶剤を散逸させ
ることで電極組成物が得られも 支持体がメツシュ状で
あれば支持体を一体化したままで電極組成物として用い
ることも可能であも これらの工程Cヨ  相対湿度が40%以下の乾燥雰囲
気中で行なわれも 好ましく3上  露点がマイナス2
0℃以下の乾燥した窒素あるいはアルゴン等の不活性ガ
ス雰囲気中で行なわれも (実施例1) 熱可塑性樹脂であり結着剤として作用する低密度ポリエ
チレン(エフセレンVL−200、密度=0.9、住人
化学工業製)をトルエンに溶解し10%のポリエチレン
溶液を調整し九 分子内に10個のN原子を含有するポ
リエチレンイミンにエチレンオキサイド(EO)とブチ
レンオキサイド(BO)をEOとBOの比が30/70
となるように付加して得た平均分子量が180000の
ポリエーテル化合物をトルエンに溶解し20%のポリエ
ーテル溶液(A)を調整した ポリエーテル溶液へ 固
形分含量が50%となるように平均粒径が1μmの銅イ
オン伝導性固体電解質粉末(RbCu4I+ 、5C1
s、s、  密度=4.7)と平均粒径が0.8μmの
銅シュブレル相化合物(Cu2Mo@S〒、・。
2! r1. copper ion conductive solid electrolytes such as Cub-Cu2e-Moss glass, RbAg4I5,
Ag*Si, AgI-Ag20-Moot glass A
List of silver ion conductive solid electrolytes such as g/l4WOa Li
l5LiI-H2O, Li-β-A 120s, LiI
-Liar-Bus$, PE0-LiCFm5Os and other lithium ion conductive solid electrolytes HsMo+tPOn
*Proton-conducting solid electrolytes such as 29HRQ, HaW+tPO1, 29H20, etc. can be used.Anything from ultrafine particles with an average particle size of 1 μm or less to particles of several tens of μm can be used, but the average particle size is 1 μm.
Even the following ultrafine solid electrolyte powders can be uniformly dispersed. As thermoplastic resins, ζ1 1.4-polybutadiene, natural polyisoprene, SBR, NBR, SB
S, SIS, SE B S, Petit Gobe
Phosphazengobe polyethylene, polypropylene,
Preferably, polyethylene oxide, polystyrene, 1,2-polybutadiene, polytetrafluoroethylene, etc. are used as a dispersion medium in producing the electrode composition.
Benzene, toluene, xylene, ethyl acetate) I-,)
Saturated hydrocarbon solvents that do not react with lipophilic non-water-absorbing solid electrolytes such as Recuren Aromatic hydrocarbon solvents Halogenated hydrocarbon solvents Even if ester solvents are used, ethylene oxide and butylene oxide are added to polyamine compounds. List of polyether compounds obtained by addition
100-180t of polyamine compound under alkaline catalyst
As polyamine compounds, polyethyleneimine, polyalkylene polyamines or their derivatives can be used as polyalkylene polyamines, which can be obtained by addition reaction of ethylene oxide and butylene oxide at 1 to 10 atm.
Examples include diethylenetriamine, triethylenetetramine, hexamethylenetetramine, and dipropylenetriamine. The number of moles of ethylene oxide and butylene oxide added is 2 to 150 moles per active hydrogen of the polyamine compound.The ratio of ethylene oxide (EO) to butylene oxide (BO) to be added is 80/20 to 10/90 ( = EO/BO) Even if the average molecular weight of the polyether is 10 to 1 million, the electrode composition of this example can be obtained as follows. To make a 20% solution, add a polyether compound to the entire slurry at a ratio of 0.1 to 20%, and add electrode active material powder and solid electrolyte powder, if necessary, with conductive agent powder or a predetermined solution. Add a mixture of electrode active material powder, solid electrolyte powder, and conductive agent powder if necessary in a mixing ratio, and grind and mix using a mixer such as a disperser to create an electrode slurry with a solid content of 5 to 95%. In addition, electrode active material powder and solid electrolyte powder are prepared in a lipophilic solvent in which a polyether compound is dissolved, and if necessary, conductive agent powder is added, or electrode active material powder and solid electrolyte powder are mixed in a predetermined mixing ratio in advance. Electrode slurry can be obtained by mixing and dispersing a slurry containing a mixture mixed with a conductive agent powder if necessary, and a solution containing a thermoplastic resin dissolved in a lipophilic solvent. The electrode composition can be obtained by dissipating the solvent, or by casting or coating the obtained slurry on a support such as a Teflon plate or a nylon mesh sheet. It is possible to use it as an electrode composition with the support integrated, but these steps may be carried out in a dry atmosphere with a relative humidity of 40% or less, preferably 3 or above, and a dew point of -2.
(Example 1) Low-density polyethylene (F-selen VL-200, density = 0.9), which is a thermoplastic resin and acts as a binder, A 10% polyethylene solution was prepared by dissolving ethylene oxide (EO) and butylene oxide (BO) into polyethyleneimine containing 10 N atoms in the molecule. Ratio is 30/70
A 20% polyether solution (A) was prepared by dissolving a polyether compound with an average molecular weight of 180,000 in toluene. Copper ion conductive solid electrolyte powder (RbCu4I+, 5C1
s, s, density = 4.7) and a copper Chevrel phase compound (Cu2Mo@S〒, .) with an average particle size of 0.8 μm.

密度= 5.8)との2:1の混合物を分散させた檄ポ
リエチレン溶液を加え固形分含量が50%の電極粉末分
散液(B)を得九 な耘 前記銅イオン伝導性固体電解
質(よ 所定量のRbC1,CuI、 CuC1よりな
る混合物を200℃で17時間密閉ガラス容器中で加熱
反応することで得九 また 銅シュブレル相化合物it
  MoS2. Cu、 Sの混合物を真空中で100
0℃で48時間加熱反応することで得九所定量のポリエ
ーテル溶液(A)と電極粉末分散液(B)とトルエンを
混合したの板 アルミナ製のボールミル中で24時間混
合粉砕して電極粉末のスラリーを得た 前記スラリーを
平滑なテフロン製の板の上でドクターブレードを用い塗
布した寵 80℃の乾燥窒素中で5時間乾燥し大きさ8
0x80mrrh  厚さ154±5μmの電極粉末含
量が85容積%のシート状の電極成形体(B1)を得九 (比較例1) 固体電解質分散液(B)の代わりにポリエーテルを含ま
ない電極粉末分散液(C)を用いた以外は実施例1と同
様にして電極粉末含量が85容積%のシート状の電極成
形体(CI)を得た(実施例2) 電極粉末として銀イオン伝導性の平均粒径が8μmのA
ge I s 104粉末と平均粒径が10μmのバナ
ジン酸銀粉末(Age、TV2xs)との3:2の混合
物を用(\ ポリエーテル化合物として、 トリエチレ
ンテトラミンにEOとBOをEO/BO=80/20 
(重量比)の割合で付加することで得た平均分子量が8
000のポリエーテルを含む固体電解質分散液(D)を
用いた以外&よ 実施例1と同様にして電極粉末含量が
90容積%である厚みが125μm±10の電極成形体
(Dl)を得た なk  Ag514WO4(i  A
ged、 AgI、 WOsを所定の割合で混合し40
0℃で大気中で6時間加熱反応することで得た まf=
  Ag・、〒V2O5はAg粉末とV* Osを所定
の割合で混合し 封管中で550℃で6時間加熱反応す
ることで得九 (比較例2) 電極粉末分散液(D)の代わりにポリエーテルを含まな
い電極粉末分散液(E)を用いた以外は実施例2と同様
にして電極粉末含量が90容積%のシート状の電極成形
体(El)を得九(実施例3) 電極粉末として、リチウムイオン伝導性の平均粒径が5
μmのLil・F20粉末と平均粒径が6μmの硫化ニ
オブ粉末(NbS2)との1.1の混合物を用1、% 
 ポリエーテル化合物として、ヘキサメチレンテトラミ
ンにEOとBOをEO/BO=40/60の割合で付加
することで得た平均分子量が15000のポリエーテル
を含む電極粉末分散液(F)を用いた以外番ヨ  実施
例1と同様にして電極粉末含量が90容積%である厚み
が85±5μmの電極成形体(Fl)を得島 な耘 L
il−F20. NbS2は市販の試薬をエチルエーテ
ル中でボールミルにより粉砕したものを用いた (比較例3) 電極粉末分散液(F)の代わりにポリエーテルを含まな
い電極粉末分散液(G)を用いた以外は実施例3と同様
にして電極粉末含量が90容積%のシート状の電極成形
体(G1)を得九以下の方法により電極成形体の特性評
価を行なつ九 実施例1〜3、比較例1〜3で得られた電極成形体を直
径10mmの円板状におのおの20枚づつ打ち抜き特性
試験用の試料とし總 実施例1および比較例1の電極円
板について、固体電解質としてRbCuaI+ 、sC
h、s粉末1grを200 kg/cm”の圧力で成形
した直径10mmのペレ・ソトを挟む形で上下に1枚づ
つ配置しさらにその上下に白金円板を配置した跣 全体
を50 k g / c m−圧力で上下から加圧した
状態で、窒素ガス雰囲気中で130℃で3時間加熱し試
験電池B2(実施例1)およびC2(比較例1)を組み
立てた 実施例2および比較例2の電極円板について(
よ 固体電解質としてAge I4WO4粉末を用いて
同様に試験電池D2 (実施例2)およびF2  (比
較例2)を組み立てた 実施例3および比較例3の電極
円板についてtit  固体電解質としてLiI−Ha
O粉末を用へ負極として厚さ0.3mm、  直径10
mmのリチウム円板を用い試験電池F2(実施例3)お
よびG2 (比較例3)を組み立てt4 F2およびG
2については加圧のみで加熱は行わなかった おのおの
同じものを10個づつ組み立てた 試験電池B2、C2
について、 0.6vの一定電圧テ17時間充電した1
1mAの一定電流で10秒間放電を行な1.L  放電
直前および放電直後の電池電圧の差(分極)を測定し1
0個の電池について平均値と標準偏差値を求め九 まな
 同じ電流値で0゜3ボルトまで連続放電を行ない放電
容量を束数理論容量(100%)に対する電極活物質の
利用率を求め九 試験電池D2、F2については0゜5
0Vの一定電圧で17時間充電比 200μAの一定電
流値で10秒間放電し分極の平均値と標準偏差値を求め
九 また 同じ電流値で0.3Vまで連続放電を行い理
論容量(100%)に対する電極活物質の利用率を求め
た 試験電池F2およびG2についてi;L50μAの
一定電流で10秒間放電し分極の平均値と標準偏差値を
求めなまた 同じ電流値で1. Ovまで連続放電を行
い理論容量(100%)に対する電極活物質の利用率を
求め九 分極値の結果を第1表 利用率の結果を第2表
に示す。また 電極成形体の曲げ強度を、長さ40mm
幅5mmの成形体を半径が50mmの曲面に沿って1秒
間に2回の割合で繰り返し折り曲げた限 破断に至るま
での回数で評価した  結果を第3表に示す。以上の測
定値は何れも20℃での値であム 第1表 分極 実施例1 比較例1 実施例2 比較例2 実施例3 比較例3 第2表 利用率 実施例192 比較例183 実施例285 比較例268 実施例376 比較例354 理論容量を100%とじへ 第3表 機械強度 電池       機械強度゛ 実施例1155 比較例1100 実施例2140 比較例2100 実施例3160 比較例3100 対応する比較例の曲げ強度を10 * 零 0とした 第1表から第3表に示した結果から明らかなよう艮 本
実施例による電極組成物は 比較例に較べ電極利用率は
高く、分極の標準偏差値は小さく電極活物質と電解質と
が均一に混合された均質な電極組成物であることがわか
も また 分極の平均値も小さくポリエーテル化合物力
丈 均一混合・分散の効果に加え イオン伝導体として
作用していると考えられム さらく 機械的強度を比較
すると、本実施例の電極組成物は従来のものに比べ大き
な強度を与えも 発明の効果 以上の実施例の説明で明かなよう&ζ 本発明の電極組
成物の製造法によれば ポリエーテル化合物の界面活性
作用により長期間安定な電極スラリーを得ることができ
、このスラリーから溶媒を除去し固形化することで均質
な電極組成物を得ることができも また スラリーに添
加したポリエーテル化合物は電極組成物中にそのまま残
存しイオン伝導性を向上させ分極の小さい電極組成物が
得られるという効果があも
An electrode powder dispersion (B) with a solid content of 50% was obtained by adding a 2:1 mixture of copper ion-conducting solid electrolyte (density = 5.8) into an electrode powder dispersion (B) with a solid content of 50%. It is obtained by heating and reacting a mixture consisting of a predetermined amount of RbC1, CuI, and CuC1 at 200°C for 17 hours in a closed glass container.
MoS2. A mixture of Cu and S was heated to 100% in vacuo.
A plate of a mixture of a predetermined amount of polyether solution (A), electrode powder dispersion (B), and toluene was obtained by heating reaction at 0°C for 48 hours. Electrode powder was mixed and ground in an alumina ball mill for 24 hours. The slurry was coated on a smooth Teflon plate using a doctor blade and dried in dry nitrogen at 80°C for 5 hours to form a slurry of size 8.
0x80mrrh A sheet-shaped electrode molded body (B1) with a thickness of 154±5 μm and an electrode powder content of 85% by volume was obtained (Comparative Example 1) Electrode powder dispersion containing no polyether instead of the solid electrolyte dispersion (B) A sheet-shaped electrode molded body (CI) having an electrode powder content of 85% by volume was obtained in the same manner as in Example 1 except that liquid (C) was used (Example 2). A with a particle size of 8 μm
Using a 3:2 mixture of ge Is 104 powder and silver vanadate powder (Age, TV2xs) with an average particle size of 10 μm (\ As a polyether compound, add EO and BO to triethylenetetramine at EO/BO = 80 /20
The average molecular weight obtained by adding at a ratio of (weight ratio) is 8
An electrode molded body (Dl) having a thickness of 125 μm±10 and having an electrode powder content of 90% by volume was obtained in the same manner as in Example 1 except that a solid electrolyte dispersion (D) containing 000 polyether was used. Nak Ag514WO4 (i A
ged, AgI, and WOs were mixed at a predetermined ratio and 40
Maf= obtained by heating reaction in air at 0℃ for 6 hours
Ag・, V2O5 can be obtained by mixing Ag powder and V*Os at a predetermined ratio and heating and reacting in a sealed tube at 550°C for 6 hours (Comparative Example 2) Instead of electrode powder dispersion (D) A sheet-like electrode molded body (El) with an electrode powder content of 90% by volume was obtained in the same manner as in Example 2 except that an electrode powder dispersion (E) containing no polyether was used. (Example 3) Electrode As a powder, the average particle size of lithium ion conductivity is 5.
A mixture of 1.1 μm Lil F20 powder and niobium sulfide powder (NbS2) with an average particle size of 6 μm was used at 1.1%.
An electrode powder dispersion (F) containing a polyether with an average molecular weight of 15,000 obtained by adding EO and BO to hexamethylenetetramine at a ratio of EO/BO = 40/60 as a polyether compound was used. YO In the same manner as in Example 1, an electrode molded body (Fl) with a thickness of 85 ± 5 μm and an electrode powder content of 90% by volume was obtained.
il-F20. For NbS2, a commercially available reagent was used that was ground using a ball mill in ethyl ether (Comparative Example 3) Except that an electrode powder dispersion (G) containing no polyether was used instead of the electrode powder dispersion (F). A sheet-like electrode molded body (G1) having an electrode powder content of 90% by volume was obtained in the same manner as in Example 3. Characteristics of the electrode molded body were evaluated by the following methods.9 Examples 1 to 3, Comparative Example 1 20 disks each having a diameter of 10 mm were punched out from the electrode molded bodies obtained in steps 3 to 3, and used as samples for the characteristic test.For the electrode disks of Example 1 and Comparative Example 1, RbCuaI+ and sC were used as solid electrolytes.
H, S Powder 1 gr was molded under a pressure of 200 kg/cm'', and one piece of pere-soto with a diameter of 10 mm was placed on the upper and lower sides, and platinum disks were placed on the top and bottom.The entire hem was 50 kg/cm. Example 2 and Comparative Example 2 Test batteries B2 (Example 1) and C2 (Comparative Example 1) were assembled by heating at 130°C for 3 hours in a nitrogen gas atmosphere while pressurized from above and below at cm-pressure. Regarding the electrode disk (
Test batteries D2 (Example 2) and F2 (Comparative Example 2) were similarly assembled using Age I4WO4 powder as the solid electrolyte.
O powder is used as a negative electrode with a thickness of 0.3 mm and a diameter of 10 mm.
Assemble test batteries F2 (Example 3) and G2 (Comparative Example 3) using mm lithium disks t4 F2 and G
For No. 2, only pressurization was performed but no heating was performed. Ten identical batteries were assembled for each test battery B2 and C2.
1 charged for 17 hours at a constant voltage of 0.6V
1. Discharge at a constant current of 1 mA for 10 seconds. L Measure the difference in battery voltage (polarization) immediately before and after discharge.1
Calculate the average value and standard deviation value for 0 batteries. Perform continuous discharge to 0°3 volts at the same current value, and calculate the utilization rate of the electrode active material with respect to the discharge capacity and the theoretical capacity (100%) of the bundle number. 9. Test 0°5 for batteries D2 and F2
Charge ratio for 17 hours at a constant voltage of 0V Discharge for 10 seconds at a constant current value of 200 μA and calculate the average value and standard deviation of polarization. The utilization rate of the electrode active material was determined. For test batteries F2 and G2, discharge at a constant current of L50 μA for 10 seconds and determine the average value and standard deviation of polarization. Continuous discharge was performed up to Ov and the utilization rate of the electrode active material with respect to the theoretical capacity (100%) was determined.9 The results of the polarization value are shown in Table 1, and the results of the utilization rate are shown in Table 2. In addition, the bending strength of the electrode molded body was adjusted to 40 mm in length.
Table 3 shows the results of an evaluation based on the number of times a molded product with a width of 5 mm was repeatedly bent at a rate of 2 times per second along a curved surface with a radius of 50 mm until it broke. All of the above measured values are values at 20°C. Table 1 Polarization Example 1 Comparative Example 1 Example 2 Comparative Example 2 Example 3 Comparative Example 3 Table 2 Utilization Rate Example 192 Comparative Example 183 Example 285 Comparative example 268 Example 376 Comparative example 354 Theoretical capacity to 100% Table 3 Mechanical strength Battery Mechanical strength Example 1155 Comparative example 1100 Example 2140 Comparative example 2100 Example 3160 Comparative example 3100 Bending of corresponding comparative example As is clear from the results shown in Tables 1 to 3, where the strength is set to 10 * 0, the electrode composition according to this example has a higher electrode utilization rate than the comparative example, and the standard deviation of polarization is small. It can be seen that the active material and electrolyte are evenly mixed to form a homogeneous electrode composition.The average value of polarization is also small, and the polyether compound has the strength of a polyether compound.In addition to the effects of uniform mixing and dispersion, it also acts as an ion conductor. Comparing the mechanical strength, the electrode composition of this example has greater strength than the conventional one, but as is clear from the description of the example that the effect of the invention is greater than that of the electrode composition of the present invention. According to the manufacturing method, it is possible to obtain an electrode slurry that is stable for a long period of time due to the surface active action of the polyether compound, and by removing the solvent from this slurry and solidifying it, it is possible to obtain a homogeneous electrode composition. In addition, the polyether compound added to the slurry remains in the electrode composition, improving ionic conductivity and producing an electrode composition with low polarization.

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂を溶解した溶媒中に、電極活物質粉末およ
び固体電解質粉末を分散しスラリー状とする工程、およ
び前記スラリーから溶媒を除く工程を電極組成物の製造
法において、前記スラリー中に、ポリアミン化合物にエ
チレンオキサイドとブチレンオキサイドを付加して得ら
れるポリエーテル化合物を添加する電極組成物の製造法
A method for producing an electrode composition includes a step of dispersing an electrode active material powder and a solid electrolyte powder into a slurry in a solvent in which a thermoplastic resin is dissolved, and a step of removing the solvent from the slurry. A method for producing an electrode composition, in which a polyether compound obtained by adding ethylene oxide and butylene oxide to a compound is added.
JP2137814A 1990-05-28 1990-05-28 Method for producing electrode composition Expired - Fee Related JP2973469B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2137814A JP2973469B2 (en) 1990-05-28 1990-05-28 Method for producing electrode composition
US07/706,234 US5190695A (en) 1990-05-28 1991-05-28 Methods to produce solid electrolyte and solid electrode composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137814A JP2973469B2 (en) 1990-05-28 1990-05-28 Method for producing electrode composition

Publications (2)

Publication Number Publication Date
JPH0433261A true JPH0433261A (en) 1992-02-04
JP2973469B2 JP2973469B2 (en) 1999-11-08

Family

ID=15207482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137814A Expired - Fee Related JP2973469B2 (en) 1990-05-28 1990-05-28 Method for producing electrode composition

Country Status (1)

Country Link
JP (1) JP2973469B2 (en)

Also Published As

Publication number Publication date
JP2973469B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
EP0485438B1 (en) Electro-conductive sheets
Lacey et al. A Robust, Water‐Based, Functional Binder Framework for High‐Energy Lithium–Sulfur Batteries
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
Dimri et al. ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
JPH04267055A (en) Solid electrode composition
Ponraj et al. Mg-ion conducting triblock copolymer electrolyte based on poly (VdCl-co-AN-co-MMA) with magnesium nitrate
JPH04245170A (en) High polymer solid electrolyte
JPH0433261A (en) Manufacture of electrode composition material
JPH0433263A (en) Manufacture of electrode composition material
JP3038945B2 (en) Lithium secondary battery
JPH0482166A (en) Manufacture of solid electrolytic sheet
JPH0433251A (en) Manufacture of electrode composition material
JPH0433253A (en) Manufacture of electrode composition material
JPH04267056A (en) Solid electrode composition
JP4058797B2 (en) Method for producing lithium cobalt oxide particle powder
JP2973470B2 (en) Method for producing solid electrolyte composition
JPH0433252A (en) Manufacture of solid electrolyte composition material
JPH08306365A (en) Organic electrolyte-battery
JPH0433256A (en) Manufacture of solid electrolyte composition material
JP2917416B2 (en) Solid electrolyte composition
JPH0433254A (en) Manufacture of solid electrolyte composition material
JPH04248258A (en) Solid electrode composition
JPH02301972A (en) Solid electrolyte sheet and battery thereof
JPH04272654A (en) Composition of solid electrode
JPH0576136B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees