JPH04272654A - Composition of solid electrode - Google Patents

Composition of solid electrode

Info

Publication number
JPH04272654A
JPH04272654A JP3032682A JP3268291A JPH04272654A JP H04272654 A JPH04272654 A JP H04272654A JP 3032682 A JP3032682 A JP 3032682A JP 3268291 A JP3268291 A JP 3268291A JP H04272654 A JPH04272654 A JP H04272654A
Authority
JP
Japan
Prior art keywords
electrode
solid
ion
electrode composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032682A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Yoshiko Sato
佳子 佐藤
Yuuji Uemachi
上町 裕司
Teruhisa Kanbara
神原 輝寿
Hiromu Matsuda
宏夢 松田
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3032682A priority Critical patent/JPH04272654A/en
Publication of JPH04272654A publication Critical patent/JPH04272654A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To resolve the problem of a very low utilization factor of an electrode and provide a solid electrode composition which is used in a battery, capacitor, sensor or an electrochemical element such as a display element or storage element and which has a small rate of polarization, high electrode utilization factor and excellent mechanical strength. CONSTITUTION:A solid electrode composition comprises an electrode active material, a conductive material, a cationic surface active agent having ethylene oxide chain and/or propylene oxide chain, an ion exchange layered compound and an ionic material expressed by the formula MX(M is a metallic ion, proton or anmomium ion migrating within the solid electrolyte composition through the action of an electric field, and X is an anion of a strong acid.) The electrode active material and the conductive material are uniformly dispersed by the action of the cationic surface active agent and also the cationic surface active agent forms an ion transfer passage effecting battery reactions inside the electrode composition together with the ion exchange layered compound.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池、キャパシタ、セ
ンサ、表示素子、記録素子等の電気化学素子に用いられ
る固形電極組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrode composition for use in electrochemical devices such as batteries, capacitors, sensors, display devices, and recording devices.

【0002】0002

【従来の技術】一般の電気化学素子においては、従来の
液体の電解質に代えて固体の電解質を用いることにより
液漏れがなく、小形薄形化された電池や電気二重層キャ
パシタ等の固体の電気化学素子を得ることができる。
[Prior Art] In general electrochemical devices, a solid electrolyte is used instead of a conventional liquid electrolyte, so there is no leakage, and solid electrolytes such as small and thin batteries and electric double layer capacitors are used. Chemical elements can be obtained.

【0003】しかしながら、これらの電気化学素子は弾
性に欠ける固体物質で素子が構成されることから、機械
的衝撃に対してはきわめて脆く、破損しやすいという欠
点がある。このような問題を解決するため、ポリエチレ
ンオキシド(PEO)とアルカリ金属塩とからなる高分
子固体電解質が提案されている(”Fast Ion 
  Trans−port in Solid” P.
Vanishstaet.al., Eds. P. 
131(1979) North Holand Pu
blis−hing Co.) 。
However, since these electrochemical devices are constructed of solid materials lacking in elasticity, they have the drawback of being extremely brittle and easily damaged by mechanical shock. In order to solve these problems, a solid polymer electrolyte made of polyethylene oxide (PEO) and an alkali metal salt has been proposed ("Fast Ion").
Trans-port in Solid” P.
Vanishstate. al. , Eds. P.
131 (1979) North Holland Pu
blis-hing Co. ).

【0004】高分子固体電解質は無機系固体電解質に較
べ、軽量で、柔軟性、成形性に優れている。以来、優れ
た柔軟性、成形性を保持したままで無機系固体電解質に
匹敵する高いイオン伝導性を示す材料の研究開発が盛ん
に行われている。そして、これらの高分子電解質と五酸
化バナジウム等の無機化合物よりなる電極材料またはポ
リアニリン等の有機化合物よりなる電極材料と混合して
固体の電極組成物とし、高分子電解質を介して電極組成
物を接合することで固体状態の電池が現在提案されてい
る。
[0004] Polymer solid electrolytes are lighter and have superior flexibility and moldability compared to inorganic solid electrolytes. Since then, research and development has been actively conducted on materials that exhibit high ionic conductivity comparable to inorganic solid electrolytes while maintaining excellent flexibility and moldability. Then, these polymer electrolytes are mixed with an electrode material made of an inorganic compound such as vanadium pentoxide or an electrode material made of an organic compound such as polyaniline to form a solid electrode composition, and the electrode composition is mixed through the polymer electrolyte. Solid-state batteries are currently being proposed by bonding.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のこれまで得られている電極組成物では必ずしも電極
材料と高分子電解質とが均質に分散混合されておらず、
イオン伝導と電子伝導のためのネットワークが十分でな
く、例えばJournal of Powder So
urces, 28巻, 397〜408頁(1987
年)に述べられているように、LiCF3SO3を溶解
したホ゜リエチレンオキサイト゛よりなる高分子固体電
解質(SPE)と、リチウム負極と、アモルファスV2
O5とSPEとカーホ゛ンフ゛ラックの配合物よりなる
正極とから構成された電池の正極の利用率は、約10%
(放電電流密度:0.33 mA/cm2, 温度:2
0℃)と低く電極材料が十分に利用されていないという
課題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional electrode compositions, the electrode material and the polymer electrolyte are not necessarily homogeneously dispersed and mixed.
The network for ionic and electronic conduction is insufficient, for example, Journal of Powder So
urces, vol. 28, pp. 397-408 (1987
As described in 2010), a solid polymer electrolyte (SPE) made of polyethylene oxide in which LiCF3SO3 is dissolved, a lithium negative electrode, and an amorphous V2
The utilization rate of the positive electrode of a battery composed of a positive electrode made of a combination of O5, SPE, and carbon fiber is approximately 10%.
(Discharge current density: 0.33 mA/cm2, temperature: 2
There was a problem that the temperature was low (0°C) and the electrode materials were not fully utilized.

【0006】本発明は上記課題を解決するものであり、
均質な成形性の良いイオン伝導性、電子伝導性のともに
優れた固形電極組成物を提供することを目的とする。
[0006] The present invention solves the above problems,
The purpose of the present invention is to provide a solid electrode composition that is homogeneous, has good moldability, and has excellent ionic conductivity and electronic conductivity.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、電極活物質と、必要により導電材と、エチ
レンオキサイド(EO)鎖とプロピレンオキサイド(P
O)鎖の少なくとも一方を有するカチオン界面活性剤と
、イオン交換性の層状化合物と、式MXで表されるイオ
ン性物質(ただし、Mは電界の作用で固形電極組成物内
を移動する金属イオン、プロトン、アンモニウムイオン
であり、Xは強酸のアニオンである)とを少なくとも含
有する電極組成物であり、さらに、電極組成物内のイオ
ン伝導性を上げる目的でイオン伝導性の粒子を含有する
ことができる。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises an electrode active material, an electrically conductive material if necessary, an ethylene oxide (EO) chain and a propylene oxide (P
O) a cationic surfactant having at least one chain, an ion-exchange layered compound, and an ionic substance represented by the formula MX (where M is a metal ion that moves within the solid electrode composition under the action of an electric field); , a proton, an ammonium ion, and X is an anion of a strong acid), and further contains ion conductive particles for the purpose of increasing the ion conductivity within the electrode composition. Can be done.

【0008】[0008]

【作用】したがって本発明によれば、イオン性物質MX
はカチオン界面活性剤とイオン交換性の層状化合物とで
複合体を形成して層状化合物の結晶の層間または表面に
高濃度に保持されイオン伝導に有利な経路を形成し、ま
た電極活物質の粉末と、必要により導電材の粉末は、カ
チオン界面活性剤の作用により溶媒とイオン交換性の層
状化合物と均一に混和され、電池反応に必要な電子およ
びイオンの伝導経路を形成し、さらにイオン伝導性粉末
の添加混合に際してはその粉末の凝集を防止し、溶媒と
イオン交換性の層状化合物および電子伝導性の電極活物
質および導電材との均一な混合分散を可能にするため、
高い電子・イオン伝導性と均質性を得ることができる。 その結果、分極の小さい、かつ電極利用率の高い電極組
成物となる。また、カチオン界面活性剤のエチレンオキ
サイド鎖とイオン交換性の層状化合物のマイクロポーラ
ス構造とが絡まって良好な成形性と十分な機械強度が付
与される。
[Operation] Therefore, according to the present invention, the ionic substance MX
forms a complex with a cationic surfactant and an ion-exchangeable layered compound, and is held at a high concentration between the layers or on the surface of the crystal of the layered compound, forming an advantageous path for ion conduction, and also forms a complex with the electrode active material powder. And, if necessary, the conductive material powder is uniformly mixed with the solvent and the ion-exchange layered compound by the action of the cationic surfactant, forming the electron and ion conduction paths necessary for the battery reaction, and further improving the ionic conductivity. When adding and mixing the powder, in order to prevent the powder from agglomerating and to enable uniform mixing and dispersion of the solvent, the ion exchange layered compound, the electron conductive electrode active material, and the conductive material.
High electron/ion conductivity and homogeneity can be obtained. As a result, an electrode composition with low polarization and high electrode utilization is obtained. In addition, the ethylene oxide chain of the cationic surfactant and the microporous structure of the ion-exchangeable layered compound are entangled to provide good moldability and sufficient mechanical strength.

【0009】[0009]

【実施例】以下、本発明の一実施例について、詳細に説
明する。また、以下の実施例において部、%、比は特に
断わらない限り重量部、重量%、重量比を表わす。
[Embodiment] An embodiment of the present invention will be described in detail below. Further, in the following examples, parts, percentages, and ratios represent parts by weight, percentages by weight, and weight ratios unless otherwise specified.

【0010】本発明における電極活物質および導電材と
しては、金属銅、金属銀、金属リチウム等の単体金属、
Li−Al, LaNi5 等の合金、硫化銅、硫化銀
、銅シュブレル化合物、銀シュブレル化合物、硫化チタ
ン、硫化ニオブ、硫化モリブデン等の金属硫化物、二酸
化マンガン、酸化バナジウム、酸化コバルト、酸化クロ
ム等の金属酸化物、塩化銀、ヨウ化鉛、フッ化カーボン
等のハロゲン化物または活性炭、黒鉛、カーボンブラッ
ク等の炭素材料など常温で固体状の材料を使用すること
ができる。また形状としては平均粒径が1μm以下の超
微粒子から数10μmの粒子のものまで何れも用いるこ
とができる。
[0010] The electrode active material and conductive material in the present invention include elemental metals such as metallic copper, metallic silver, metallic lithium, etc.
Alloys such as Li-Al and LaNi5, metal sulfides such as copper sulfide, silver sulfide, copper Chevrel compounds, silver Chevrel compounds, titanium sulfide, niobium sulfide, and molybdenum sulfide, manganese dioxide, vanadium oxide, cobalt oxide, chromium oxide, etc. Materials that are solid at room temperature can be used, such as metal oxides, halides such as silver chloride, lead iodide, and carbon fluoride, or carbon materials such as activated carbon, graphite, and carbon black. Furthermore, any shape can be used ranging from ultrafine particles with an average particle size of 1 μm or less to particles with an average particle size of several tens of μm.

【0011】本発明におけるEO鎖とPO鎖の少なくと
も一方を有するカチオン界面活性剤としては、例えば下
式(化1)または(化2)で示されるものが挙げられる
[0011] Examples of the cationic surfactant having at least one of an EO chain and a PO chain in the present invention include those represented by the following formula (Formula 1) or (Formula 2).

【0012】0012

【化1】[Chemical formula 1]

【0013】[0013]

【化2】[Case 2]

【0014】カチオン界面活性剤の添加量は、固形電極
組成物全量に対し、0.5から20%が好ましい。
The amount of the cationic surfactant added is preferably 0.5 to 20% based on the total amount of the solid electrode composition.

【0015】イオン性物質としては、特に制限はないが
、LiI, LiClO4, LiCF3SO3, L
iPF6, LiBF4, LiSCN, LiAsF
6, NaI, NaSCN, NaBr, KI, 
AgNO3, CuCl2, Mg(ClO4)2,Z
nCl2, AlCl3 等の可溶性の塩が用いられる
[0015] There are no particular restrictions on the ionic substance, but LiI, LiClO4, LiCF3SO3, L
iPF6, LiBF4, LiSCN, LiAsF
6, NaI, NaSCN, NaBr, KI,
AgNO3, CuCl2, Mg(ClO4)2, Z
Soluble salts such as nCl2, AlCl3, etc. are used.

【0016】イオン交換性の層状化合物としては、モン
モリロナイト、ヘクトライト、サポナイト、スメクタイ
ト等のけい酸塩を含む粘土鉱物、りん酸ジルコニウム、
りん酸チタニウム等のりん酸エステル、バナジン酸、ア
ンチモン酸、タングステン酸、またはそれらを第4級ア
ンモニウム塩等の有機カチオンまたはエチレンオキサイ
ド、プロピレンオキサイド等の有機の極性化合物で変性
したものが挙げられる。
Examples of the ion exchange layered compound include clay minerals containing silicates such as montmorillonite, hectorite, saponite, and smectite, zirconium phosphate,
Examples include phosphoric acid esters such as titanium phosphate, vanadate, antimonic acid, tungstic acid, or those modified with organic cations such as quaternary ammonium salts or organic polar compounds such as ethylene oxide and propylene oxide.

【0017】さらに本発明の固形電極組成物の中に下記
のイオン伝導性の粉末を添加することも可能である。す
なわちイオン伝導性の粉末としては、MeCu4I2−
xCl3+x (x=0.25−1.0, Me= R
b, K, NH4 またはそれらを混合したもの)や
CuI−Cu2O−MoO3ガラス等の銅イオン伝導性
固体電解質、RbAg4I5 、Ag3Si、 AgI
−Ag2O−MoO3ガラス、Ag6I4WO4 等の
銀イオン伝導性固体電解質、LiI、LiI・H2O、
Li−β−Al2O3、LiI−Li2S−B2S3、
PEO−LiCF3SO3 等のリチウムイオン伝導性
固体電解質、H3Mo12PO40・29H2O、H3
W12PO40・29H2O等のプロトン伝導性固体電
解質を用いることができる。その形状としては平均粒径
が1μm以下の超微粒子から数10μmの粒子のものま
で何れも用いることができる。上記のイオン伝導性の粉
末の添加量は、固形電極組成物の成形性が損なわれない
限り制限はない。
Furthermore, it is also possible to add the following ion conductive powder to the solid electrode composition of the present invention. That is, as the ion conductive powder, MeCu4I2-
xCl3+x (x=0.25-1.0, Me=R
copper ion conductive solid electrolytes such as CuI-Cu2O-MoO3 glass, RbAg4I5, Ag3Si, AgI
-Ag2O-MoO3 glass, silver ion conductive solid electrolyte such as Ag6I4WO4, LiI, LiI・H2O,
Li-β-Al2O3, LiI-Li2S-B2S3,
Lithium ion conductive solid electrolyte such as PEO-LiCF3SO3, H3Mo12PO40・29H2O, H3
A proton conductive solid electrolyte such as W12PO40.29H2O can be used. Any shape can be used, ranging from ultrafine particles with an average particle size of 1 μm or less to particles with an average particle size of several tens of μm. There is no limit to the amount of the ion conductive powder added as long as the moldability of the solid electrode composition is not impaired.

【0018】本発明の固形電極組成物は次のようにして
得られる。イオン性物質を1から50%溶解した溶剤に
イオン交換性の層状化合物の粉末を1〜50%となるよ
うに加え、次にEO鎖PO鎖の少なくとも一方を有する
カチオン界面活性剤をスラリー全体に対して0.1〜2
0%の割合になるように加え、ディスパーサ等の混合粉
砕機により粉砕混合して固形分含量が5〜95%の電解
質スラリーを調製する。  また、イオン性物質を1か
ら50%溶解した溶剤にEO鎖とPO鎖の少なくとも一
方を有するカチオン界面活性材を0.1〜20%含むカ
チオン界面活性材溶液に、電極活物質の粉末および必要
に応じ電極活物質の粉末と導電材をあらかじめ混合した
粉末を添加し、電極スラリーとする。次に、電解質スラ
リーと電極スラリーを混合して電極組成物スラリーを得
る。混合は、直径が3〜10mmアルミナ球と一緒にア
ルミナボールミル中で行うのが好ましい。このようにし
て得られた電極組成物スラリーを、フッ素樹脂板とかナ
イロンメッシュシートとかの支持体上に流延または塗布
して成形した後、溶剤を一部または全部散逸させること
によって固形電解質組成物を得ることができる。支持体
がメッシュ状であれば支持体を一体化したままで固形電
極組成物として用いることも可能である。
The solid electrode composition of the present invention can be obtained as follows. Add 1 to 50% ion exchange layered compound powder to a solvent in which 1 to 50% of an ionic substance is dissolved, and then add a cationic surfactant having at least one of an EO chain and a PO chain to the entire slurry. 0.1-2 against
The electrolyte slurry having a solid content of 5 to 95% is prepared by pulverizing and mixing using a mixer such as a disperser. In addition, the powder of the electrode active material and the necessary Depending on the conditions, a pre-mixed powder of electrode active material powder and conductive material is added to form an electrode slurry. Next, the electrolyte slurry and the electrode slurry are mixed to obtain an electrode composition slurry. Mixing is preferably carried out in an alumina ball mill with alumina balls having a diameter of 3 to 10 mm. The electrode composition slurry obtained in this manner is cast or coated onto a support such as a fluororesin plate or a nylon mesh sheet and shaped, and then the solid electrolyte composition is formed by dissipating some or all of the solvent. can be obtained. If the support is in the form of a mesh, it is possible to use it as a solid electrode composition with the support integrated.

【0019】必要に応じ、これらの工程は相対湿度が4
0%以下の乾燥雰囲気中で行われる。また、溶剤として
は、アセトン、メチルエチルケトン、メチルイソブチル
ケトン等のケトン系溶剤、n−ヘキサン、n−ヘプタン
、n−オクタン、シクロヘキサン等の飽和炭化水素系溶
剤、ベンゼン、トルエン、キシレン等の芳香族系溶剤、
酢酸エチル、酢酸プチル、プロピレンカーボネート等の
エステル系溶剤、メタノール、エタノール、イソプロピ
ルアルコール、エチレングリコール、グリセリン、ポリ
エチレングリコール等のアルコール系溶剤、アセトニト
リル等のニトリル類、あるいは水が用いられる。
If necessary, these steps may be carried out at a relative humidity of 4
It is carried out in a dry atmosphere of 0% or less. Examples of solvents include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, saturated hydrocarbon solvents such as n-hexane, n-heptane, n-octane, and cyclohexane, and aromatic solvents such as benzene, toluene, and xylene. solvent,
Ester solvents such as ethyl acetate, butyl acetate, and propylene carbonate, alcohol solvents such as methanol, ethanol, isopropyl alcohol, ethylene glycol, glycerin, and polyethylene glycol, nitrites such as acetonitrile, or water are used.

【0020】(実施例1)(化3)で示されるカチオン
界面活性剤をアセトニトリルに溶解し20%のカチオン
界面活性剤溶液を調整した。
(Example 1) The cationic surfactant shown in (Chemical formula 3) was dissolved in acetonitrile to prepare a 20% cationic surfactant solution.

【0021】[0021]

【化3】[Chemical formula 3]

【0022】さらに、イオン性物質としてLiCF3S
O3を10%溶解したカチオン界面活性剤溶液に、固形
分含量が30%となるように平均粒径が15μmのγー
りん酸ジルコニウム粉末を添加し、40℃で24時間撹
拌混合し電解質スラリーを得た。  次に、カチオン界
面活性剤溶液に平均粒径が6μmの硫化ニオブ粉末(N
bS2)を固形分含量が50%となるように加え、40
℃で24時間混合し、電極スラリーを得た。
Furthermore, LiCF3S is used as an ionic substance.
γ-zirconium phosphate powder with an average particle size of 15 μm was added to a cationic surfactant solution containing 10% O3 dissolved therein so that the solid content was 30%, and the mixture was stirred and mixed at 40°C for 24 hours to form an electrolyte slurry. Obtained. Next, niobium sulfide powder (N
bS2) was added so that the solid content was 50%, and 40
The mixture was mixed at ℃ for 24 hours to obtain an electrode slurry.

【0023】電解質スラリーと電極スラリーとを固形分
比が1:2となるようにアルミナボールミル中で24時
間混合して電極組成物スラリーを得た。電極組成物スラ
リーを平滑なフッ素樹脂製の板の上でドクターブレード
を用い塗布した後、130℃の乾燥アルゴン気流中で1
時間乾燥し、さらに5時間真空乾燥することで、大きさ
  80x80mm、厚さ150μmのシート状の固形
電極組成物を得た。また、電池を構成するために、電解
質スラリーのみを同様にして塗布乾燥して大きさ80x
80mm、厚さ80ミクロンの電解質シートを作製した
An electrode composition slurry was obtained by mixing the electrolyte slurry and the electrode slurry in an alumina ball mill for 24 hours so that the solid content ratio was 1:2. After applying the electrode composition slurry on a smooth fluororesin plate using a doctor blade, it was heated for 1 hour in a dry argon stream at 130°C.
By drying for an hour and further vacuum drying for 5 hours, a sheet-like solid electrode composition with a size of 80 x 80 mm and a thickness of 150 μm was obtained. In addition, in order to construct a battery, only the electrolyte slurry was applied and dried in the same manner, and a size of 80×
An electrolyte sheet having a length of 80 mm and a thickness of 80 microns was prepared.

【0024】(実施例2)電極活物質としてバナジウム
ブトキサイドの加水分解により得た平均粒径が0.5μ
mのバナジウム酸化物粉末1部と平均粒径が0.02μ
mのファーネスブラック0.1部とをエタノールを分散
媒として混合乾燥したものを電極粉末として用い、(化
4)で示されるカチオン性界面活性剤と平均粒径が5μ
mのモンモリロナイト粉末、イオン性物質としてトリフ
ルオロスルフォン酸リチウム(LiCF3SO3)とを
用いた以外は実施例1と同様にして、厚さが135μm
のシート状の固形電極組成物と厚さが50μmのシート
状電解質を作製した。
(Example 2) An electrode active material obtained by hydrolysis of vanadium butoxide with an average particle size of 0.5μ
1 part of vanadium oxide powder with an average particle size of 0.02μ
The electrode powder was prepared by mixing and drying 0.1 part of furnace black with ethanol as a dispersion medium, and a cationic surfactant represented by (Chemical formula 4) and an average particle size of 5 μm.
A montmorillonite powder of 135 μm in thickness was prepared in the same manner as in Example 1 except that lithium trifluorosulfonate (LiCF3SO3) was used as the ionic substance.
A sheet-like solid electrode composition and a sheet-like electrolyte having a thickness of 50 μm were prepared.

【0025】[0025]

【化4】[C4]

【0026】実施例3 炭酸リチウムと炭酸マンガンの混合物を加熱分解するこ
とにより得た平均粒径7ミクロンのリチウム・マンガン
複合酸化物(LiMn2O4)粉末1部と平均粒径0.
02ミクロンのファーネスブラック0.2部との混合物
を電極活物質として用い、(化5)で示されるカチオン
性界面活性剤と、平均粒径が8μmのγーりん酸ジルコ
ニウム粉末と、イオン性物質として過塩素酸リチウム(
LiClO4)を用い、さらに、イオン伝導性の固体電
解質としてLi3NとLiIとB2O3からなるリチウ
ム化合物を固形分重量として5%混合した以外は実施例
1と同様にして大きさが80x80mm、厚さが180
μmのシート状の固形電極組成物と、厚さが70μmの
シート状電解質を作製した。
Example 3 One part of lithium-manganese composite oxide (LiMn2O4) powder with an average particle size of 7 microns obtained by thermally decomposing a mixture of lithium carbonate and manganese carbonate and 1 part of lithium-manganese composite oxide (LiMn2O4) powder with an average particle size of 0.
A cationic surfactant represented by (Chemical formula 5), γ-zirconium phosphate powder with an average particle size of 8 μm, and an ionic substance were used as an electrode active material. as lithium perchlorate (
LiClO4) was used, and a lithium compound consisting of Li3N, LiI, and B2O3 was used as an ion-conductive solid electrolyte, and 5% of the solid content was mixed.
A sheet-like solid electrode composition having a thickness of 70 μm and a sheet-like electrolyte having a thickness of 70 μm were prepared.

【0027】[0027]

【化5】[C5]

【0028】比較例 LiCF3SO3をエチレンオキサイド一分子当り8分
の1個溶解した平均分子量が480万のポリエチレンオ
キサイドよりなる高分子固体電解質と、実施例2と同様
の電極活物質とを混合・乾燥することで厚さ135μm
シート状の固形電極組成物を作製した。また、厚さ50
μmのシート状電解質を作製した。
Comparative Example A solid polymer electrolyte made of polyethylene oxide having an average molecular weight of 4.8 million, in which one-eighth of LiCF3SO3 is dissolved per molecule of ethylene oxide, and the same electrode active material as in Example 2 are mixed and dried. Therefore, the thickness is 135μm
A sheet-shaped solid electrode composition was produced. Also, the thickness is 50
A sheet-like electrolyte of μm size was produced.

【0029】固形電極組成物の特性評価実施例1〜3と
比較例で得られた固形電極組成物を用いて直径10mm
の円板を打ち抜き、特性試験用の試料とした。また各々
の実施例において作製したシート状電解質を直径10m
mに打ち抜き電池構成用に用いた。電解質円板の一方の
面に厚さ2mm、直径10mmの金属リチウム円板を配
置し、他方の面に固形電極組成物の円板を配置し、さら
にその上下に白金円板を配置した後、全体を50kg/
cm2の圧力で上下から加圧した状態で、水分が2pp
m以下のアルゴンガス雰囲気中で80℃で3時間加熱し
、試験電池A(実施例1)、試験電池B(実施例2)、
試験電池C(実施例3)、試験電池B’(比較例)を各
々10個づつ組み立てた。試験電池を3.5Vの一定電
圧で17時間充電した後、0.05mAの一定電流で1
0秒間放電を行い、放電直前および放電直後の電池電圧
の差(分極)を測定し10個の電池について平均値と標
準偏差値を求めた。また、同じ電流値で0.3ボルトま
で連続放電を行い放電容量を求め、理論容量(100%
)に対する電極活物質の利用率を求めた。分極値の結果
を(表1)に、電極の利用率を(表2)に示す。電極利
用率は、NbS2、 V2O5、LiMn2O4 1モ
ルに対し、Liが1モル反応した場合を100%として
評価した。
Characteristic evaluation of solid electrode compositions Using the solid electrode compositions obtained in Examples 1 to 3 and Comparative Examples,
A disk was punched out and used as a sample for characteristic testing. In addition, the sheet electrolyte prepared in each example was 10 m in diameter.
It was punched out and used for battery construction. A metal lithium disk with a thickness of 2 mm and a diameter of 10 mm is placed on one side of the electrolyte disk, a disk of solid electrode composition is placed on the other side, and platinum disks are placed above and below it, and then, Total weight: 50kg/
Water content is 2pp when pressurized from above and below with cm2 pressure.
Heated at 80° C. for 3 hours in an argon gas atmosphere of 300 m or less to produce test battery A (Example 1), test battery B (Example 2),
Ten test batteries C (Example 3) and ten test batteries B' (Comparative example) were assembled. After charging the test battery at a constant voltage of 3.5V for 17 hours, it was charged at a constant current of 0.05mA for 1
Discharge was performed for 0 seconds, and the difference (polarization) between battery voltages immediately before and after discharge was measured, and the average value and standard deviation value were determined for the 10 batteries. In addition, the discharge capacity was determined by continuously discharging up to 0.3 volts at the same current value, and the theoretical capacity (100%
) was calculated for the utilization rate of the electrode active material. The results of the polarization values are shown in (Table 1), and the utilization rates of the electrodes are shown in (Table 2). The electrode utilization rate was evaluated with the case where 1 mole of Li reacted with 1 mole of NbS2, V2O5, and LiMn2O4 as 100%.

【0030】[0030]

【表1】[Table 1]

【0031】[0031]

【表2】[Table 2]

【0032】上記実施例および(表1)、(表2)に示
した結果から明らかなように、本実施例による固形電極
組成物は、電極利用率が30%以上あり、また分極の標
準偏差値は小さく電極活物質と固体電解質とが均一に混
合された均質な電極組成物であることを示している。
As is clear from the results shown in the above examples and Tables 1 and 2, the solid electrode composition according to this example has an electrode utilization rate of 30% or more and a standard deviation of polarization. The value is small, indicating a homogeneous electrode composition in which the electrode active material and solid electrolyte are evenly mixed.

【0033】また、本実施例の固形電極組成物の機械強
度を、長さ40mm幅5mmの成形体を用いて半径が5
0mmの曲面に沿って1秒間に2回の割合で繰り返し折
り曲げた際、破断に至るまでの回数で評価したところ、
いずれの固形電極組成物も5000回の折り曲げ試験後
でも破断することなく元の形状を保っており、優れた機
械強度を有していることがわかった。
In addition, the mechanical strength of the solid electrode composition of this example was measured using a molded body with a length of 40 mm and a width of 5 mm.
When repeatedly bent along a 0 mm curved surface at a rate of 2 times per second, evaluation was made based on the number of times it took to break.
It was found that all solid electrode compositions maintained their original shapes without breaking even after 5,000 bending tests, and had excellent mechanical strength.

【0034】[0034]

【発明の効果】上記実施例より明らかなように本発明に
よれば、エチレンオキサイド鎖とプロピレンオキサイド
鎖の少なくとも一方を有する特定のカチオン界面活性剤
の作用により、電極活物質および導電材が均一に分散さ
れた均質な固形電極組成物を提供することができる。こ
のカチオン界面活性剤は、イオン交換性の層状化合物と
複合体を形成し層状化合物の結晶の層間または表面に高
濃度に保持されイオン伝導に有利な経路を形成し、固形
電極組成物内にあって電池反応の円滑な進行に必要なイ
オン伝導の経路を形成でき、また電子およびイオンの伝
導経路が均一に形成されるため、電極利用率の高い、分
極の小さい、かつ均一な特性を得ることができる。
Effects of the Invention As is clear from the above examples, according to the present invention, the electrode active material and the conductive material are uniformly coated by the action of a specific cationic surfactant having at least one of an ethylene oxide chain and a propylene oxide chain. A dispersed and homogeneous solid electrode composition can be provided. This cationic surfactant forms a complex with the ion-exchangeable layered compound and is retained at a high concentration between the layers or on the surface of the layered compound's crystals, forming an advantageous path for ion conduction, and is present in the solid electrode composition. The ionic conduction path necessary for the smooth progression of battery reactions can be formed by using this method, and the conduction paths for electrons and ions are formed uniformly, resulting in high electrode utilization, low polarization, and uniform characteristics. Can be done.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電極活物質と、エチレンオキサイド鎖とプ
ロピレンオキサイド鎖の少なくとも一方を有するカチオ
ン界面活性剤と、イオン交換性の層状化合物と、式MX
で表されるイオン性物質(ただし、Mは電界の作用で固
形電解質組成物内を移動する金属イオン、プロトン、ア
ンモニウムイオンであり、Xは強酸のアニオンである)
とを少なくとも含有することを特徴とする固形電極組成
物。
Claim 1: an electrode active material, a cationic surfactant having at least one of an ethylene oxide chain and a propylene oxide chain, an ion exchange layered compound, and a compound having the formula MX.
An ionic substance represented by
A solid electrode composition comprising at least the following.
【請求項2】導電材を混入した請求項1記載の固形電極
組成物。
2. The solid electrode composition according to claim 1, which contains a conductive material.
JP3032682A 1991-02-27 1991-02-27 Composition of solid electrode Pending JPH04272654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032682A JPH04272654A (en) 1991-02-27 1991-02-27 Composition of solid electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032682A JPH04272654A (en) 1991-02-27 1991-02-27 Composition of solid electrode

Publications (1)

Publication Number Publication Date
JPH04272654A true JPH04272654A (en) 1992-09-29

Family

ID=12365648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032682A Pending JPH04272654A (en) 1991-02-27 1991-02-27 Composition of solid electrode

Country Status (1)

Country Link
JP (1) JPH04272654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763891B1 (en) * 2005-12-01 2007-10-05 삼성에스디아이 주식회사 Anode active material and lithium battery using the same
JP2017162597A (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery using the electrode material, and method of manufacturing electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
JP2021044225A (en) * 2019-09-13 2021-03-18 株式会社東芝 Electrode, rechargeable battery, battery pack, and vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763891B1 (en) * 2005-12-01 2007-10-05 삼성에스디아이 주식회사 Anode active material and lithium battery using the same
US8283070B2 (en) 2005-12-01 2012-10-09 Samsung Sdi Co., Ltd. Anode active material and lithium battery using the same
JP2017162597A (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery using the electrode material, and method of manufacturing electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
JP2021044225A (en) * 2019-09-13 2021-03-18 株式会社東芝 Electrode, rechargeable battery, battery pack, and vehicle
US11515531B2 (en) 2019-09-13 2022-11-29 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle

Similar Documents

Publication Publication Date Title
US5419890A (en) Use of organic solvents in the synthesis of V6 O13+x [0<x≦2]
JP3643289B2 (en) Glass ceramic composite electrolyte and lithium secondary battery
KR100332080B1 (en) Solid electrolyte and battery
Kawai et al. Novel 5 V spinel cathode Li2FeMn3O8 for lithium ion batteries
Ming et al. Redox species-based electrolytes for advanced rechargeable lithium ion batteries
CN108511791B (en) A kind of quasi-solid electrolyte film and its preparation method and application
JP6607959B2 (en) Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JPWO2016199805A1 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JPH0845510A (en) Electrochemical battery,cathode substance and its manvfacture
Novikova et al. Electrical conductivity and electrochemical characteristics of Na 3 V 2 (PO 4) 3-based NASICON-type materials
JP2940181B2 (en) Solid electrode composition
Takada et al. Solid state batteries with sulfide-based solid electrolytes
Ette et al. Mo3Nb2O14: A high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes
Dimri et al. ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
JPH04267056A (en) Solid electrode composition
JPH04272654A (en) Composition of solid electrode
JP3038945B2 (en) Lithium secondary battery
JP2001210375A (en) Solid electrolyte battery
EP1569289B1 (en) New lithium insertion electrode materials based on orthosilicate derivatives
JP2001015160A (en) Glass-ceramic composite electrolyte, and lithium secondary battery
Oh et al. Enhancing performance of all-solid-state battery by establishment of interconnected Li7La3Zr2O12 network in graphite composite anode
JP2929726B2 (en) Solid electrode composition
Li et al. Nanocomposite gel electrolytes based on fumed silica for lithium-ion batteries
JP2605989B2 (en) Lithium secondary battery
JPH04248258A (en) Solid electrode composition