JPH04327792A - Copper tube with internal groove - Google Patents

Copper tube with internal groove

Info

Publication number
JPH04327792A
JPH04327792A JP12275891A JP12275891A JPH04327792A JP H04327792 A JPH04327792 A JP H04327792A JP 12275891 A JP12275891 A JP 12275891A JP 12275891 A JP12275891 A JP 12275891A JP H04327792 A JPH04327792 A JP H04327792A
Authority
JP
Japan
Prior art keywords
tube
fins
fin
copper
copper tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12275891A
Other languages
Japanese (ja)
Inventor
Minoru Mizuno
稔 水野
Hiroshi Meji
目時 寛
Hiroyuki Morita
浩之 森田
Masahiko Kobayashi
昌彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP12275891A priority Critical patent/JPH04327792A/en
Publication of JPH04327792A publication Critical patent/JPH04327792A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent fins, i.e., internal grooves, from being crushed when a plug is forced into a copper tube to expand it for mounting plate fins to the outer surface of the tube by forming a large number of fins having trapezoidal section with specific dimension on the inner surface of the copper tube. CONSTITUTION:Copper tubes with internal grooves 1 are secured to plate fins made of aluminum etc., to form a heat exchanger. That is, when a plug 3 is forced into a copper tube 1, to the outer surface of which the fins 2 are mounted, to expand the tube, the fins 2 are brought into close contact with the tube 1. In this case, on the inner surface of the tube 1, a large number of fins 4 having a trapezoidal section with a flat top end are formed, wherein the height H of the fin is 0.15-0.25mm, the width of the top end W being 0.06-0.1mm, top angle gamma being 20-30 deg., so that grooves of the copper with internal groove are formed. As a result, when the plug 3 is forced into the tube 1 to expand it, the end of the fin 4 is prevented from being crushed thereby ensuring improved heat transfer performance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば蒸発器、凝縮器
のような熱交換器の伝熱管として用いられる内面溝付銅
管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to internally grooved copper tubes used as heat exchanger tubes in heat exchangers such as evaporators and condensers.

【0002】0002

【従来の技術】従来、沸騰および凝縮を伴う熱伝達装置
において、熱伝達効率が高く、圧力損失が少ない伝熱管
として内面に細かな凹凸フィンの溝条を形成した銅材質
のものが有用されている。通常、この内面溝付銅管はア
ルミニウムのプレートフィンに固定して熱交換器に構成
されるが、この固定化は図4に示すように内面溝付銅管
1の外面にプレートフィン2を装着しておき、前記内面
溝付銅管1の内部にプラグ3を圧入して拡管することに
より両部材を密着させる工程でおこなわれる。
[Prior Art] Conventionally, in heat transfer devices involving boiling and condensation, a copper material with fine grooves of concave and convex fins formed on the inner surface has been used as a heat transfer tube with high heat transfer efficiency and low pressure loss. There is. Normally, this internally grooved copper tube is fixed to aluminum plate fins to form a heat exchanger, but this fixation is achieved by attaching plate fins 2 to the outer surface of the internally grooved copper tube 1, as shown in Figure 4. The plug 3 is then press-fitted into the internally grooved copper tube 1 to expand the tube, thereby bringing the two members into close contact with each other.

【0003】ところが、従来の内面溝付銅管に形成され
る溝条は、図5のようにフィン4の形状が先端の尖った
三角型断面を呈している関係で、拡管プラグの圧入時に
フィンの先端部分が押し潰されて図6のような状態に変
形する事態が発生する。このようなフィン変形は熱伝達
性の低下を招くため、拡管工程の前後で伝熱性能の減退
変動を生じる問題点がある。
However, the grooves formed in conventional internally grooved copper tubes have a triangular cross-section with a pointed tip as shown in FIG. A situation occurs in which the tip portion of the blade is crushed and deformed into the state shown in FIG. Since such fin deformation causes a decrease in heat transfer performance, there is a problem in that heat transfer performance decreases and fluctuates before and after the tube expansion process.

【0004】0004

【発明が解決しようとする課題】本発明は、フィン形状
を特定の略台形断面に設計することにより上記の問題点
の解消を図ったもので、拡管工程の前後でフィン形状に
大きな減退変動を伴うことがない安定した高伝熱性能を
備える内面溝付銅管の提供を目的としている。
[Problems to be Solved by the Invention] The present invention aims to solve the above-mentioned problems by designing the fin shape to have a specific approximately trapezoidal cross section, and the fin shape has large reduction fluctuations before and after the pipe expansion process. The purpose of the present invention is to provide an internally grooved copper tube with stable and high heat transfer performance without heat transfer.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による内面溝付銅管は、銅管の内面に、高さ
(H) 0.15〜0.25mm、先端フラット幅(W
) 0.06〜0.1mm 、頂角 (γ) 20〜3
0°の先端が平面で略台形断面を有するフィンを多数条
形成したなることを構成上の特徴とする。
[Means for Solving the Problems] The internally grooved copper tube according to the present invention for achieving the above object has a height (H) of 0.15 to 0.25 mm and a tip flat width ( W
) 0.06~0.1mm, vertex angle (γ) 20~3
A structural feature is that a large number of fins are formed with a flat tip at 0° and a substantially trapezoidal cross section.

【0006】図1は本発明に係る先端が平面で略台形断
面を有するフィン形状を示した部分断面図である。銅管
内面に多数条のフィンを形成するための加工手段には特
に制約はなく、形成される溝方向も管軸に沿って平行な
ストレート溝であっても、また螺旋溝や傾斜溝であって
も差し支えない。しかし、銅管のサイズは外径が6〜1
0mmの比較的小径管が本発明の好適な対象となる。
FIG. 1 is a partial sectional view showing a fin shape having a flat tip and a substantially trapezoidal cross section according to the present invention. There are no particular restrictions on the processing means for forming multiple fins on the inner surface of a copper tube, and the direction of the grooves may be straight grooves parallel to the tube axis, spiral grooves, or inclined grooves. There is no problem. However, the size of copper pipe has an outer diameter of 6 to 1
Relatively small diameter tubes of 0 mm are suitable targets for the present invention.

【0007】本発明において、フィンの高さHを0.1
5〜0.25mmに限定した理由は、0.15mm未満
に設定しようとすると現形状で最も伝熱性能が良好なフ
ィン面積 (フィン頂角40°) より少なくするため
にはフィン頂角を20°未満にする必要が生じ、フィン
成形が著しく困難となり、他方、0.25mmを越える
高さになると伝熱性能の向上よりも圧力損失の方が大き
くなって構造機能の低下を招くためである。先端フラッ
ト幅Wは、0.06mmを下廻ると拡管工程で先端部分
の押し潰れを軽減することができなくなり、0.1mm
 を越えるとフィン面積が増大して溝面積を縮小化する
ことになる関係で伝熱性能を実質的に低下させるうえ、
単位重量も増えてコストアップの因となる。また、頂角
γについては、20°未満になるとフィンの成形加工が
著しく困難となり、30°を上廻る角度設定では先端を
平面にしてもフィン面積が大きくなって伝熱性能の低下
と重量増を招く。
In the present invention, the height H of the fin is set to 0.1
The reason for limiting it to 5 to 0.25 mm is that if you try to set it to less than 0.15 mm, the fin area has the best heat transfer performance in the current shape (fin apex angle of 40°). If the height exceeds 0.25 mm, the pressure loss will be greater than the improvement in heat transfer performance, leading to a decline in structural function. . If the tip flat width W is less than 0.06 mm, it will not be possible to reduce the crushing of the tip part during the tube expansion process, and it will be reduced to 0.1 mm.
Exceeding this will increase the fin area and reduce the groove area, which will substantially reduce heat transfer performance.
The unit weight also increases, leading to an increase in cost. Regarding the apex angle γ, if it is less than 20°, it becomes extremely difficult to form the fin, and if the angle is set over 30°, the fin area becomes large even if the tip is made flat, resulting in a decrease in heat transfer performance and an increase in weight. invite.

【0008】[0008]

【作用】上記の特定されたフィン構成を備える本発明の
内面溝付銅管は、フィン形状が従来形状のフィンに比べ
て伝熱性能に遜色がないうえ、先端部が平面であるため
プレートフィンと組み合わせて熱交換器を製作する場合
の拡管工程で押し潰される変形度合が効果的に軽減され
る。したがって、拡管工程後における伝熱性能の減退変
動が僅少となり、常に安定した高性能の熱交換器を提供
することが可能となる。
[Function] The internally grooved copper tube of the present invention having the above-specified fin structure has a fin shape that is comparable in heat transfer performance to conventional fins, and has a flat tip, so plate fins When manufacturing a heat exchanger in combination with this, the degree of deformation caused by crushing during the tube expansion process is effectively reduced. Therefore, fluctuations in heat transfer performance after the tube expansion process are minimized, making it possible to provide a consistently stable and high-performance heat exchanger.

【0009】[0009]

【実施例】以下、本発明を実施例に基づいて説明する。 実施例 平均外径7.00mm、平均内径6.11mmの銅管内
面に高さ(H)0.22mm 、先端フラット幅(W)
0.08mm 、頂角 (γ)26 °、底肉厚0.2
3mm、溝幅0.23mm、リード角18°、条数50
の先端が平面で略台形断面を有するフィンを形成した内
面溝付銅管を、アルミニウムのプレートフィンに拡管工
程を介して装着して熱交換器を製作した。この管の単管
での伝熱性能を表1に示した。また、拡管工程の前後に
おける内面溝付銅管の蒸発時の伝熱性能対比グラフを図
2に、また凝縮時の伝熱性能対比グラフを図3に示した
EXAMPLES The present invention will be explained below based on examples. Example: The inner surface of a copper tube with an average outer diameter of 7.00 mm and an average inner diameter of 6.11 mm has a height (H) of 0.22 mm and a flat tip width (W).
0.08mm, apex angle (γ) 26°, bottom wall thickness 0.2
3mm, groove width 0.23mm, lead angle 18°, number of threads 50
A heat exchanger was manufactured by attaching an internally grooved copper tube having a fin with a flat tip and a substantially trapezoidal cross section to an aluminum plate fin through a tube expansion process. Table 1 shows the heat transfer performance of this tube as a single tube. Further, FIG. 2 shows a comparison graph of the heat transfer performance during evaporation of the internally grooved copper tube before and after the tube expansion process, and FIG. 3 shows a comparison graph of the heat transfer performance during condensation.

【0010】0010

【表1】[Table 1]

【0011】表1の結果から本発明の内面溝付銅管は極
めて優れた性能を示し、熱交換器とした場合の伝熱性能
は従来フィン形状の内面溝付銅管を用いた場合に比べて
約2%の性能向上が認められた。また、図2および図3
のグラフから拡管工程の前後において伝熱性能に殆ど減
退変動が生じないことが判明する。
[0011] From the results shown in Table 1, the internally grooved copper tube of the present invention exhibits extremely excellent performance, and when used as a heat exchanger, the heat transfer performance is higher than that when a conventional fin-shaped internally grooved copper tube is used. Approximately 2% performance improvement was observed. Also, Figures 2 and 3
It is clear from the graph that there is almost no decline in heat transfer performance before and after the tube expansion process.

【0012】0012

【発明の効果】以上のとおり、本発明の内面溝付銅管に
は特定された寸法の先端が平面で略台形断面を有するフ
ィン形状が形成されているから、熱交換器製造時の拡管
工程におけるフィン先端の潰れ現象が効果的に軽減され
、常にフィン形成時と同等の高伝熱性能を安定して確保
することができる。このため、伝熱管を一層小径化する
ことが可能となるから、熱交換器のコンパクトに設計す
ることが可能となる。
[Effects of the Invention] As described above, since the internally grooved copper tube of the present invention has a fin shape having a flat tip and a substantially trapezoidal cross section with specified dimensions, it is possible to improve the tube expansion process during heat exchanger manufacturing. This effectively reduces the phenomenon of collapse of the fin tips during fin formation, and it is possible to consistently maintain high heat transfer performance equivalent to that when the fins are formed. For this reason, it becomes possible to further reduce the diameter of the heat exchanger tube, and thus it becomes possible to design the heat exchanger compactly.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を構成するフィン形状を示した部分断面
図である。
FIG. 1 is a partial sectional view showing a fin shape constituting the present invention.

【図2】実施例における拡管工程前後の蒸発伝熱性能を
示した対比グラフである。
FIG. 2 is a comparative graph showing the evaporative heat transfer performance before and after the tube expansion step in the example.

【図3】実施例における拡管工程前後の凝縮伝熱性能を
示した対比グラフである。
FIG. 3 is a comparison graph showing the condensation heat transfer performance before and after the tube expansion step in the example.

【図4】内面溝付銅管の拡管工程を示した説明図である
FIG. 4 is an explanatory diagram showing a tube expansion process of an internally grooved copper tube.

【図5】従来フィン形状における拡管工程前の状態を示
した部分断面図である。
FIG. 5 is a partial cross-sectional view showing a conventional fin-shaped tube before the tube expansion process.

【図6】従来フィン形状における拡管工程後の変形状態
を示した部分断面図である。
FIG. 6 is a partial cross-sectional view showing a deformed state of a conventional fin-shaped pipe after a tube expansion process.

【符号の説明】[Explanation of symbols]

1  内面溝付銅管 2  プレートフィン 3  拡管用プラグ 4  フィン 1 Copper tube with inner groove 2 Plate fin 3 Plug for pipe expansion 4 Fin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  銅管の内面に、高さ(H) 0.15
〜0.25mm、先端フラット幅 (W)0.06〜0
.1mm 、頂角 (γ)20〜30°の先端が平面で
略台形断面を有するフィンを多数条形成してなることを
特徴とする内面溝付銅管。
[Claim 1] The inner surface of the copper tube has a height (H) of 0.15.
~0.25mm, tip flat width (W)0.06~0
.. A copper tube with internal grooves, characterized in that it is formed with a large number of fins each having a diameter of 1 mm, an apex angle (γ) of 20 to 30 degrees, a flat tip, and a substantially trapezoidal cross section.
JP12275891A 1991-04-25 1991-04-25 Copper tube with internal groove Pending JPH04327792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12275891A JPH04327792A (en) 1991-04-25 1991-04-25 Copper tube with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12275891A JPH04327792A (en) 1991-04-25 1991-04-25 Copper tube with internal groove

Publications (1)

Publication Number Publication Date
JPH04327792A true JPH04327792A (en) 1992-11-17

Family

ID=14843888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12275891A Pending JPH04327792A (en) 1991-04-25 1991-04-25 Copper tube with internal groove

Country Status (1)

Country Link
JP (1) JPH04327792A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085278A (en) * 1994-06-20 1996-01-12 Mitsubishi Shindoh Co Ltd Heat transfer tube with inner surface grooves
JPH0849992A (en) * 1994-08-04 1996-02-20 Sumitomo Light Metal Ind Ltd Heat transfer tube with internal groove
WO2001092806A1 (en) * 2000-05-31 2001-12-06 Mitsubishi Shindoh Co., Ltd. Heating tube with internal grooves and heat exchanger
EP2278252A1 (en) * 2008-04-24 2011-01-26 Mitsubishi Electric Corporation Heat exchanger and air conditioner using the same
CN112964113A (en) * 2021-03-18 2021-06-15 中科金龙金属材料开发有限公司 Combined-tooth heat exchange copper pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085278A (en) * 1994-06-20 1996-01-12 Mitsubishi Shindoh Co Ltd Heat transfer tube with inner surface grooves
JPH0849992A (en) * 1994-08-04 1996-02-20 Sumitomo Light Metal Ind Ltd Heat transfer tube with internal groove
WO2001092806A1 (en) * 2000-05-31 2001-12-06 Mitsubishi Shindoh Co., Ltd. Heating tube with internal grooves and heat exchanger
EP2278252A1 (en) * 2008-04-24 2011-01-26 Mitsubishi Electric Corporation Heat exchanger and air conditioner using the same
EP2278252B1 (en) * 2008-04-24 2013-08-14 Mitsubishi Electric Corporation Heat exchanger and air conditioner using the same
CN112964113A (en) * 2021-03-18 2021-06-15 中科金龙金属材料开发有限公司 Combined-tooth heat exchange copper pipe

Similar Documents

Publication Publication Date Title
JP2788793B2 (en) Heat transfer tube
US6802362B2 (en) Fin with elongated hole and heat pipe with elongated cross section
JP2001289585A (en) Inner grooved aluminum tube and heat exchanger comprising the same
JP4294183B2 (en) Internal grooved heat transfer tube
JPH04327792A (en) Copper tube with internal groove
KR20150084778A (en) Evaporation heat transfer tube with a hollow caviity
JP4913371B2 (en) Manufacturing method of heat exchanger
JPH04260793A (en) Heat transfer tube with inner surface groove
JP2002090086A (en) Inner helically grooved heat exchanger tube and method for manufacturing heat exchanger
JP2000121272A (en) Heat exchanger tube with internal groove and heat exchanger
US20220136778A1 (en) Heat pipe and heat dissipation structure
JP3592149B2 (en) Internal grooved tube
US20020074114A1 (en) Finned heat exchange tube and process for forming same
JP3747974B2 (en) Internal grooved heat transfer tube
CN110849196A (en) High-efficient type flooded heat exchange tube
CN216245777U (en) Heat transfer pipe with transition surface on fin
JPH08327272A (en) Heat transfer tube and manufacture thereof
CN211261912U (en) High-efficient type flooded heat exchange tube
WO2010016198A1 (en) Grooved tube for heat exchanger
CN215765869U (en) Condensation copper pipe
JP2737799B2 (en) Heat transfer tube
CN216245778U (en) Heat transfer pipe for enhancing boiling
CN215675926U (en) Evaporating pipe with multiple heat exchange points
JPH0547976Y2 (en)
CN113983851A (en) Heat transfer pipe with transition surface on fin