JPH0849992A - Heat transfer tube with internal groove - Google Patents

Heat transfer tube with internal groove

Info

Publication number
JPH0849992A
JPH0849992A JP20272894A JP20272894A JPH0849992A JP H0849992 A JPH0849992 A JP H0849992A JP 20272894 A JP20272894 A JP 20272894A JP 20272894 A JP20272894 A JP 20272894A JP H0849992 A JPH0849992 A JP H0849992A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
groove
fin
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20272894A
Other languages
Japanese (ja)
Other versions
JP2912826B2 (en
Inventor
Shigeo Iijima
茂男 飯島
Hiroyuki Morita
浩之 森田
Norimitsu Ishiguro
則充 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16462184&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0849992(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP6202728A priority Critical patent/JP2912826B2/en
Publication of JPH0849992A publication Critical patent/JPH0849992A/en
Application granted granted Critical
Publication of JP2912826B2 publication Critical patent/JP2912826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enhance the heat-transfer performance without lowering the fabrication efficiency by forming an angle ridge part with a specified apex between trapezoidal grooves in a section at the right angle to the axis of a pipe and the grooves with a specified depth and a specified sectional area while a circular arc part with a specified radius of curvature is provided between bevel parts and the bottom of the grooves. CONSTITUTION:The apex gamma of an angularly protruded part (fin) formed between trapezoidal grooves is set at 10-30 deg., the ratio between the depth H of the grooves and the inner diameter D1 of a pipe 0.04-0.05 and the ratio between the sectional area S of the grooves and the depth H thereof in a section at the right angle to the pipe 0.2-0.4. Moreover, at a circular arc part 7 formed between the bevel part 6 and the bottom 5 of the grooves, the ratio between the groove depth H and a specified radius of curvature is set at 4-10. Promotion of the formation of a meniscus liquid film is thereby accelerated to improve a heat conductivity within the pipe to give a heat exchanger tube with excellent accuracy without restriction in the fabrication.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内面溝付管、詳しくは
空調機、冷凍機などの熱交換器のうち、管内流体が相変
化を行う熱交換器に装着するのに適した内面溝付伝熱管
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal grooved tube, more specifically, an internal groove suitable for mounting in a heat exchanger such as an air conditioner or a refrigerator in which the fluid in the tube undergoes a phase change. Regarding improvement of attached heat transfer tube.

【0002】[0002]

【従来の技術】内面溝付伝熱管は、図1および図2に示
すように、銅管などの金属管2の内面に、断面が三角形
状や台形状の連続ら旋溝3(ら旋角α)を設けたもので
ある。断面台形状のら旋溝を形成した内面溝付伝熱管が
現在広く使用されているが、この伝熱管1の管内熱伝達
率の向上については、特公平4-21117 号公報に記載され
ているように、溝間に形成される山形突起部(フィン)
4の高さ(H)が高く、フィン4の頂角(γ)が小さい
方が良好である。
2. Description of the Related Art As shown in FIGS. 1 and 2, a heat transfer tube with an inner surface groove has a continuous spiral groove 3 (helix angle) having a triangular or trapezoidal cross section on the inner surface of a metal tube 2 such as a copper tube. α) is provided. An inner grooved heat transfer tube with a spiral groove having a trapezoidal cross section is widely used at present, and improvement of the heat transfer coefficient of the heat transfer tube 1 is described in Japanese Patent Publication No. 4-21117. Chevron protrusions (fins) formed between the grooves
It is preferable that the height (H) of the fin 4 is high and the apex angle (γ) of the fin 4 is small.

【0003】内面溝付伝熱管の製造は、例えば、銅管を
所定寸法に抽伸加工した後、管内部に溝付けプラグを挿
入し、管外に配設された転造ロールやボールを管の周り
に回転させ、管を溝付けプラグに向けて圧縮し、管を縮
径するとともに管内面に内面溝を形成することにより行
われる。このような内面溝の成形加工において、溝間の
フィン4の高さを高く、その頂角(γ)を小さくしてい
くと、フィン部に材料が充填され難くなり、またフィン
部に割れが発生したり、溝付けプラグの溝が狭く且つ深
くなるため、溝付きプラグが破損するなどの問題も生じ
易く、加工性が低下する。
For manufacturing a heat transfer tube with an inner groove, for example, a copper tube is drawn into a predetermined size, a grooved plug is inserted inside the tube, and a rolling roll or a ball arranged outside the tube is inserted into the tube. This is done by rotating around and compressing the tube towards the grooved plug to reduce the diameter of the tube and form an inner groove on the inner surface of the tube. In the process of forming the inner groove as described above, if the height of the fin 4 between the grooves is increased and the apex angle (γ) thereof is decreased, it becomes difficult for the fin portion to be filled with the material, and cracks occur in the fin portion. If the grooved plugs are formed or the grooves of the grooved plugs are narrow and deep, problems such as breakage of the grooved plugs are likely to occur and the workability is deteriorated.

【0004】このため、量産可能な内面溝付伝熱管の形
状は、フィン4の高さが、フィン高さ( H)と管内径
(Di ) の比としてH/Di ≦0.04、管軸直角断面
での溝部断面積(S )とフィン高さ( H)との比とし
て、0.2≦S/H≦0.4、フィン頂角(γ)が管軸
直角断面でγ≧40°が限界であり、現状ではこの範囲
の内面溝付伝熱管が量産、使用されている。図2におい
て、Do は管外径、TF は底肉厚である。
For this reason, the shape of the heat transfer tube with internal groove which can be mass-produced is such that the height of the fin 4 is H / D i ≤0.04 as the ratio of the fin height (H) to the tube inner diameter (D i ). The ratio of the groove cross-sectional area (S 1) to the fin height (H) in the cross section perpendicular to the tube axis is 0.2 ≦ S / H ≦ 0.4, and the fin apex angle (γ) is γ ≧ in the cross section perpendicular to the tube axis. The limit is 40 °, and currently, heat transfer tubes with internal grooves in this range are mass-produced and used. In FIG. 2, D o is the outer diameter of the pipe, and T F is the bottom wall thickness.

【0005】フィン4の高さ(H)を高く、フィン頂角
(γ)を小さくし、スリムなフィン形状とした場合で
も、成形加工時のメタルフローを改善し満足すべき材料
充填を達成するために、図2に示すように、溝底部5と
フィン部傾斜直線部6との間に円弧状部7を設け、円弧
状部7の曲率半径Rを1.5≦H/R≦4(H:フィン
高さ=溝深さ)の関係を満足する値とすることも提案さ
れている。(特開平5-141890号公報)
Even when the height (H) of the fin 4 is high and the fin apex angle (γ) is small to form a slim fin shape, the metal flow at the time of forming is improved and a satisfactory material filling is achieved. Therefore, as shown in FIG. 2, an arcuate portion 7 is provided between the groove bottom portion 5 and the fin portion inclined straight line portion 6, and the radius of curvature R of the arcuate portion 7 is 1.5 ≦ H / R ≦ 4 ( It has also been proposed to make the value satisfy the relationship of H: fin height = groove depth. (JP-A-5-141890)

【0006】しかしながら、この内面溝付伝熱管におい
ても、フィンの高さは、フィン高さ(H)と管内径(D
i ) の比としてH/Di ≦0.04、フィン頂角(γ)
は、管軸直角断面で35°≦γ≦50°であり、形状的
に従来のものと大きく変わっておらず、顕著な伝熱性能
の改善効果は得られない。
However, even in this heat transfer tube with an inner surface groove, the fin height is such that the fin height (H) and the tube inner diameter (D
H / D i ≦ 0.04 as a ratio of i ), fin apex angle (γ)
Is 35 ° ≦ γ ≦ 50 ° in a cross section perpendicular to the tube axis, which is not significantly different in shape from the conventional one, and a remarkable effect of improving heat transfer performance cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、断面が台形
状の連続ら旋溝を有する内面溝付伝熱管における上記従
来の問題点を解消するために、溝部、溝間の形成される
フィン部の形状寸法、成形加工性および伝熱性能の相互
関係について種々の面から検討を重ねた結果としてなさ
れたものであり、その目的は、成形加工性を低下させず
に、さらにスリムなフィン形状とすることができ、伝熱
性能に優れた内面溝付伝熱管を提供することにある。
DISCLOSURE OF THE INVENTION In order to solve the above-mentioned conventional problems in a heat transfer tube with an inner groove having a continuous spiral groove having a trapezoidal cross section, the present invention provides a fin formed between the groove portion and the groove. This was made as a result of repeated studies from various aspects regarding the mutual relationship between the shape and size of the parts, the formability and heat transfer performance, and the purpose was to achieve a slim fin shape without reducing the formability. And to provide an inner grooved heat transfer tube having excellent heat transfer performance.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による内面溝付伝熱管は、管内面にら旋状の
台形溝を有する伝熱管において、管軸直角断面で台形溝
間に頂角10〜30°の山形突起部が形成され、溝深さ
(H)が管内径(Di ) との比でH/Di =0.04〜
0.05、管軸直角断面での各溝の断面積(S)が溝深
さ(H)との比でS/H=0.2〜0.4に形成され、
且つ溝の傾斜部と溝底間に曲率半径Rの円弧状部が設け
られ、該円弧状部が溝深さ(H)との比でH/R=4〜
10に形成されることを構成上の特徴とする。
In order to achieve the above object, a heat transfer tube with an inner surface groove according to the present invention is a heat transfer tube having a spiral trapezoidal groove on the inner surface of the tube. Is formed with a mountain-shaped protrusion having an apex angle of 10 to 30 °, and the groove depth (H) is H / D i = 0.04 to the pipe inner diameter (D i ).
0.05, the cross-sectional area (S) of each groove in a cross section perpendicular to the tube axis is formed to be S / H = 0.2 to 0.4 in ratio with the groove depth (H),
Moreover, an arcuate portion having a radius of curvature R is provided between the inclined portion of the groove and the groove bottom, and the arcuate portion has a ratio of H / R = 4 to the groove depth (H).
10 is formed.

【0009】内面溝付伝熱管の管内に冷媒液が流れる
と、図3に示すように、冷媒液8の液面は、溝3内にお
いて冷媒液8の凝集力およびフィンの側面と冷媒液間に
働く力により水平ではなく湾曲した状態となる。このと
き形成されるメニスカス液膜9は、他の部分に比べ液膜
厚さが薄くなり良好な熱伝達が可能となる。このメニス
カス液膜の形成のし易さが管内熱伝達率の向上に寄与す
る。
When the refrigerant liquid flows into the inner surface grooved heat transfer tube, as shown in FIG. 3, the liquid surface of the refrigerant liquid 8 has a cohesive force of the refrigerant liquid 8 in the groove 3 and a space between the fin side surface and the refrigerant liquid. Due to the force acting on, it becomes a curved state instead of horizontal. The meniscus liquid film 9 formed at this time has a smaller liquid film thickness than other portions, and good heat transfer is possible. The ease of forming the meniscus liquid film contributes to the improvement of the heat transfer coefficient in the tube.

【0010】本発明の内面溝付伝熱管においては、台形
溝間に形成される山形突起部(フィン)の頂角(γ)を
10〜30°、さらに好ましくは10〜25°と従来よ
り小さく形成する。フィン頂角を小さくするとメニスカ
ス液膜は形成し易くなり、また液膜全体に薄くなって、
凝縮、蒸発ともに熱伝達率が向上するが、フィン頂角が
小さ過ぎると、メニスカス液膜は形成されてもフィン部
の断面積が減少してフィン効率が低下し伝熱性能をわる
くする。本発明においては下限を10°とするのが好ま
しい。フィン頂角が大きくなり過ぎると、冷媒液の液膜
が厚くなって熱抵抗が増加する傾向があるので、本発明
においては30°を上限とするのが望ましく、25°以
下とするのがさらに望ましい。
In the heat transfer tube with internal grooves of the present invention, the apex angle (γ) of the chevron projections (fins) formed between the trapezoidal grooves is 10 to 30 °, more preferably 10 to 25 °, which is smaller than the conventional one. Form. If the fin apex angle is made smaller, the meniscus liquid film will be easier to form, and the entire liquid film will be thinner.
Although the heat transfer coefficient is improved in both condensation and evaporation, if the fin apex angle is too small, the cross-sectional area of the fin portion is reduced even if the meniscus liquid film is formed, the fin efficiency is lowered and heat transfer performance is deteriorated. In the present invention, the lower limit is preferably 10 °. If the fin apex angle becomes too large, the liquid film of the refrigerant liquid tends to be thick and the thermal resistance tends to increase. Therefore, in the present invention, it is desirable to set 30 ° as the upper limit, and it is more preferable to set it to 25 ° or less. desirable.

【0011】本発明においては、溝深さ(H)を従来よ
り深く、すなわちフィン高さを従来より高く形成する。
溝深さ(H)を深くし、フィン高さを大きくすると、溝
の断面積(S)が大きくなって伝熱に関与する面積が増
え、メニスカス液膜も形成し易くなるが、フィンが高過
ぎると、冷媒液の液膜が厚くなり熱抵抗が増加する。ま
た、フィンの先端部には液膜が形成されず、伝熱に寄与
しない乾いている部分が多くなる。フィン高さが小さい
とメニスカス液膜が形成し難くなる。本発明の内面溝付
伝熱管において最も効率的な伝熱性能を達成するために
は、台形溝の溝深さ(山形突起部高さ=フィン高さ)
(H)を、溝深さ(H)と管内径(Di )との比でH/
i =0.04〜0.05、管軸直角断面での各溝の断
面積(S)と溝深さ(H)との比でS/H=0.2〜
0.4となるよう形成するのが好ましい。
In the present invention, the groove depth (H) is made deeper than before, that is, the fin height is made higher than before.
When the groove depth (H) is increased and the fin height is increased, the cross-sectional area (S) of the groove increases and the area involved in heat transfer increases, which facilitates the formation of a meniscus liquid film, but the fin height increases. If it passes, the liquid film of the refrigerant liquid becomes thick and the thermal resistance increases. Further, a liquid film is not formed on the tips of the fins, and there are many dry portions that do not contribute to heat transfer. If the fin height is small, it becomes difficult to form a meniscus liquid film. In order to achieve the most efficient heat transfer performance in the inner grooved heat transfer tube of the present invention, the groove depth of the trapezoidal groove (the height of the chevron protrusion = the fin height)
(H) is the ratio of the groove depth (H) and the pipe inner diameter (D i ) to H /
D i = 0.04 to 0.05, S / H = 0.2 to the ratio of the cross-sectional area (S) of each groove and the groove depth (H) in the cross section perpendicular to the tube axis.
It is preferably formed so as to have a thickness of 0.4.

【0012】本発明の内面溝付伝熱管のさらに他の形状
的特徴は、図2における溝の斜面部6と溝底部7との間
に形成される円弧状部7を特定範囲の曲率半径とするこ
とにある。円弧状部7を設けることにより、フィンの頂
角を小さくしてもフィン部断面積が減少せずフィン効率
も低下しないが、曲率半径(R)が大きくなり過ぎる
と、溝断面積が減少して冷媒液膜が厚くなり熱抵抗が増
加する。本発明においては、溝深さ(H)との比でH/
R=4〜10、さらに好ましくはH/R=5〜10とな
るような曲率半径を有する円弧状部を設けるのが好まし
い。
Still another shape feature of the inner grooved heat transfer tube of the present invention is that the arcuate portion 7 formed between the inclined surface portion 6 and the groove bottom portion 7 of the groove in FIG. To do. By providing the arcuate portion 7, the fin cross-sectional area does not decrease and the fin efficiency does not decrease even if the fin apex angle is reduced, but if the radius of curvature (R) becomes too large, the groove cross-sectional area decreases. As a result, the refrigerant liquid film becomes thicker and the thermal resistance increases. In the present invention, the ratio to the groove depth (H) is H /
It is preferable to provide an arcuate portion having a radius of curvature such that R = 4 to 10, and more preferably H / R = 5 to 10.

【0013】本発明は、とくに小径例えば外径3〜8m
mの内面溝付伝熱管に適用した場合に最も効果的な性能
を達成することができる。内面溝のねじれ角αは10〜
30°の範囲のものが有効である。このような内面溝付
伝熱管の製造方法としては、素材となる銅管が大径、例
えば9.5mm程度の段階で溝付け加工した後、製品寸
法まで空引き抽伸する方式を採用するのが好ましい。こ
の加工方式と、特定の曲率半径を有する円弧状部を設け
るという本発明の形状的特徴との組合わせによって、フ
ィン割れなどの内面欠陥を生じることなくフィン部に材
料が充填され、寸法精度の良好な内面溝付管を製造する
ことができる。
The present invention has a small diameter, for example, an outer diameter of 3 to 8 m.
The most effective performance can be achieved when it is applied to a heat transfer tube with inner groove of m. The twist angle α of the inner surface groove is 10
Those in the range of 30 ° are effective. As a method for manufacturing such an inner grooved heat transfer tube, a method is adopted in which a copper tube as a raw material has a large diameter, for example, is grooved at a stage of about 9.5 mm, and is then drawn to the product size. preferable. By the combination of this processing method and the shape feature of the present invention of providing the arcuate portion having a specific radius of curvature, the fin portion is filled with the material without causing inner surface defects such as fin cracks, and the dimensional accuracy is improved. A good inner grooved tube can be manufactured.

【0014】[0014]

【作用】本発明においては、H/D=0.04〜0.0
5、S/H=0.2〜0.4となるよう溝深さ(フィン
高さ)を大きくし、フィン頂角を10〜30°とし、溝
傾斜部と溝底部の間に、H/R=4〜10を満足する曲
率半径Rを有する円弧状部を形成することにより、メニ
スカス液膜の形成が促進されて管内熱伝達率が向上する
とともに、成形加工上の制約を受けることなしに精度の
優れた内面溝付伝熱管を得ることが可能となる。
In the present invention, H / D = 0.04 to 0.0
5, the groove depth (fin height) is increased so that S / H = 0.2 to 0.4, the fin apex angle is set to 10 to 30 °, and H / By forming the arcuate portion having the curvature radius R satisfying R = 4 to 10, the formation of the meniscus liquid film is promoted, the heat transfer coefficient in the tube is improved, and there is no restriction on the forming process. It is possible to obtain an inner grooved heat transfer tube with excellent accuracy.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。 実施例1 表1、表2に示す諸元の銅製内面溝付伝熱管を製作し、
成形加工性、伝熱性能を調査した。成形加工性は、フィ
ン充填率、フィン割れなどの内面欠陥の発生、溝付き工
具の破損などの観点から総合判断したが、いずれの試験
材においても、従来のもの(試験材J)と比べて、同等
の優れた成形加工性を示した。
Embodiments of the present invention will be described below. Example 1 A heat transfer tube with copper inner groove having the specifications shown in Table 1 and Table 2 was manufactured,
The moldability and heat transfer performance were investigated. Formability was comprehensively judged from the viewpoints of fin filling rate, occurrence of inner surface defects such as fin cracks, breakage of grooved tools, etc., but in any test material, compared with the conventional one (test material J) The same excellent moldability was exhibited.

【0016】[0016]

【表1】 《表注》フィン頂角(γ)およびS/H は軸直角断面で測定した。[Table 1] << Table Note >> Fin apex angle (γ) and S / H were measured on the cross section perpendicular to the axis.

【0017】[0017]

【表2】 [Table 2]

【0018】試験材のうち、A、B、C、Gおよび従来
材のJについて、伝熱性能の測定を行った。伝熱性能の
測定方法は、図4に示す装置を使用して行った。試験部
は長さ4mの水冷向流二重管式熱交換器を用い、供試管が
二重管の中央部に位置するようセットした。外管の内径
は16.00mm で、供試管内にはフロン(R-22)を、環状部に
は水を向流させて熱交換を行わせた。試験条件を表3に
示す。
Among the test materials, the heat transfer performance was measured for A, B, C, G and the conventional material J. The heat transfer performance was measured using the device shown in FIG. The test part used a water-cooled countercurrent double-tube heat exchanger with a length of 4 m, and was set so that the test tube was located at the center of the double tube. The inner diameter of the outer tube was 16.00 mm, and CFC (R-22) was flowed in the test tube and water was allowed to flow countercurrently in the annular section for heat exchange. The test conditions are shown in Table 3.

【0019】[0019]

【表3】 [Table 3]

【0020】測定結果の整理方法は、まず水側より交換
熱量Q(Kcal/h)を下記(1) 式により測定した。 Q=GW ・CP ・|tw1−tw2| ……(1) (1) 式においてGW は水の流量( kg/h) 、CP は水の比
熱(kcal/kg℃) 、tw1は水入口温度( ℃) 、tw2は
水出口温度( ℃) である。
As a method of organizing the measurement results, first, the heat exchange amount Q (Kcal / h) was measured from the water side by the following equation (1). Q = G W · C P · | tw1-tw2 | (1) In equation (1), G W is the flow rate of water (kg / h), C P is the specific heat of water (kcal / kg ° C), and tw1 is Water inlet temperature (° C), tw2 is water outlet temperature (° C).

【0021】つぎに下記(2) 式により熱通過率K(kcal/
m2h ℃) を求めた。 K=Q/(AO ・Δtm) ……(2) (2) 式においてAO は供試管外表面積(m2)、Δtmは対
数平均温度差( ℃) である。
Next, the heat transfer rate K (kcal /
m 2 h ℃) was determined. K = Q / (A O · Δtm) (2) In the formula (2), A O is the outer surface area of the test tube (m 2 ), and Δtm is the logarithmic mean temperature difference (° C.).

【0022】対数平均温度差は下記(3) 式で表される。 なお、(3) 式においてtr1は冷媒の入側圧力基準飽和
蒸気温度( 凝縮温度)(℃) 、tr2は冷媒の出側圧力基
準飽和蒸気温度( 蒸発温度)(℃) である。
The logarithmic average temperature difference is expressed by the following equation (3). In equation (3), tr1 is the refrigerant inlet pressure reference saturated vapor temperature (condensing temperature) (° C), and tr2 is the refrigerant outlet pressure reference saturated vapor temperature (evaporating temperature) (° C).

【0023】つぎに、管外熱伝達率αO kcal/m2 h ℃)
を下記(4) 式によって計算し、管内熱伝達率αi (kcal/
m2h ℃) を下記(5) 式により算出した。 αO =0.023・(λW /De)・Re0.8 ・Pr1/3 ……(4) αi =1/(1/K−1/αO ) ……(5) (4) 式においてλW は水の熱伝導率(kcal/mh℃) 、De
は環状部の水力相当直径(m) で、外管の内径から内管
(供試管)の外径を引いたものとして求められ、Reは
水側のレイノルズ数、Prは水側のプラントル数であ
る。
Next, the heat transfer coefficient outside the tube α O kcal / m 2 h ℃)
Is calculated by the following equation (4), and the heat transfer coefficient α i (kcal /
m 2 h ℃) was calculated by the following equation (5). α O = 0.023 · (λ W / De) · Re 0.8 · Pr 1/3 …… (4) α i = 1 / (1 / K-1 / α O ) …… (5) (4) Equation the thermal conductivity of lambda W is water at (kcal / mh ℃), De
Is the hydraulic equivalent diameter (m) of the annular part, and is calculated as the inner diameter of the outer tube minus the outer diameter of the inner tube (test tube). Re is the Reynolds number on the water side and Pr is the Prandtl number on the water side. is there.

【0024】試験材A、B、CおよびGの蒸発(EV
A)及び凝縮(COND)における管内熱伝達率を、従
来材Jの管内熱伝達率を1として相対比で求め、管内熱
伝達率と、H/Di 、フィン頂角γ、S/H、およびH
/Rとの関係をそれぞれ図5、図6、図7、および図8
に示した。なお、これらの結果は冷媒質量速度250kg/m2
s(流量約30kg/h) の場合の測定結果に基づくものであ
る。
Evaporation of test materials A, B, C and G (EV
A) and the condensing (COND) in-tube heat transfer coefficient are obtained as a relative ratio with the in-tube heat transfer coefficient of the conventional material J being 1, and the in-tube heat transfer coefficient, H / D i , fin apex angle γ, S / H, And H
The relationship with / R is shown in FIG. 5, FIG. 6, FIG. 7, and FIG.
It was shown to. These results show that the mass velocity of the refrigerant is 250 kg / m 2
It is based on the measurement results for s (flow rate about 30 kg / h).

【0025】図5によれば、フィン高さが高くなると熱
伝達率が大きくなり、H/Di の値が0.04〜0.0
5の範囲で最大に達する。フィン頂角と熱伝達率との関
係では、図6に示すように、頂角10〜25°をピーク
とし、頂角30°を越えて増加すると熱伝達性能は低下
する。溝断面積と熱伝達率の関係を示す図7において
は、S/Hが0.2〜0.4、とくに0.3を越え0.
4未満の0.35近傍に熱伝達率のピークが存在する。
また、溝傾斜部と溝底部との間に形成される円弧状部の
曲率半径(R)については、図8に示すように、H/R
が4〜10の範囲、とくに5〜10の範囲で最大の伝熱
性能が得られる。
According to FIG. 5, the heat transfer coefficient increases as the fin height increases, and the value of H / D i becomes 0.04 to 0.0.
It reaches the maximum in the range of 5. With respect to the relationship between the fin apex angle and the heat transfer coefficient, as shown in FIG. 6, the peak angle is 10 to 25 °, and the heat transfer performance deteriorates when the apex angle increases beyond 30 °. In FIG. 7, which shows the relationship between the groove cross-sectional area and the heat transfer coefficient, the S / H is 0.2 to 0.4, particularly 0.3 or more and 0.
There is a peak of heat transfer coefficient near 0.35 which is less than 4.
As for the radius of curvature (R) of the arcuate portion formed between the groove inclined portion and the groove bottom portion, as shown in FIG.
The maximum heat transfer performance is obtained in the range of 4-10, especially in the range of 5-10.

【0026】[0026]

【発明の効果】以上のとおり、本発明によれば、単管で
の管内熱伝達率が、従来のものに比べて、蒸発で9〜1
8%、凝縮で3〜13%向上し、成形加工性にも優れた
内面溝付伝熱管が提供される。
As described above, according to the present invention, the heat transfer coefficient in the tube of a single tube is 9 to 1 by evaporation as compared with the conventional one.
An inner grooved heat transfer tube which is improved by 8% and condensed by 3 to 13% and has excellent moldability is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】内面溝付伝熱管の一部縦断面図である。FIG. 1 is a partial vertical cross-sectional view of a heat transfer tube with an inner groove.

【図2】図1のA−Aに沿う断面の一部拡大図である。FIG. 2 is a partially enlarged view of a cross section taken along the line AA of FIG.

【図3】内面溝付伝熱管の内面溝部における冷媒液膜の
形成状況を示す一部断面図である。
FIG. 3 is a partial cross-sectional view showing the state of formation of a refrigerant liquid film in the inner groove portion of the inner grooved heat transfer tube.

【図4】内面溝付伝熱管の伝熱性能試験装置を示す概略
図である。
FIG. 4 is a schematic view showing a heat transfer performance test device for a heat transfer tube with an inner groove.

【図5】H/Di と熱伝達率との関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between H / D i and heat transfer coefficient.

【図6】フィン頂角(γ)と熱伝達率との関係を示すグ
ラフである。
FIG. 6 is a graph showing the relationship between fin apex angle (γ) and heat transfer coefficient.

【図7】S/Hと熱伝達率との関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between S / H and heat transfer coefficient.

【図8】H/Rと熱伝達率との関係を示すグラフであ
る。
FIG. 8 is a graph showing the relationship between H / R and heat transfer coefficient.

【符号の説明】[Explanation of symbols]

1 内面溝付伝熱管 2 金属管 3 溝 4 山形突条部(フィン) 5 溝底部 6 溝傾斜部(フィン傾斜部) 7 円弧状部 8 液膜 9 メニスカス液膜 α ら旋角 DO 管外径 Di 管内径 H 溝深さ(フィン高さ) S 溝断面積 γ フィン頂角 TF 底肉厚1 Heat Transfer Tube with Inner Surface Groove 2 Metal Tube 3 Groove 4 Angle-Shaped Ridge (Fin) 5 Groove Bottom 6 Groove Inclination (Fin Inclination) 7 Circular Section 8 Liquid Film 9 Meniscus Liquid Film α Rotation Angle D O Outside Tube Diameter D i Pipe inner diameter H Groove depth (fin height) S Groove cross-sectional area γ Fin apex angle T F Bottom wall thickness

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管内面にら旋状の台形溝を有する伝熱管
において、管軸直角断面で台形溝間に頂角10〜30°
の山形突条部が形成され、溝深さ(H)が管内径
(Di ) との比でH/Di =0.04〜0.05、管軸
直角断面での各溝の断面積(S)が溝深さ(H)との比
でS/H=0.2〜0.4に形成され、且つ溝の傾斜部
と溝底間に曲率半径Rの円弧状部が設けられ、該円弧状
部が溝深さとの比でH/R=4〜10に形成されること
を特徴とする内面溝付伝熱管。
1. In a heat transfer tube having a spiral trapezoidal groove on the inner surface of the tube, an apex angle of 10 to 30 ° between the trapezoidal grooves in a cross section perpendicular to the tube axis.
Is formed, and the groove depth (H) is H / D i = 0.04 to 0.05 in the ratio of the pipe inner diameter (D i ) to the pipe inner diameter (D i ), and the cross-sectional area of each groove in the cross section perpendicular to the pipe axis. (S) is formed in a ratio of the groove depth (H) to S / H = 0.2 to 0.4, and an arcuate portion having a radius of curvature R is provided between the inclined portion of the groove and the groove bottom. An inner grooved heat transfer tube, wherein the arcuate portion is formed to have a ratio of H / R = 4 to 10 with a groove depth.
JP6202728A 1994-08-04 1994-08-04 Heat transfer tube with internal groove Expired - Fee Related JP2912826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6202728A JP2912826B2 (en) 1994-08-04 1994-08-04 Heat transfer tube with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6202728A JP2912826B2 (en) 1994-08-04 1994-08-04 Heat transfer tube with internal groove

Publications (2)

Publication Number Publication Date
JPH0849992A true JPH0849992A (en) 1996-02-20
JP2912826B2 JP2912826B2 (en) 1999-06-28

Family

ID=16462184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6202728A Expired - Fee Related JP2912826B2 (en) 1994-08-04 1994-08-04 Heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JP2912826B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048043B2 (en) * 2002-03-12 2006-05-23 Trefimetaux Reversible grooved tubes for heat exchangers
WO2006059544A1 (en) * 2004-12-02 2006-06-08 Sumitomo Light Metal Industries, Ltd. Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
WO2009028901A3 (en) * 2007-08-31 2009-05-14 Lg Electronics Inc Heat exchanger and air conditioner having the same and manufacturing process of the same
JP2010096372A (en) * 2008-10-15 2010-04-30 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
JP2010185610A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Heat exchanger and heat transfer tube

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971084U (en) * 1982-10-29 1984-05-14 株式会社神戸製鋼所 Heat exchanger tube with inner groove
JPS60142195A (en) * 1983-12-28 1985-07-27 Hitachi Cable Ltd Heat transfer tube equipped with groove on internal surface thereof
JPS62142995A (en) * 1985-12-17 1987-06-26 Hitachi Cable Ltd Heat transfer pipe with inner surface spiral groove
JPH0421117A (en) * 1990-05-16 1992-01-24 Matsushita Electric Ind Co Ltd Dial type input device
JPH04260793A (en) * 1991-02-13 1992-09-16 Furukawa Electric Co Ltd:The Heat transfer tube with inner surface groove
JPH04327792A (en) * 1991-04-25 1992-11-17 Sumitomo Light Metal Ind Ltd Copper tube with internal groove
JPH05141890A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Heat transfer tube with inner surface groove
JPH06201286A (en) * 1992-10-02 1994-07-19 Carrier Corp Heat transfer pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971084U (en) * 1982-10-29 1984-05-14 株式会社神戸製鋼所 Heat exchanger tube with inner groove
JPS60142195A (en) * 1983-12-28 1985-07-27 Hitachi Cable Ltd Heat transfer tube equipped with groove on internal surface thereof
JPS62142995A (en) * 1985-12-17 1987-06-26 Hitachi Cable Ltd Heat transfer pipe with inner surface spiral groove
JPH0421117A (en) * 1990-05-16 1992-01-24 Matsushita Electric Ind Co Ltd Dial type input device
JPH04260793A (en) * 1991-02-13 1992-09-16 Furukawa Electric Co Ltd:The Heat transfer tube with inner surface groove
JPH04327792A (en) * 1991-04-25 1992-11-17 Sumitomo Light Metal Ind Ltd Copper tube with internal groove
JPH05141890A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Heat transfer tube with inner surface groove
JPH06201286A (en) * 1992-10-02 1994-07-19 Carrier Corp Heat transfer pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048043B2 (en) * 2002-03-12 2006-05-23 Trefimetaux Reversible grooved tubes for heat exchangers
WO2006059544A1 (en) * 2004-12-02 2006-06-08 Sumitomo Light Metal Industries, Ltd. Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
JP2006162100A (en) * 2004-12-02 2006-06-22 Sumitomo Light Metal Ind Ltd Heat transfer tube with inner helical groove for high pressure refrigerant
US7490658B2 (en) 2004-12-02 2009-02-17 Sumitomo Light Metal Industries, Ltd. Internally grooved heat transfer tube for high-pressure refrigerant
KR100918216B1 (en) * 2004-12-02 2009-09-21 스미토모 게이 긴조쿠 고교 가부시키가이샤 Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
JP4651366B2 (en) * 2004-12-02 2011-03-16 住友軽金属工業株式会社 Internal grooved heat transfer tube for high-pressure refrigerant
WO2009028901A3 (en) * 2007-08-31 2009-05-14 Lg Electronics Inc Heat exchanger and air conditioner having the same and manufacturing process of the same
JP2010096372A (en) * 2008-10-15 2010-04-30 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
JP2010185610A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Heat exchanger and heat transfer tube

Also Published As

Publication number Publication date
JP2912826B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
KR100300237B1 (en) Grooved tubes and heat exchangers for heat exchangers of chillers and freezers
JPH0421117B2 (en)
US5832995A (en) Heat transfer tube
JP4119836B2 (en) Internal grooved heat transfer tube
JPH0849992A (en) Heat transfer tube with internal groove
JP3219811B2 (en) Heat transfer tube with internal groove
JP5006155B2 (en) Heat transfer tube
JPH04260793A (en) Heat transfer tube with inner surface groove
JPH085278A (en) Heat transfer tube with inner surface grooves
JPH0579783A (en) Heat transfer tube with inner surface groove
JPH08233480A (en) Heat transfer tube with inner surface groove
JP4119765B2 (en) Internal grooved heat transfer tube
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP3415013B2 (en) Heat transfer tube for condenser
JPS6225959B2 (en)
JP3286171B2 (en) Heat transfer tube with internal groove
JPH0712483A (en) Heat transfer tube with inner surface groove
JP3417825B2 (en) Inner grooved pipe
JP3199621B2 (en) Heat transfer tube with internal groove using mixed refrigerant
JPH04260792A (en) Small-diameter heat transfer tube
JPH08327272A (en) Heat transfer tube and manufacture thereof
JPH051891A (en) Heat transfer tube with internal groove
JP2001033185A (en) Heat conductive pipe provided with inside groove, and its design method
JPH11108579A (en) Pipe with grooved inner face
JPH08105699A (en) Heat transfer tube with inside grooves

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees