JPH04321560A - Production of isotropic graphite material having high strength - Google Patents

Production of isotropic graphite material having high strength

Info

Publication number
JPH04321560A
JPH04321560A JP3113999A JP11399991A JPH04321560A JP H04321560 A JPH04321560 A JP H04321560A JP 3113999 A JP3113999 A JP 3113999A JP 11399991 A JP11399991 A JP 11399991A JP H04321560 A JPH04321560 A JP H04321560A
Authority
JP
Japan
Prior art keywords
fine powder
strength
kneading
graphite
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3113999A
Other languages
Japanese (ja)
Other versions
JP2652909B2 (en
Inventor
Sakae Ikegami
池上 栄
Kenji Nakajima
健志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3113999A priority Critical patent/JP2652909B2/en
Publication of JPH04321560A publication Critical patent/JPH04321560A/en
Application granted granted Critical
Publication of JP2652909B2 publication Critical patent/JP2652909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an isotropic high-strength graphite material having desired flexural strength by kneading fine powder of carbonaceous material having prescribed average particle diameter and fine powder of graphite together with a binder in nitrogen gas, baking and carbonizing the mixture and graphitizing the product. CONSTITUTION:The objective isotropic high-strength graphite material having a flexural strength of >=1,000kg/cm<2> can be produced by mixing 85-95 pts.wt. of fine powder of a carbonaceous substance having an average particle diameter of 1-3mum with fine powder of graphite produced by graphitizing the above carbonaceous fine powder at >=2500 deg.C to obtain 100 pts.wt. of a mixture, adding 96-110 pts.wt. of a binder composed of coal tar pitch, petroleum pitch, etc., to the obtained mixed filler, charging the mixture into a kneader having a closed structure, kneading with the kneader under a pressure of 0.5kgf/cm<2> while introducing nitrogen gas into the system at a rate of about 50l/min, crushing the kneaded product, filling the obtained forming powder into a rubber press, forming under pressure, baking and carbonizing at about 1000 deg.C in a non-oxidizing atmosphere, transferring to a graphitizing furnace and finally graphitizing at >=2500 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、抗折力が1000kg
/cm2以上の組織強度を備える等方性高強度黒鉛材料
の製造方法に関する。
[Industrial Application Field] The present invention has a transverse rupture strength of 1000 kg.
The present invention relates to a method for producing an isotropic high-strength graphite material having a structural strength of /cm2 or more.

【0002】0002

【従来の技術】等方性黒鉛材は、組織に異方性がないう
えに優れた緻密性を具備しているため原子炉用構造材、
放電加工用電極、半導体単結晶引上げ用の坩堝およびヒ
ーター等の構成材料として有用されている。
[Prior Art] Isotropic graphite material has no anisotropy in its structure and has excellent density, so it is used as a structural material for nuclear reactors.
It is useful as a constituent material for electrodes for electrical discharge machining, crucibles for pulling semiconductor single crystals, heaters, etc.

【0003】従来、等方性黒鉛材料の製造は、微粉末状
の炭素質フィラーと結合剤の捏合物を粉砕した二次粒子
あるいは異方性の小さな生コークス微粉末を成形原料と
し、これをラバープレス (冷間静水圧プレス:CIP
)で成形したのち焼成、黒鉛化する方法でおこなわれて
いる(特開昭56−14409号公報、同59−182
213号公報、同61−295216号公報、同62−
162612号公報、特公平1−16789 号公報等
) 。しかしながら、これら従来技術によって製造され
る等方性黒鉛材の強度は最高でも抗折力として650k
g/cm2 が限度であり、これ以上の組織強度は得ら
れていない。
Conventionally, isotropic graphite materials have been manufactured using secondary particles obtained by pulverizing a mixture of a finely powdered carbonaceous filler and a binder, or fine raw coke powder with small anisotropy, as a forming raw material. Rubber press (cold isostatic press: CIP
), followed by firing and graphitization (JP-A-56-14409, JP-A-59-182).
No. 213, No. 61-295216, No. 62-
162612, Japanese Patent Publication No. 1-16789, etc.). However, the strength of the isotropic graphite materials manufactured by these conventional techniques is at most 650 k as a transverse rupture force.
g/cm2 is the limit, and higher tissue strength has not been obtained.

【0004】0004

【発明が解決しようとする課題】近時、精密放電加工用
の電極、ICパッケージ製造用の治具、自動車エンジン
用のピストン部材などには抗折力1000kg/cm2
を越す高強度特性の等方性黒鉛材が要求されており、従
来の製造技術によっては対応できない状況にある。
[Problems to be Solved by the Invention] Recently, electrodes for precision electrical discharge machining, jigs for manufacturing IC packages, piston members for automobile engines, etc. have a transverse rupture force of 1000 kg/cm2.
There is a need for isotropic graphite materials with high strength properties exceeding 100%, which cannot be met using conventional manufacturing techniques.

【0005】本発明者らは等方性黒鉛材料に高強度組織
を付与するためには、微粒子状のフィラー表面を結合剤
で均一に濡らすことにより強固な結合状態を確保すると
ともに、焼成過程で材料のクラック発生を抑制するため
の原料組成と捏合条件が重要であることに着目し、鋭意
研究を重ねた結果本発明の開発に至ったものである。
In order to impart a high-strength structure to an isotropic graphite material, the present inventors ensured a strong bond by uniformly wetting the surface of the fine particle filler with a binder, and also Focusing on the importance of raw material composition and kneading conditions for suppressing the occurrence of cracks in materials, the present invention was developed as a result of extensive research.

【0006】本発明の目的は抗折力が1000kg/c
m2を越える組織強度の等方性高強度黒鉛材料を効率よ
く生産するための工業的製造方法を提供することにある
[0006] The object of the present invention is to have a transverse rupture strength of 1000 kg/c.
The object of the present invention is to provide an industrial manufacturing method for efficiently producing an isotropic high-strength graphite material with a structural strength exceeding m2.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による等方性高強度黒鉛材料の製造方法は、
平均粒子径1〜3μm の炭素質微粉末85〜95重量
部に対し前記炭素質微粉末を2500℃以上で黒鉛化処
理した黒鉛微粉末を合計配合量が 100重量部になる
比率で混合し、該混合フィラーを90〜110 重量部
の結合剤とともに密閉機構の捏合機に投入して系内に窒
素ガスを吹き込みながら捏合処理を施し、ついで捏合物
を粉砕した成形粉末をラバープレスで成形したのち焼成
炭化および黒鉛化することを構成上の特徴とする。
[Means for Solving the Problems] A method for producing an isotropic high-strength graphite material according to the present invention to achieve the above object is as follows:
85 to 95 parts by weight of carbonaceous fine powder with an average particle diameter of 1 to 3 μm is mixed with graphite fine powder obtained by graphitizing the carbonaceous fine powder at 2500° C. or higher in a ratio such that the total blending amount is 100 parts by weight, The mixed filler was put into a kneading machine with a closed mechanism along with 90 to 110 parts by weight of a binder, and kneaded while blowing nitrogen gas into the system.Then, the kneaded product was crushed into a molded powder, which was then molded with a rubber press. The structural feature is that it undergoes calcination carbonization and graphitization.

【0008】本発明を特徴づける第1の要点は、原料系
の組成を平均粒子径1〜3μm の炭素質微粉末と該炭
素質微粉末を2500℃以上の温度域で黒鉛化処理して
得られる黒鉛微粉末とを混合して原料フィラーとするこ
とである。出発原料となる炭素質粉末としては、石油コ
ークス、ピッチコークス、カーボンブラックなどが単独
もしくは混合して用いられるが、平均粒子径が1〜3μ
m の範囲になるように微粉砕して使用に供する。平均
粒子径が1μm 未満になると工業的な微粉砕化が困難
となり、3μm を越えると組織の緻密性が減退して目
的とする高強度特性が得られなくなる。
The first point that characterizes the present invention is that the composition of the raw material system is a carbonaceous fine powder with an average particle size of 1 to 3 μm and a carbonaceous fine powder obtained by graphitizing the carbonaceous fine powder in a temperature range of 2500°C or higher. It is used as a raw material filler by mixing with fine graphite powder. Petroleum coke, pitch coke, carbon black, etc. are used alone or in combination as the carbonaceous powder that serves as the starting material, but the average particle size is 1 to 3 μm.
It is used after being pulverized to a particle size within the range of m. If the average particle diameter is less than 1 μm, industrial pulverization becomes difficult, and if it exceeds 3 μm, the denseness of the structure decreases and the desired high strength properties cannot be obtained.

【0009】黒鉛微粉末の併用は、成形体組織の熱伝導
度を向上させて焼成時のクラック防止を図るためにおこ
なわれるが、黒鉛微粉末は結合剤との結合力を弱化させ
るため多量の配合は逆効果となる。また、黒鉛微粉末の
配合が少な過ぎると焼成時にクラックや割れの発生を招
く。したがって、黒鉛微粉末の配合割合は炭素質微粉末
85〜95重量部に対して合計配合量が 100重量部
になる比率、すなわち黒鉛微粉末の量として5〜15重
量部の範囲に設定する。最も好適な配合比率は炭素質微
粉末と黒鉛微粉末を90:10の重量比に定めることで
、この組成において最高の組織強度が得られる。
The combined use of fine graphite powder is carried out in order to improve the thermal conductivity of the structure of the compact and prevent cracks during firing, but since fine graphite powder weakens the bonding force with the binder, a large amount of fine graphite powder is used. Combining them will have the opposite effect. Furthermore, if the blend of fine graphite powder is too small, cracks and cracks may occur during firing. Therefore, the blending ratio of the fine graphite powder is set such that the total blending amount is 100 parts by weight to 85 to 95 parts by weight of the carbonaceous fine powder, that is, the amount of the fine graphite powder is set in the range of 5 to 15 parts by weight. The most suitable blending ratio is to set the carbonaceous fine powder to the graphite fine powder at a weight ratio of 90:10, whereby the highest structural strength can be obtained with this composition.

【0010】上記の原料微粉末を混合したフィラーには
、コールタールピッチ、石油ピッチ等からなる結合剤が
添加される。結合剤の添加量は、混合フィラー100重
量部に対し90〜110 重量部の範囲に設定する。こ
の添加量が90重量部を下廻るとフィラー表面が十分均
一に濡れず、また110 重量部を上廻ると焼成段階で
組織に亀裂や膨れ現象が発生する。
[0010] A binder made of coal tar pitch, petroleum pitch, etc. is added to the filler mixed with the above-mentioned raw material fine powder. The amount of the binder added is set in the range of 90 to 110 parts by weight per 100 parts by weight of the mixed filler. If the amount added is less than 90 parts by weight, the surface of the filler will not be sufficiently uniformly wetted, and if it exceeds 110 parts by weight, cracks or swelling will occur in the structure during the firing stage.

【0011】本発明の第2の要点は、混合フィラーを結
合剤とともに密閉捏合機に投入して系内に窒素ガスを吹
き込みながら捏合を進行させる捏合処理条件にある。密
閉機構の捏合機としては、例えば内部に双腕型、スクリ
ュー型等のニーダー装置を備えた加圧密閉蓋付きの構造
で、ガス送入管と排気管とを付設した型式のものが使用
される。捏合過程で系内に窒素ガスを吹き込むのは、酸
素の関与を防ぎながら結合剤中の低沸点成分や重縮合反
応に伴う揮発分を系外に除去する目的でなされるもので
、送入される窒素ガス量は50 l/min. 程度と
することが好ましい。
The second point of the present invention lies in the kneading treatment conditions in which the mixed filler is put into a closed kneader together with a binder and the kneading proceeds while blowing nitrogen gas into the system. As a kneading machine with a closed mechanism, for example, one is used that has a structure with a pressure-tight lid that is equipped with a double-arm type or screw type kneader device inside, and is equipped with a gas supply pipe and an exhaust pipe. Ru. The purpose of blowing nitrogen gas into the system during the kneading process is to remove low-boiling components in the binder and volatile components from the polycondensation reaction from the system while preventing the involvement of oxygen. The amount of nitrogen gas used is 50 l/min. It is preferable to set it as approximately.

【0012】捏合工程は必ずしも加圧下でおこなう必要
はないが、より強力な混練化による強固な結合状態を現
出するためには捏合機の系内を少なくとも0.5kgf
/cm2、好適には1〜2kgf/cm2 の加圧状態
に保持しながら捏合処理することが効果的で、この条件
を適用することにより組織強度の向上がもたらされる。
[0012] The kneading process does not necessarily have to be carried out under pressure, but in order to achieve a strong bond due to stronger kneading, the pressure inside the kneading machine should be at least 0.5 kgf.
It is effective to perform the kneading process while maintaining a pressurized state of 1 to 2 kgf/cm2, preferably 1 to 2 kgf/cm2, and by applying this condition, the tissue strength is improved.

【0013】上記の条件で捏合処理された捏合物は、つ
いで粉砕して成形粉末とし、成形用ラバーケースに充填
して冷間静水圧プレスにより成形したのち、常法により
非酸化性雰囲気下の焼成炉で約1000℃で焼成炭化し
、更に黒鉛化炉に移して2500℃以上の温度域で黒鉛
化処理を施して等方性黒鉛材料を得る。
The mixture kneaded under the above conditions is then crushed into a molded powder, filled into a molding rubber case and molded by cold isostatic pressing, and then molded in a non-oxidizing atmosphere by a conventional method. It is fired and carbonized in a firing furnace at about 1000°C, and then transferred to a graphitization furnace and graphitized at a temperature of 2500°C or higher to obtain an isotropic graphite material.

【0014】[0014]

【作用】本発明の構成で第1の要点となる原料組成の特
定化は、主に焼成段階で成形体にクラックが発生する事
態を防止して安定に高強度の組織を形成させるための機
能要件となる。すなわち、一般に結合剤を多量に含む成
形体を焼成するにあたっては、極めて緩徐な昇温速度(
5℃/hr.以下) で炉温を上げる必要があるるが、
通常の焼成炉は外部加熱構造である関係で成形体の内外
温度に差が生じ、この温度差がクラック発生の要因とな
る。 このため、成形体を構成する原料フィラーが熱伝導性の
小さい炭素質だけである場合には、焼成過程でのクラッ
ク発生が生じ易い。本発明によれば同一炭素質微粉末を
黒鉛化した熱伝導性の良好な黒鉛微粉末を結合剤との濡
れ性が損なわれない範囲で炭素質微粉末と併用している
ため、焼成時における成形体の内外温度差が軽減され、
この作用によって組織クラックの発生は効果的の防止さ
れる。
[Operation] The specification of the raw material composition, which is the first key point in the structure of the present invention, is mainly a function of preventing cracks from occurring in the compact during the firing stage and stably forming a high-strength structure. It becomes a requirement. In other words, when firing a compact containing a large amount of binder, an extremely slow temperature increase rate (
5℃/hr. (below), it is necessary to raise the furnace temperature,
Since a normal firing furnace has an external heating structure, there is a difference in temperature between the inside and outside of the molded body, and this temperature difference becomes a factor in the occurrence of cracks. For this reason, if the raw material filler constituting the molded body is only carbonaceous material with low thermal conductivity, cracks are likely to occur during the firing process. According to the present invention, graphite fine powder with good thermal conductivity, which is obtained by graphitizing the same carbonaceous fine powder, is used in combination with carbonaceous fine powder to the extent that the wettability with the binder is not impaired. The temperature difference between the inside and outside of the molded body is reduced,
This action effectively prevents the occurrence of tissue cracks.

【0015】第2の要点となる窒素ガス吹き込みの捏合
条件は、捏合段階で結合剤の重縮合反応に関与する酸素
および結合剤中の結合に関与しない低沸点成分を積極的
に系外に排除することにより、混合フィラー表面に対す
る結合剤の均一な濡れを促進させ、併せて焼成時のクラ
ック発生を防止するために機能する要件となる。例えば
特公平1−16789 号の発明では、捏合機の蓋を開
放し強制的にガス抜きをおこなってクラックの発生を防
止する方法がとられている。この機構は、捏合物と接触
する空気中の酸素でピッチ成分の重縮合反応を促進させ
ることを利用するものとみられるが、このようにして処
理される捏合物は成形後の焼成時にクラックが発生し易
い組織となる。このため、組織クラックが発生しない程
度までガス抜き処理により結合成分を減少させる必要が
生じ、結果的に抗折力1000kg/cm2を越えるよ
うな高強度組織の等方性黒鉛材を得ることができなくな
るものと考えられる。本発明によれば、密閉機構の捏合
機を用い系内に窒素ガスを吹き込むことで酸素の反応関
与が阻止され、同時に結合剤中の不要な成分のみが円滑
に系外に除去されるから、クラック発生の要因となる結
合不足を伴うことなしに捏合の完全化が図られる。
[0015] The second important kneading condition for nitrogen gas blowing is to actively exclude oxygen involved in the polycondensation reaction of the binder and low-boiling components in the binder that do not participate in bonding from the system during the kneading step. This is a requirement that promotes uniform wetting of the binder onto the surface of the mixed filler and also functions to prevent the occurrence of cracks during firing. For example, in the invention of Japanese Patent Publication No. 1-16789, a method is adopted in which the lid of the kneading machine is opened and gas is forcibly vented to prevent the occurrence of cracks. This mechanism seems to utilize the fact that oxygen in the air that comes into contact with the kneaded material accelerates the polycondensation reaction of the pitch component, but the kneaded material processed in this way cracks during baking after shaping. Become an easy-to-understand organization. Therefore, it is necessary to reduce the bonded components by degassing to the extent that structural cracks do not occur, and as a result, it is not possible to obtain an isotropic graphite material with a high-strength structure with a transverse rupture strength exceeding 1000 kg/cm2. It is thought that it will disappear. According to the present invention, oxygen is prevented from participating in the reaction by blowing nitrogen gas into the system using a kneading machine with a closed mechanism, and at the same time only unnecessary components in the binder are smoothly removed from the system. Complete kneading can be achieved without insufficient bonding, which causes cracks.

【0016】なお、上記の結合剤による濡れの促進改善
は、捏合機の系内を少なくとも0.5kg/cm2 の
加圧状態に保持することにより一層向上し、得られる等
方性黒鉛の組織強度が増大する。上記の機能が総合的に
作用して、抗折力が1000kg/cm2を越える強度
性能とクラックや割れ等の組織欠陥のない優れた性状の
等方性高強度黒鉛材料を効率よく製造することが可能と
なる。
[0016] The promotion of wetting by the binder described above can be further improved by maintaining the inside of the kneading machine under a pressurized state of at least 0.5 kg/cm2, and the structural strength of the isotropic graphite obtained can be improved. increases. The above functions work together to efficiently produce an isotropic high-strength graphite material with a transverse rupture strength of over 1000 kg/cm2 and excellent properties free from structural defects such as cracks and fractures. It becomes possible.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
[Examples] Examples of the present invention will be explained below in comparison with comparative examples.

【0018】実施例1〜5、比較例1〜10石油コーク
スを平均粒子径1〜2μm に粉砕分級した炭素質微粉
末と該炭素質微粉末を2800℃の温度で黒鉛化処理し
た黒鉛微粉末を配合比率を変えて混合した。この混合フ
ィラーに結合剤として 100重量部のコールタールピ
ッチを加えて密閉機構の捏合機に投入した。捏合操作は
、温度を 250℃とし、系内に窒素ガスを50 l/
min. の流速で吹き込む場合と蓋を開放して空気を
接触させた場合の雰囲気条件、系内を加圧した場合と加
圧しない場合の加圧条件に各設定して実施した。
Examples 1 to 5, Comparative Examples 1 to 10 Carbonaceous fine powder obtained by crushing and classifying petroleum coke to an average particle size of 1 to 2 μm, and graphite fine powder obtained by graphitizing the carbonaceous fine powder at a temperature of 2800°C. were mixed at different mixing ratios. 100 parts by weight of coal tar pitch was added as a binder to this mixed filler, and the mixture was charged into a kneading machine with a closed mechanism. The kneading operation was carried out at a temperature of 250°C and with 50 liters of nitrogen gas in the system.
min. The experiments were carried out by setting the atmospheric conditions when blowing at a flow rate of 1, when the lid was opened and making air contact, and the pressurizing conditions when the inside of the system was pressurized and when the system was not pressurized.

【0019】設定した各捏合条件および捏合終了時に測
定した揮発分量を対比して、表1に示した。
Table 1 shows a comparison of the set kneading conditions and the volatile content measured at the end of kneading.

【0020】[0020]

【表1】[Table 1]

【0021】ついで、捏合物を平均粒子径5〜10μm
 に粉砕して成形粉末とし、これをラバーケースに充填
して冷間静水圧プレスに装入したのち、1000kg/
cm2の静水圧により等方的に加圧して幅300mm 
、長さ500mm 、厚さ110mm の成形体を得た
。この成形体を焼成炉に入れ、5℃/hr.の昇温速度
で約1000℃まで焼成炭化し、更に黒鉛化炉に移して
昇温速度20℃/hr.で3000℃まで熱処理して黒
鉛化した。このようにして製造された各等方性黒鉛材料
の物理特性と焼成後のピース得率 (製品合格率) を
実施例、比較例Noと対比させて表2に示した。
[0021] Next, the kneaded material has an average particle size of 5 to 10 μm.
This was crushed into a molded powder, filled into a rubber case, and loaded into a cold isostatic press.
Isotropically pressurized with cm2 of hydrostatic pressure to a width of 300 mm
A molded body having a length of 500 mm and a thickness of 110 mm was obtained. This molded body was placed in a firing furnace and heated at 5°C/hr. The temperature was increased to approximately 1000°C for carbonization, and then transferred to a graphitization furnace at a heating rate of 20°C/hr. It was heat-treated to 3000°C to graphitize it. Table 2 shows the physical properties of each of the isotropic graphite materials produced in this way and the piece yield rate after firing (product acceptance rate) in comparison with Example and Comparative Example No.

【0022】[0022]

【表2】[Table 2]

【0023】表2の結果から、本発明の原料組成および
捏合条件を満たす実施例は抗折力がいずれも1000k
g/cm2を越える組織強度を示し、焼成後の材質にも
クラックや割れ等の欠陥が少なく85%以上のピース得
率が得られた。これに対し本発明の要件を外れる各比較
例では抗折力がいずれも850kg/cm2 未満で1
部を除き組織のクラックや割れ現象も多く認められた。
From the results in Table 2, it can be seen that the transverse rupture strength of all Examples satisfying the raw material composition and kneading conditions of the present invention was 1000k.
It exhibited a structural strength exceeding g/cm2, and the material after firing had few defects such as cracks and fractures, and a piece yield of 85% or more was obtained. On the other hand, in each comparative example that does not meet the requirements of the present invention, the transverse rupture strength was less than 850 kg/cm2 and 1
Many cracks and fractures were observed in the structure except for the parts.

【0024】[0024]

【発明の効果】以上のとおり、本発明によれば原料組成
と捏合操作につき適性な条件範囲を選定することにより
抗折力が1000kg/cm2以上の組織強度を備えた
材質性状の良好な等方性高強度黒鉛材料を生産性よく製
造することができる。したがって、特に高強度特性が要
求される精密放電加工用電極、ICパッケージ製造用治
具、自動車エンジンのピストン部材などの用途に対して
有用である。
As described above, according to the present invention, by selecting an appropriate range of conditions for the raw material composition and kneading operation, an isotropic material with good structural properties and a transverse rupture strength of 1000 kg/cm2 or more can be obtained. It is possible to manufacture high-strength graphite material with high productivity. Therefore, it is particularly useful for applications such as precision electrical discharge machining electrodes, IC package manufacturing jigs, and automobile engine piston members that require high strength characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  平均粒子径1〜3μm の炭素質微粉
末85〜95重量部に対し前記炭素質微粉末を2500
℃以上で黒鉛化処理した黒鉛微粉末を合計配合量が 1
00重量部になる比率で混合し、該混合フィラーを90
〜110 重量部の結合剤とともに密閉機構の捏合機に
投入して系内に窒素ガスを吹き込みながら捏合処理を施
し、ついで捏合物を粉砕した成形粉末をラバープレスで
成形したのち焼成炭化および黒鉛化することを特徴とす
る等方性高強度黒鉛材料の製造方法。
Claim 1: 2500 parts by weight of the carbonaceous fine powder per 85 to 95 parts by weight of carbonaceous fine powder having an average particle diameter of 1 to 3 μm.
The total amount of graphite fine powder graphitized at temperatures above ℃ is 1.
00 parts by weight, and the mixed filler was mixed at a ratio of 90 parts by weight.
The mixture was put into a kneading machine with a closed mechanism together with ~110 parts by weight of a binder, and kneaded while blowing nitrogen gas into the system.The kneaded product was then crushed into a molded powder, which was then molded using a rubber press, followed by firing, carbonization, and graphitization. A method for producing an isotropic high-strength graphite material.
【請求項2】  捏合機の系内を少なくとも0.5kg
f/cm2の加圧状態に保持しながら捏合処理を施す請
求項1記載の等方性高強度黒鉛材料の製造方法。
[Claim 2] At least 0.5 kg is contained in the system of the kneading machine.
2. The method for producing an isotropic high-strength graphite material according to claim 1, wherein the kneading treatment is performed while maintaining a pressurized state of f/cm2.
JP3113999A 1991-04-18 1991-04-18 Method for producing isotropic high-strength graphite material Expired - Lifetime JP2652909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113999A JP2652909B2 (en) 1991-04-18 1991-04-18 Method for producing isotropic high-strength graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113999A JP2652909B2 (en) 1991-04-18 1991-04-18 Method for producing isotropic high-strength graphite material

Publications (2)

Publication Number Publication Date
JPH04321560A true JPH04321560A (en) 1992-11-11
JP2652909B2 JP2652909B2 (en) 1997-09-10

Family

ID=14626530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113999A Expired - Lifetime JP2652909B2 (en) 1991-04-18 1991-04-18 Method for producing isotropic high-strength graphite material

Country Status (1)

Country Link
JP (1) JP2652909B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4437558A1 (en) * 1993-10-22 1995-04-27 Tokai Carbon Kk Process for the production of high-strength isotropic graphite and of piston components for Otto engines which are made of high-strength isotropic graphite
EP1390167A1 (en) * 2001-05-15 2004-02-25 Santoku America, Inc. Castings of alloys with isotropic graphite molds
CN113603486A (en) * 2021-08-24 2021-11-05 郑州丰毅新材料科技有限公司 High-strength special graphite and preparation process thereof
CN114634361A (en) * 2022-03-02 2022-06-17 五星新材科技有限公司 Preparation method of isotropic isostatic pressing graphite with fine structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4437558A1 (en) * 1993-10-22 1995-04-27 Tokai Carbon Kk Process for the production of high-strength isotropic graphite and of piston components for Otto engines which are made of high-strength isotropic graphite
FR2711644A1 (en) * 1993-10-22 1995-05-05 Tokai Carbon Cy Ltd A method of manufacturing a high strength isotropic graphite and piston component thus obtained.
DE4437558C2 (en) * 1993-10-22 1997-02-13 Tokai Carbon Kk Process for producing a high-strength isotropic graphite molded body and piston component for gasoline engines, consisting of high-strength isotropic graphite
EP1390167A1 (en) * 2001-05-15 2004-02-25 Santoku America, Inc. Castings of alloys with isotropic graphite molds
EP1390167A4 (en) * 2001-05-15 2006-01-11 Santoku Corp Castings of alloys with isotropic graphite molds
CN113603486A (en) * 2021-08-24 2021-11-05 郑州丰毅新材料科技有限公司 High-strength special graphite and preparation process thereof
CN114634361A (en) * 2022-03-02 2022-06-17 五星新材科技有限公司 Preparation method of isotropic isostatic pressing graphite with fine structure

Also Published As

Publication number Publication date
JP2652909B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US2938807A (en) Method of making refractory bodies
JP4734674B2 (en) Low CTE isotropic graphite
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
CN112521172A (en) Composite carbon material for in-situ growth of carbon fibers and preparation method and application thereof
JP3765840B2 (en) Carbon material manufacturing method
JPH04321560A (en) Production of isotropic graphite material having high strength
JP4311777B2 (en) Method for producing graphite material
CN113213936B (en) Preparation method of ceramic powder doped modified self-sintered graphite composite material
JPH07165467A (en) Production of isotropic graphite material
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPS6152106B2 (en)
JPH0259468A (en) Production of isotropic graphite material modified to have high specific resistance
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JPS632913B2 (en)
JP2910002B2 (en) Special carbon material kneading method
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JPH0132162B2 (en)
JP3899402B2 (en) Method for producing diamond-titanium carbide composite sintered body
KR101601400B1 (en) A method of producing graphite material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS6126514B2 (en)
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP3094502B2 (en) Manufacturing method of carbon material
CN115626641A (en) Preparation method of onion carbon fine particle isostatic pressing graphite