JPH04306563A - Manufacture of unit cell for solid electrolyte type fuel cell - Google Patents

Manufacture of unit cell for solid electrolyte type fuel cell

Info

Publication number
JPH04306563A
JPH04306563A JP3070011A JP7001191A JPH04306563A JP H04306563 A JPH04306563 A JP H04306563A JP 3070011 A JP3070011 A JP 3070011A JP 7001191 A JP7001191 A JP 7001191A JP H04306563 A JPH04306563 A JP H04306563A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
membrane
electrolyte membrane
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3070011A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Morimoto
清幸 森本
Masateru Shimozu
下津 正輝
Takaaki Makino
槇野 隆章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAKUYO KIKI KAIHATSU KYOKAI, Mitsui Engineering and Shipbuilding Co Ltd filed Critical NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Priority to JP3070011A priority Critical patent/JPH04306563A/en
Publication of JPH04306563A publication Critical patent/JPH04306563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve mechanical strength in a solid electrolyte type fuel cell as a whole by maintaining strength of respective members effectively even if comparatively thick electrode films are laminated on solid electrolyte films. CONSTITUTION:A grid shape masking material is loaded on the surface of a solid electrolyte film 1, and slurry as an electrode material is sprayed from above by means of a spray method, and after plural number of electrode films, which are discontinuous and whose central parts are 100-300mum and whose peripheral parts become thin successively, are adhered, it is baked at 1200-1600 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体電解質型燃料電池
の単電池製造方法に係り、特に単電池全体としての機械
的強度を向上させた固体電解質型燃料電池の単電池製造
方法に関するものである。
[Field of Industrial Application] The present invention relates to a method for manufacturing a solid oxide fuel cell, and more particularly to a method for manufacturing a solid oxide fuel cell that improves the mechanical strength of the entire cell. be.

【0002】0002

【従来の技術】低公害のエネルギー源として注目を集め
ている燃料電池の中で、特に電解質の漏洩のおそれがな
く、反応速度が大きいとして期待されているのが固体電
解質型燃料電池である。このような固体電解質型燃料電
池は、電池の最小単位である単電池を多数積層し、これ
を電気的に直列または並列に連結して構成されており、
各単電池は、固体電解質膜に酸素極膜および燃料極膜を
積層して構成される。
BACKGROUND OF THE INVENTION Among fuel cells that are attracting attention as a low-pollution energy source, solid oxide fuel cells are particularly promising because they have no risk of electrolyte leakage and have a high reaction rate. Such solid oxide fuel cells are constructed by stacking a large number of single cells, which are the smallest unit of the battery, and electrically connecting them in series or parallel.
Each unit cell is constructed by laminating an oxygen electrode membrane and a fuel electrode membrane on a solid electrolyte membrane.

【0003】単電池を構成する固体電解質膜には緻密度
が要求される一方、電極膜には多孔質性が要求される。 緻密度が要求される固体電解質膜上に、多孔質性が要求
される電極膜を積層する方法として、従来より、固体電
解質膜にシートまたはフィルム状の電極膜を積層して焼
成する方法が採用されており、また本発明者が提案した
未公知の、固体電解質膜に粉末状の電極材を薄層状に付
着させた後、焼成する方法もある。
[0003] While the solid electrolyte membrane constituting a cell is required to be dense, the electrode membrane is required to be porous. Conventionally, the method of laminating an electrode membrane that requires porosity on a solid electrolyte membrane that requires density is to laminate a sheet or film-like electrode membrane on a solid electrolyte membrane and then sinter it. There is also an unknown method proposed by the present inventor in which a powdered electrode material is deposited in a thin layer on a solid electrolyte membrane and then fired.

【0004】しかしながら上記先行技術は、固体電解質
膜上に、数百μm程度の比較的厚い電極膜を形成させる
場合、各電極膜自身の機械的強度が向上することにより
電極膜と固体電解質膜とが剥離し易くなり、また、固体
電解質膜の両面にそれぞれ酸素極膜および燃料極膜を形
成した後焼成する、三層膜一体焼結時に固体電解質膜の
焼結が阻害されて緻密な固体電解質の作製が困難になる
など、固体電解質膜をはじめ、単電池全体の機械的強度
が低下するという問題がある。一方、最近では燃料電池
の出力電流を増大させるために、単電池の大面積化が図
られるようになり、これに伴って焼結時の各部材の熱応
力が大きくなり、これによって電極膜と固体電解質膜と
が剥離し易くなったり、単電池自身にソリが生じるとい
う問題も発生している。
However, in the above-mentioned prior art, when a relatively thick electrode film of several hundred μm is formed on a solid electrolyte membrane, the mechanical strength of each electrode film itself improves, so that the electrode film and the solid electrolyte film are separated. Also, when the three-layer membrane is sintered after forming the oxygen electrode membrane and fuel electrode membrane on both sides of the solid electrolyte membrane, the sintering of the solid electrolyte membrane is inhibited, resulting in a dense solid electrolyte. There is a problem that the mechanical strength of the solid electrolyte membrane and the entire unit cell decreases, such as making it difficult to fabricate. On the other hand, in recent years, in order to increase the output current of fuel cells, the area of single cells has been increased, and as a result, the thermal stress of each member during sintering has increased, causing the electrode film to Problems have also arisen in that the solid electrolyte membrane tends to separate, and the cells themselves warp.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
先行技術の問題点を解決し、固体電解質膜に比較的厚膜
の電極膜を積層した場合にも、固体電解質膜および電極
膜の強度をそれぞれ有効に保持し、各部材の接触強度を
向上させて単電池全体としての機械的強度を向上させる
ことができる固体電解質型燃料電池の単電池製造方法を
提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the prior art described above, and to solve the problems of the solid electrolyte membrane and the electrode membrane even when a relatively thick electrode membrane is laminated on the solid electrolyte membrane. It is an object of the present invention to provide a method for manufacturing a unit cell of a solid oxide fuel cell, which can effectively maintain the strength of each member, improve the contact strength of each member, and improve the mechanical strength of the unit cell as a whole.

【0006】[0006]

【課題を解決するための手段】本発明者は、固体電解質
膜と電極膜との熱膨張係数および焼き締まり率(シュリ
ンケージ)の違いによって生じる熱応力を抑えて単電池
の機械的強度を向上させるためには、発生する熱応力を
分散させて小さくすることが有効であることに着目し、
鋭意研究した結果、固体電解質膜上に不連続で、しかも
中央部分が厚くて周辺部分が薄い、複数の電極膜の集合
体を付着させた後、焼結することにより、発生する熱応
力が分散され、結果的に機械的強度が大きな単電池が得
られることを見出し、本発明に到達した。
[Means for Solving the Problem] The present inventor has improved the mechanical strength of a single cell by suppressing thermal stress caused by the difference in thermal expansion coefficient and shrinkage between a solid electrolyte membrane and an electrode membrane. Focusing on the fact that it is effective to disperse and reduce the thermal stress that occurs,
As a result of extensive research, we discovered that by attaching an aggregate of multiple discontinuous electrode films, thick in the center and thin in the periphery, on a solid electrolyte membrane and then sintering, the generated thermal stress was dispersed. As a result, it was discovered that a single cell with high mechanical strength could be obtained, and the present invention was achieved.

【0007】すなわち本発明は、固体電解質膜の片面ま
たは両面に電極膜を積層する固体電解質型燃料電池の単
電池製造方法であって、前記固体電解質膜の電極膜形成
部分に、不連続で、かつ中央部分が厚くて周辺部分が薄
い、複数の電極膜を付着させた後、焼成することを特徴
とする。
That is, the present invention provides a method for manufacturing a unit cell of a solid oxide fuel cell in which an electrode film is laminated on one or both sides of a solid electrolyte membrane, the method comprising: discontinuously discontinuously disposing the electrode film forming portion of the solid electrolyte membrane; The method is characterized in that a plurality of electrode films, which are thick in the center and thin in the peripheral parts, are deposited and then fired.

【0008】[0008]

【作用】固体電解質膜上に積層する電極膜の形状を従来
のように均一な膜としないで、不連続な多数の電極膜の
集合体とし、かつ各電極膜の膜厚を中心部ほど厚くし、
周辺部ほど薄くしたことにより、電極膜と固体電解質膜
の熱膨張係数や焼き締まり率の違いによって生じる熱応
力を小さく抑えることができ、単電池の機械的強度が向
上する。また、形状の効果だけでは吸収できないほどの
大きな応力が発生しても、電極膜周辺部(電極膜の薄い
部分)のひび割れによって吸収することができるので、
電解質の機械的強度の低下を最小限に抑えることができ
る。さらに、電極膜を小型電極膜の集合体としたことに
より、固体電解質膜は、電極膜が積層されたことによる
悪影響を受けることなく良好に焼結されて固体電解質本
来の機械的強度を有するようになる。すなわち固体電解
質膜上に形成される小型電極膜相互間の電極膜は非常に
薄いか、または電極膜が形成されていない部分が存在す
ることになり、固体電解質膜が単独膜として焼結される
部分が連続して形成されるので、固体電解質膜の機械的
強度が充分に発揮され、単電池のソリが生ずることがな
くなる。
[Function] The shape of the electrode film stacked on the solid electrolyte membrane is not a uniform film as in the past, but an aggregate of many discontinuous electrode films, and the film thickness of each electrode film is thicker toward the center. death,
By making the peripheral portion thinner, the thermal stress caused by the difference in thermal expansion coefficient and compaction rate between the electrode film and the solid electrolyte film can be suppressed, and the mechanical strength of the unit cell is improved. In addition, even if a large stress occurs that cannot be absorbed by the shape effect alone, it can be absorbed by cracks in the peripheral area of the electrode film (thin part of the electrode film).
Decrease in mechanical strength of the electrolyte can be minimized. Furthermore, by forming the electrode film into an assembly of small electrode films, the solid electrolyte film can be sintered well without being adversely affected by the stacking of electrode films, and has the mechanical strength inherent to a solid electrolyte. become. In other words, the electrode film between the small electrode films formed on the solid electrolyte membrane is very thin, or there are parts where no electrode film is formed, and the solid electrolyte film is sintered as a single film. Since the portions are formed continuously, the mechanical strength of the solid electrolyte membrane is fully exerted, and warpage of the unit cell is prevented.

【0009】本発明において、固体電解質としては、例
えばZrO2 −Y2 O3 (YSZ)、CeO2 
−CaO、CeO2 −Y2 O3 系のもの等が使用
され、ドクターブレード法等によって、例えば300〜
700μmの厚さの膜に成形されることが好ましい。酸
素極材としては、例えばランタン系のLaCoO3 、
La0.7 Sr0.3 MnO3 、La0.7 C
a0.3 MnO3 、La0.6 Ba0.4 Co
0.8 Cu0.2 O3 等が、一方、燃料極材とし
ては、例えばニッケル系のNiO−ZrO2 −Y2 
O3 等が使用される。このような電極材は、例えば0
.1μm〜10μmに粉砕され、スラリとして、または
そのまま粉末として使用される。スラリとして使用する
場合、溶媒としては、例えばエタノール、トルエン等を
用いることが好ましく、また電極材粉末の成形性を確保
するためのバインダーとして、例えばポリビニルブチラ
ール等を添加することが好ましい。
[0009] In the present invention, solid electrolytes include, for example, ZrO2-Y2O3 (YSZ), CeO2
-CaO, CeO2 -Y2 O3 type, etc. are used, and by the doctor blade method etc., for example, 300~
Preferably, the film is formed into a 700 μm thick film. As the oxygen electrode material, for example, lanthanum-based LaCoO3,
La0.7 Sr0.3 MnO3, La0.7 C
a0.3 MnO3, La0.6 Ba0.4 Co
0.8 Cu0.2 O3 etc., on the other hand, as a fuel electrode material, for example, nickel-based NiO-ZrO2 -Y2
O3 etc. are used. Such an electrode material is, for example, 0
.. It is ground to 1 μm to 10 μm and used as a slurry or as it is as a powder. When used as a slurry, it is preferable to use, for example, ethanol, toluene, etc. as a solvent, and it is preferable to add, for example, polyvinyl butyral, etc. as a binder to ensure moldability of the electrode material powder.

【0010】本発明において、電極材のスラリまたは粉
末は、任意の形状、例えば格子状、メッシュ状、短冊状
等に刳り抜かれたマスキング材を載置した固体電解質膜
上にスプレー法またはスクリーン印刷法等によって噴霧
、または塗布され、前記固体電解質膜上に不連続な電極
膜集合体が形成される。不連続な電極膜は、その中央部
分の膜厚が、例えば100〜300μmであることが好
ましく、その周辺部分は順次薄く構成されることが好ま
しい。
In the present invention, the slurry or powder of the electrode material is sprayed or screen printed onto a solid electrolyte membrane on which a masking material hollowed out in an arbitrary shape, such as a grid, mesh, or strip, is placed. A discontinuous electrode membrane assembly is formed on the solid electrolyte membrane by spraying or coating the solid electrolyte membrane. Preferably, the discontinuous electrode film has a thickness of, for example, 100 to 300 μm at the central portion, and the peripheral portions thereof are preferably configured to be successively thinner.

【0011】電極膜集合体が付着された固体電解質膜は
、焼結されて単電池とされるが、その焼成温度は、例え
ば1200〜1600℃が好ましく、焼成時間は3〜1
0時間であることが好ましい。本発明において、固体電
解質膜の両面にそれぞれ酸素極膜および燃料極膜を付着
させた後焼成する、三層膜一体焼結法によって単電池を
製造する場合、固体電解質膜の一方面に形成される酸素
極膜の数、形状および大きさは、他方面に形成される燃
料極膜と必ずしも同じである必要はない。しかし、いう
までもなく、小型の燃料極膜と小型の酸素極膜とは固体
電解質膜を介して他方の面積を一方が必ずカバーしてお
く必要がある。
[0011] The solid electrolyte membrane to which the electrode membrane assembly is attached is sintered to form a cell. The firing temperature is preferably 1200 to 1600°C, and the firing time is 3 to 1.
Preferably it is 0 hours. In the present invention, when a unit cell is manufactured by a three-layer membrane integral sintering method in which an oxygen electrode membrane and a fuel electrode membrane are attached to both sides of a solid electrolyte membrane and then fired, a single cell is formed on one side of the solid electrolyte membrane. The number, shape and size of the oxygen electrode films do not necessarily have to be the same as the fuel electrode film formed on the other side. However, it goes without saying that one of the small fuel electrode membranes and the small oxygen electrode membrane must cover the area of the other through the solid electrolyte membrane.

【0012】0012

【実施例】次に本発明を実施例によりさらに詳細に説明
する。図1は、本発明の一実施例によって作製された単
セルの斜視図、図2は図1のII−II線矢視方向断面
図である。固体電解質膜1は、ZrO2 −Y2 O3
 を用いてドクターブレード法によって500μm厚に
成形した。 また、酸素極膜材としてLaCoO3 を用い、これを
0.1〜10μmに粉砕して得られた粉末とエタノール
、トルエンとの混合物に全重量基準で5%のポリビニル
ブチラールをバインダーとして添加し、混練してスラリ
とした。一方、燃料極膜材としてはNiO−ZrO2 
−Y2 O3 を用い、これを粉砕した0.1〜10μ
mの粉末とエタノール、トルエンとの混合物に全重量基
準で5%のポリビニルブチラールを添加して混練してス
ラリとした。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. FIG. 1 is a perspective view of a single cell manufactured according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II--II in FIG. The solid electrolyte membrane 1 is made of ZrO2-Y2O3
It was molded to a thickness of 500 μm using a doctor blade method. In addition, LaCoO3 was used as the oxygen electrode membrane material, and 5% polyvinyl butyral (based on the total weight) was added as a binder to a mixture of the powder obtained by pulverizing it to 0.1 to 10 μm, ethanol, and toluene, and the mixture was kneaded. It became slurry. On the other hand, NiO-ZrO2 is used as the fuel electrode membrane material.
-0.1 to 10μ crushed using Y2O3
Polyvinyl butyral was added in an amount of 5% based on the total weight to a mixture of the powder, ethanol, and toluene, and the mixture was kneaded to form a slurry.

【0013】次いで前記固体電解質膜1の表面に、格子
状のメッシュからなるマスキング材を載置し、その上方
から前記酸素極膜2用のスラリをスプレー法によって噴
霧し、各電極膜の中心部分の膜厚が200μmになるよ
うに付着させた。一方、前記固体電解質膜1の他方面に
も同様の格子状のマスキング材を載置し、前記燃料極膜
3用のスラリを同様に付着させた。このようにして表裏
両面に不連続で、かつ中央部分が200μmと厚く、周
辺部分が薄い酸素極膜および燃料極膜がそれぞれ付着さ
れた固体電解質膜1を三層膜一体焼結法により約150
0℃で10時間焼成し、一工程で単電池を形成した。
[0013] Next, a masking material consisting of a grid-like mesh is placed on the surface of the solid electrolyte membrane 1, and the slurry for the oxygen electrode membrane 2 is sprayed from above by a spray method, so that the central part of each electrode membrane is sprayed. It was deposited so that the film thickness was 200 μm. On the other hand, a similar grid-shaped masking material was placed on the other side of the solid electrolyte membrane 1, and the slurry for the fuel electrode membrane 3 was similarly deposited thereon. In this way, the solid electrolyte membrane 1, which is discontinuous on both the front and back surfaces, has a thick oxygen electrode membrane of 200 μm at the center, and a thin oxygen electrode membrane and fuel electrode membrane at the peripheral portions, is formed by the three-layer membrane integral sintering method.
It was baked at 0° C. for 10 hours to form a single cell in one step.

【0014】本実施例によって製造された単電池の固体
電解質膜1の強度は、固体電解質膜のみを同条件で焼成
したものに比べて全く低下していなかった。また、固体
電解質膜1と両電極膜2および3の接触状態は良好であ
り、1000℃における固体電解質膜1と、空気極膜2
および燃料極膜3の電気的接触抵抗はそれぞれ、0.0
15、0.007オーム・cm2 であった。また、こ
の電池を1000℃で700時間使用しても電極膜の剥
離は生じなかった。
[0014] The strength of the solid electrolyte membrane 1 of the unit cell manufactured according to this example was not decreased at all compared to that of a solid electrolyte membrane alone fired under the same conditions. Further, the contact state between the solid electrolyte membrane 1 and both electrode membranes 2 and 3 was good, and the solid electrolyte membrane 1 and the air electrode membrane 2 at 1000°C were in good condition.
and the electrical contact resistance of the fuel electrode membrane 3 is 0.0, respectively.
15, 0.007 ohm·cm2. Furthermore, even when this battery was used at 1000° C. for 700 hours, no peeling of the electrode film occurred.

【0015】本実施例によれば、固体電解質膜1の表面
にその中央部分が厚く、周辺部分が薄くなった複数の不
連続な空気極膜2および燃料極膜3をそれぞれ形成した
のち焼成したことにより、固体電解質膜1と酸素極膜2
および燃料極膜3との間にはたらく熱応力が小さくなり
、また固体電解質膜1は前記電極膜2および3に妨害さ
れることなく緻密に焼結された部分が連続して存在し、
強度が保持されるので、全体として機械的強度の大きな
単電池が得られる。また、固体電解質膜1が緻密性を有
するとともに酸素極膜2および燃料極膜3が多孔性を有
し、各膜部材が緊密に接触するので電気的接触抵抗が大
幅に小さくなる。
According to this embodiment, a plurality of discontinuous air electrode films 2 and fuel electrode films 3 each having a thick central portion and a thin peripheral portion are formed on the surface of a solid electrolyte membrane 1, and then fired. By this, the solid electrolyte membrane 1 and the oxygen electrode membrane 2
The thermal stress acting between the solid electrolyte membrane 1 and the fuel electrode membrane 3 is reduced, and a densely sintered portion of the solid electrolyte membrane 1 is continuously present without being obstructed by the electrode membranes 2 and 3.
Since the strength is maintained, a unit cell with high mechanical strength as a whole can be obtained. In addition, the solid electrolyte membrane 1 is dense, and the oxygen electrode membrane 2 and fuel electrode membrane 3 are porous, and each membrane member is in close contact with each other, so that the electrical contact resistance is significantly reduced.

【0016】図3、図4および図5は、それぞれ本発明
の他の実施例によって製造された単電池の斜視図であり
、各単電池は電極膜を形成する際に、形状が異なるマス
キング材を使用した以外は図1の単電池と同様にして製
造されたものである。すなわち図3は、各電極膜の形状
を短冊型としたもの、図4は、図3よりも短い短冊状と
して2列に配列したもの、および図5は、各電極膜の形
状を円形としたものである。これらの単電池においても
電極膜の中央部分が厚く、周辺部分が薄く構成されてお
り、前記実施例と同様、固体電解質膜と各電極膜との熱
膨張係数および焼き締まり率の相違に起因する熱応力が
小さくなり、結果的に機械的強度が大きい単電池が得ら
れる。
FIGS. 3, 4, and 5 are perspective views of unit cells manufactured according to other embodiments of the present invention, and each unit cell is coated with masking materials having different shapes when forming an electrode film. The unit cell was manufactured in the same manner as the unit cell shown in FIG. 1 except that . That is, FIG. 3 shows a case in which each electrode film has a rectangular shape, FIG. 4 shows a case in which each electrode film has a rectangular shape and is arranged in two rows, and FIG. 5 shows a case in which each electrode film has a circular shape. It is something. In these cells, the central part of the electrode film is thick and the peripheral part is thin, and as in the above example, this is due to the difference in thermal expansion coefficient and compaction rate between the solid electrolyte film and each electrode film. Thermal stress is reduced, resulting in a cell with high mechanical strength.

【0017】[0017]

【発明の効果】本発明によれば、固体電解質膜に積層さ
れる電極膜を不連続で、しかも中央部分が厚くて周辺部
分が薄い、複数の小型電極膜の集合体としたことにより
、各構成膜相互間にはたらく熱応力が小さくなるので、
単電池全体としての機械的強度が向上する。したがって
、例えば300〜700μmの固体電解質膜に100〜
300μm程度の比較的厚い電極膜を形成しても、剥離
等による強度低下を生じることなく、機械的強度の大き
な単電池が得られる。
[Effects of the Invention] According to the present invention, the electrode film laminated on the solid electrolyte membrane is discontinuous, and is an aggregate of a plurality of small electrode films that are thick at the center and thin at the periphery. Since the thermal stress acting between the constituent films is reduced,
The mechanical strength of the cell as a whole is improved. Therefore, for example, in a solid electrolyte membrane of 300 to 700 μm,
Even if a relatively thick electrode film of about 300 μm is formed, a cell with high mechanical strength can be obtained without deterioration in strength due to peeling or the like.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例によって製造された単電池の
斜視図である。
FIG. 1 is a perspective view of a cell manufactured according to an embodiment of the present invention.

【図2】図1のII−II線矢視方向断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 1;

【図3】、[Figure 3]

【図4】および[Figure 4] and

【図5】それぞれ本発明の他の実施例によって製造され
た単電池の斜視図である。
FIG. 5 is a perspective view of a unit cell manufactured according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質膜、2…酸素側電極膜、3…燃料側電極
膜。
1...Solid electrolyte membrane, 2...Oxygen side electrode membrane, 3...Fuel side electrode membrane.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  固体電解質膜の片面または両面に電極
膜を積層する固体電解質型燃料電池の単電池製造方法で
あって、前記固体電解質膜の電極膜形成部分に、不連続
で、かつ中央部分が厚くて周辺部分が薄い、複数の電極
膜を付着させた後、焼成することを特徴とする固体電解
質型燃料電池の単電池製造方法。
1. A method for manufacturing a single cell of a solid electrolyte fuel cell, in which an electrode film is laminated on one or both sides of a solid electrolyte membrane, the solid electrolyte membrane having a discontinuous and central portion in which the electrode film is formed. 1. A method for producing a single cell of a solid oxide fuel cell, which comprises depositing a plurality of electrode films, each of which is thick at the periphery and thin at the periphery, and then fired.
JP3070011A 1991-04-02 1991-04-02 Manufacture of unit cell for solid electrolyte type fuel cell Pending JPH04306563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070011A JPH04306563A (en) 1991-04-02 1991-04-02 Manufacture of unit cell for solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070011A JPH04306563A (en) 1991-04-02 1991-04-02 Manufacture of unit cell for solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH04306563A true JPH04306563A (en) 1992-10-29

Family

ID=13419236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070011A Pending JPH04306563A (en) 1991-04-02 1991-04-02 Manufacture of unit cell for solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH04306563A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095405A3 (en) * 2000-05-08 2003-03-13 Honda Motor Co Ltd Fuel cell assembly
KR20040003654A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 Generator of fuel cell
US7008718B2 (en) * 2000-05-08 2006-03-07 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly
JP2006344486A (en) * 2005-06-08 2006-12-21 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2018133165A (en) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 Electrochemical reaction single cell, and electrochemical reaction cell stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095405A3 (en) * 2000-05-08 2003-03-13 Honda Motor Co Ltd Fuel cell assembly
JP2004504689A (en) * 2000-05-08 2004-02-12 本田技研工業株式会社 Fuel cell
US7008718B2 (en) * 2000-05-08 2006-03-07 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly
KR20040003654A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 Generator of fuel cell
JP2006344486A (en) * 2005-06-08 2006-12-21 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2018133165A (en) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 Electrochemical reaction single cell, and electrochemical reaction cell stack

Similar Documents

Publication Publication Date Title
KR101045168B1 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
US8192888B2 (en) Two layer electrolyte supported fuel cell stack
US4883497A (en) Formation of thin walled ceramic solid oxide fuel cells
JP2001196069A (en) Fuel cell
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JP4781823B2 (en) Cylindrical horizontal stripe fuel cell
JPH04306563A (en) Manufacture of unit cell for solid electrolyte type fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JPH0668885A (en) Manufacture of solid electrolytic fuel cell
JP3722927B2 (en) Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly
JPH07220730A (en) Solid electrolyte type fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JPH02276166A (en) Solid electrolyte fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH06310156A (en) Flat solid electrolyte type fuel cell
JP2505565B2 (en) Solid electrolyte fuel cell
JPH05151982A (en) Solid electrolyte fuel cell
JPH0562694A (en) Solid electrolyte type fuel cell
JP3151872B2 (en) Solid oxide fuel cell
JPH08236137A (en) Manufacture of solid electrolyte fuel cell
JPH09147887A (en) Flat solid electrolyte fuel cell
JPH0562693A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010419