JPH0668885A - Manufacture of solid electrolytic fuel cell - Google Patents

Manufacture of solid electrolytic fuel cell

Info

Publication number
JPH0668885A
JPH0668885A JP4244006A JP24400692A JPH0668885A JP H0668885 A JPH0668885 A JP H0668885A JP 4244006 A JP4244006 A JP 4244006A JP 24400692 A JP24400692 A JP 24400692A JP H0668885 A JPH0668885 A JP H0668885A
Authority
JP
Japan
Prior art keywords
fuel
separator
electrode
flow channel
heat shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4244006A
Other languages
Japanese (ja)
Inventor
Masakazu Kubo
昌和 久保
Hiroyuki Kamata
博之 鎌田
Akio Hosaka
明夫 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4244006A priority Critical patent/JPH0668885A/en
Publication of JPH0668885A publication Critical patent/JPH0668885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To manufacture a solid electrolytic fuel cell which does not cause crack or destruction by baking and sintering it in an integrated manner. CONSTITUTION:An air electrode 2 and a fuel electrode 3 are applied to the both surfaces of a solid electrolytic plate 1 by printing. A fuel channel column 5 is provided on a material 9 serving as a first stress alleviation layer, which is applied on the fuel electrode 3 at a fixed interval, while a mask plate 7 is mounted on the peripheral part, to form a cell C provided with a fuel channel column. An air channel column 4 is provided on a separator 6, and a mask plate 8 is mounted on the peripheral part, to form a separator S provided with an air channel. Materials 10, 11, 12, 13 are applied to a connection point where the cell C and the separator S are superimposed on one another, as stress alleviation layers. This is then baked and is sintered in an integrated manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換させるエネルギー部門
で用いる燃料電池のうち、特に固体電解質型燃料電池を
一体焼結で製作するための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid oxide fuel cell, particularly a solid oxide fuel cell, by integral sintering among fuel cells used in the energy sector for directly converting chemical energy of fuel into electric energy. is there.

【0002】[0002]

【従来の技術】現在開発が進められている固体電解質型
燃料電池には、平板型のもの、円筒型のもの等がある
が、平板型のものは、図5に一例を示す如く、たとえ
ば、イットリア安定化ジルコニア(YSZ)を適用した
固体電解質板1の両面側に、空気極2と燃料極3を配置
し、且つ空気極2側には、空気O2 ガスを流すための空
気流路を形成する空気流路柱4を配置すると共に、燃料
極3側にも燃料ガスH2 ガスを流すための流路形成用の
燃料流路柱5を配置し、空気極2側へ空気を、又、燃料
極3側へ燃料ガスを流すようにして、空気極2側での反
応により生じた酸素イオンを、固体電解質板1を通して
燃料極3側へ到達させるようにし、一方、燃料極3側で
は、上記燃料ガスH2 と上記酸素イオンが反応して水H
2 Oが出されるようにしたものを1セルとし、かかるセ
ルをセパレータ(インターコネクタ)6を介し多層に積
層するようにしてある。
2. Description of the Related Art Solid oxide fuel cells currently under development include flat plate type and cylindrical type, and the flat plate type is shown in FIG. An air electrode 2 and a fuel electrode 3 are arranged on both sides of a solid electrolyte plate 1 to which yttria-stabilized zirconia (YSZ) is applied, and an air flow path for flowing air O 2 gas is provided on the air electrode 2 side. The air flow passage column 4 to be formed is arranged, and the fuel flow passage column 5 for forming a flow passage for flowing the fuel gas H 2 gas is also arranged on the fuel electrode 3 side to supply air to the air electrode 2 side. The fuel gas is caused to flow to the fuel electrode 3 side so that the oxygen ions generated by the reaction on the air electrode 2 side reach the fuel electrode 3 side through the solid electrolyte plate 1, while the fuel electrode 3 side , The fuel gas H 2 reacts with the oxygen ions to generate water H
One cell is designed to emit 2 O, and such cells are laminated in multiple layers via a separator (interconnector) 6.

【0003】かかる平板型の固体電解質型燃料電池を組
み立てて製作する場合、別々に製作された固体電解質板
1、空気極2、燃料極3、空気流路柱4、燃料流路柱
5、セパレータ6の各部材を順次重ね合わせるようにす
る考え方が一般的で、各部材を一体焼結させて固体電解
質型燃料電池を製作する考え方は現在まで採られていな
い。それは、固体電解質型燃料電池の場合は固体電解質
板1と空気極2、燃料極3の一体焼結は可能であるが、
これに空気流路柱4や燃料流路柱5を重ねて一体焼結す
ることは応力の発生で割れが生じるため、一体焼結が困
難だからである。
In the case of assembling and manufacturing such a flat plate type solid oxide fuel cell, the solid electrolyte plate 1, the air electrode 2, the fuel electrode 3, the air flow path column 4, the fuel flow path column 5 and the separator which are separately manufactured are manufactured. The general idea is to stack each member of No. 6 in order, and the concept of integrally sintering each member to manufacture a solid oxide fuel cell has not been taken up to now. In the case of a solid oxide fuel cell, it is possible to integrally sinter the solid electrolyte plate 1, the air electrode 2 and the fuel electrode 3.
This is because if the air flow channel pillars 4 and the fuel flow channel pillars 5 are superposed on each other and integrally sintered, cracks are generated due to the generation of stress, so that the integral sintering is difficult.

【0004】[0004]

【発明が解決しようとする課題】ところが、固体電解質
型燃料電池の製作において、各部品を1つずつ重ねて接
合して行く場合は、工数が多くなると共に、ガスシール
性に充分なる注意が必要となる。
However, in the production of a solid oxide fuel cell, when each component is stacked and joined one by one, the number of steps is increased and the gas sealing property needs to be sufficiently careful. Becomes

【0005】上記固体電解質型燃料電池は、1000℃
という高温で動作するため、通常の金属では腐食してし
まうので、セラミック材料が使われるが、セラミック材
料は、これを焼成して緻密なものにする際には一般的に
約20%(体積比で50%)の収縮(熱収縮)がある。
したがって、上記熱収縮挙動の異なるセラミック材料同
士を貼り合わせて一体焼結するため、図6(イ)に示す
如く、熱収縮挙動の異なるセラミック材料IとIIを、
焼成前のグリーンの状態で貼り合わせ、これを焼成させ
ると、図6(ロ)の如く焼成中は、材料の化学的性質、
粒径分布等で異なる熱収縮挙動の差によって、一方のセ
ラミック材料Iで矢印の如く圧縮応力が発生させると
き、他方のセラミック材料IIで矢印の如く引張応力が
発生し、焼成後は、セラミック材料IとIIの界面に応
力が発生してセラミック材料I,IIにクラックが生じ
たり、破損したりすることが確認されている。
The above solid oxide fuel cell has a temperature of 1000.degree.
Since it operates at a high temperature, it is corroded by ordinary metals, so ceramic materials are used, but when firing ceramics to make them dense, it is generally about 20% (volume ratio). 50%) (shrinkage).
Therefore, since the ceramic materials having different thermal shrinkage behaviors are bonded and integrally sintered, as shown in FIG. 6A, the ceramic materials I and II having different thermal shrinkage behaviors are
Bonding in the green state before firing and firing this, the chemical properties of the material during firing are as shown in FIG.
Due to the difference in heat shrinkage behavior which varies depending on the particle size distribution and the like, when a compressive stress is generated in one ceramic material I as indicated by an arrow, a tensile stress is generated in the other ceramic material II as indicated by an arrow, and after firing, the ceramic material I It has been confirmed that stress is generated at the interface between I and II, and the ceramic materials I and II are cracked or damaged.

【0006】本発明者は、かかる熱収縮挙動の異なるセ
ラミック材料同士を貼り合わせて一体焼結させたとき
に、全体が破損することから、種々工夫研究を重ねた結
果、該セラミック材料自体が割れたり、破損したりする
ことなく一体焼結させられる方法を見い出した。この方
法は、図7(イ)に一例を示す如く、粒径等の調整によ
って熱収縮挙動を極力近づけたセラミック材料IとII
の間に、応力緩和層として、上記セラミック材料I,I
Iの熱収縮挙動とは極端に異なる熱収縮挙動を示してい
る割れ易い材料IIIを、焼成前の状態で挟み込み、次
いで、これを焼成して一体焼結させる際に、この焼成中
(図7(ロ))に上記応力緩和層としての材料IIIが
割れて微少クラックが発生し応力を緩和させることによ
って、焼成後(図7(ハ))も、セラミック材料I,I
Iが破損することがないようにするものである。
[0006] The present inventor repeatedly damages all the ceramic materials having different thermal contraction behaviors when they are bonded and integrally sintered. We have found a method that can be sintered together without any damage or damage. In this method, as shown in FIG. 7 (a), the ceramic materials I and II whose thermal contraction behavior is made as close as possible by adjusting the particle size and the like are used.
Between the ceramic materials I, I as a stress relaxation layer.
A fragile material III, which exhibits a heat shrinkage behavior extremely different from that of I, is sandwiched in a state before firing, and then this is fired and integrally sintered (FIG. 7). In (b)), the material III as the stress relaxation layer is cracked to generate minute cracks to relax the stress, so that the ceramic materials I, I are burned even after firing (FIG. 7C).
This is to prevent I from being damaged.

【0007】そこで、本発明は、上記本発明者等の見い
出した異なるセラミック材料の一体焼結の方法に基づき
固体電解質型燃料電池を一体焼結させて製作する方法を
提供しようとするものである。
Therefore, the present invention is intended to provide a method of integrally sintering a solid oxide fuel cell based on the method of integrally sintering different ceramic materials found by the present inventors. .

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、固体電解質板のグリーンシートの両面
に、空気極と燃料極を塗布し、燃料極上に、熱収縮挙動
を極力近づけた多数の燃料流路柱を適宜間隔で設置する
と共に固体電解質板の周辺部にマスクプレートを取り付
け、且つ上記燃料極と燃料流路柱との間に、両者とは熱
収縮挙動が極端に違う燃料極材料を第1応力緩和層とし
て挟み込んでなる燃料流路柱付きのセルと、セパレータ
のグリーンシート上に、上記空気極とは熱収縮挙動を極
力近づけた多数の空気流路柱を適宜間隔で設置すると共
に、周辺部にマスクプレートを取り付けてなる空気流路
柱付きのセパレータとを作り、次いで、上記セル側の燃
料流路柱上には該燃料流路柱及びセパレータの熱収縮挙
動とは極端に違う燃料極材料を第2応力緩和層として、
又、マスクプレート上には該マスクプレートとセパレー
タの熱収縮挙動とは極端に違う熱収縮挙動を示す材料を
第3応力緩和層として塗布すると共に、上記セパレータ
側の各空気流路柱上には該空気流路柱及び空気極とは熱
収縮挙動が極端に違っている空気極材料を第4応力緩和
層として、又、マスクプレート上には該マスクプレート
及び固体電解質板とは熱収縮挙動が極端に違う材料を第
5応力緩和層として塗布し、しかる後、上記燃料流路柱
付きのセルと空気流路柱付きのセパレータとを重ね合わ
せ、次に、これを焼成し、一体焼結して製作する方法と
する。
In order to solve the above-mentioned problems, the present invention applies an air electrode and a fuel electrode on both sides of a green sheet of a solid electrolyte plate so that the heat shrinkage behavior is made as close as possible to the fuel electrode. A large number of fuel flow channel columns are installed at appropriate intervals, a mask plate is attached to the periphery of the solid electrolyte plate, and the heat contraction behavior between the fuel electrode and the fuel channel column is extremely different from those of the two. A cell with a fuel flow channel pillar in which a fuel electrode material is sandwiched as a first stress relaxation layer, and a large number of air flow channel pillars whose thermal contraction behavior is as close as possible to the air electrode on the green sheet of the separator are appropriately spaced. And a separator with an air passage column formed by attaching a mask plate to the peripheral portion, and then the heat shrinkage behavior of the fuel passage column and the separator on the fuel passage column on the cell side. Is extremely different burning The electrode material as the second stress relieving layer,
Further, a material exhibiting a heat shrinkage behavior extremely different from the heat shrinkage behavior of the mask plate and the separator is applied as a third stress relaxation layer on the mask plate, and each air passage column on the separator side is provided on the separator side. An air electrode material whose heat shrinkage behavior is extremely different from that of the air flow channel column and the air electrode is used as a fourth stress relaxation layer, and a heat shrinkage behavior of the mask plate and the solid electrolyte plate is on the mask plate. An extremely different material is applied as the fifth stress relaxation layer, and thereafter, the cells with fuel flow channel pillars and the separators with air flow channel pillars are superposed, and then this is fired and integrally sintered. It is a method of manufacturing.

【0009】又、セパレータと空気流路柱との間に、両
者とは熱収縮挙動が極端に違う空気極材料を第6応力緩
和層として挟み込んで一体焼結させるようにしてもよ
い。
Further, between the separator and the air flow channel column, an air electrode material having extremely different heat shrinkage behavior may be sandwiched as a sixth stress relaxation layer for integral sintering.

【0010】[0010]

【作用】応力緩和層として挟み込む材料は、割れ易いも
のであるため、焼成時の熱収縮挙動の違いから生じる材
料間の応力を、応力緩和層が積極的に割れることによっ
て緩和し、全体の破損を防止して一体焼結された固体電
解質型燃料電池が製作される。
[Function] Since the material sandwiched as the stress relaxation layer is easily cracked, the stress between the materials caused by the difference in thermal contraction behavior during firing is relaxed by the active cracking of the stress relaxation layer, and the entire damage is caused. A solid oxide fuel cell is manufactured which is integrally sintered to prevent this.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の一実施例を示す焼結前に重
ね合わせた状態を示し、又、図2と図3は図1のように
重ね合わせるまでの作製手順を示すもので、図5に示し
た従来の固体電解質型燃料電池の場合と同様に、固体電
解質板1の両側に、空気極2と燃料極3を配置し、空気
極2側には、空気流路形成用の多数の空気流路柱4を、
又、燃料極3側には、燃料ガスの流路形成用の多数の燃
料流路柱5をそれぞれ適宜間隔で設置し、空気極2側に
空気O2 ガスを供給すると共に燃料極3側に燃料ガスH
2 ガスを供給するようにしてあるセルをセパレータ(イ
ンターコネクタ)6を介し多層に積層するようにしてあ
る構成の固体電解質型燃料電池を、各部品を重ね合わせ
て焼成することにより一体焼結させて製作させるように
する。
FIG. 1 shows an embodiment of the present invention in a state in which they are superposed before sintering, and FIGS. 2 and 3 show a manufacturing procedure until superposition as shown in FIG. Similar to the case of the conventional solid oxide fuel cell shown in FIG. 5, the air electrode 2 and the fuel electrode 3 are arranged on both sides of the solid electrolyte plate 1, and a large number of air flow path forming members are formed on the air electrode 2 side. The air flow channel pillar 4 of
On the fuel electrode 3 side, a large number of fuel flow channel pillars 5 for forming a fuel gas channel are installed at appropriate intervals, and air O 2 gas is supplied to the air electrode 2 side and at the same time to the fuel electrode 3 side. Fuel gas H
2 A solid electrolyte fuel cell having a structure in which cells for supplying gas are stacked in multiple layers via a separator (interconnector) 6 is formed by stacking and firing each component to integrally sinter them. I will let you make it.

【0013】以下、詳述すると、本発明の固体電解質型
燃料電池の製作方法は、燃料流路柱付きのセルと空気流
路柱付きのセパレータとを別々に作り、これを重ね合わ
せて焼成し、一体焼結する。
More specifically, in the method for producing a solid oxide fuel cell of the present invention, a cell having a fuel flow channel pillar and a separator having an air flow channel pillar are separately prepared, and the cells are stacked and fired. , Sintered together.

【0014】先ず、図2に示す如く、イットリア安定化
ジルコニア(YSZ)等を用いている固体電解質板1の
グリーンシートに、ランタンマンガナイト、ランタンコ
バルタイト等を用いた空気極2をスクリーン印刷法で印
刷して塗布する(図2(イ))と共に、NiO−YSZ
サーメットを用いた燃料極3を同じくスクリーン印刷法
で印刷して塗布し(図2(ロ))、上記燃料極3上に、
たとえば、該燃料極と同じ材料であるが、粒径の調整等
で燃料極3の熱収縮挙動とは極端に違う熱収縮挙動を示
すようにした燃料極材料9を第1応力緩和層としてスク
リーン印刷法で適宜間隔に塗布し(図2(ハ))、その
上に燃料極3と同じ材料で粒径等の調整により熱収縮挙
動を極力近づけた燃料流路柱5を設置し(図2
(ニ))、更に、内部マニホールド型の場合には固体電
解質板1の周辺部にマニホールド14を設け(図2
(ホ))た後、周辺部に固体電解質板1と同じ材料のマ
スクプレート7を取り付け、燃料流路柱5付きのセルC
を作る(図2(ヘ))。
First, as shown in FIG. 2, the air electrode 2 using lanthanum manganite, lanthanum cobaltite, etc. is screen-printed on the green sheet of the solid electrolyte plate 1 using yttria-stabilized zirconia (YSZ) or the like. With NiO-YSZ while printing and applying (Fig. 2 (a))
Similarly, the fuel electrode 3 using cermet is printed by the screen printing method and applied (FIG. 2 (b)).
For example, a fuel electrode material 9 made of the same material as the fuel electrode but exhibiting a heat contraction behavior extremely different from the heat contraction behavior of the fuel electrode 3 by adjusting the particle size or the like is used as the first stress relaxation layer for the screen. It is applied at an appropriate interval by the printing method (FIG. 2C), and the fuel flow path column 5 which is made of the same material as the fuel electrode 3 and whose heat shrinkage behavior is made as close as possible by adjusting the particle size and the like is installed (FIG. 2C).
(D)) Further, in the case of the internal manifold type, the manifold 14 is provided around the solid electrolyte plate 1 (see FIG. 2).
(E) After that, the mask plate 7 made of the same material as the solid electrolyte plate 1 is attached to the peripheral portion, and the cell C with the fuel flow path column 5 is attached.
Is made (Fig. 2 (f)).

【0015】一方、図3に示す如く、ランタンクロマイ
トを素材とするセパレータ6のグリーンシート上に、空
気極2と同じ材料で粒径等の調整により空気極2の熱収
縮挙動に極力近づけた多数の空気流路柱4を適宜間隔に
設置し(図3(イ))、次いで、内部マニホールド型の
場合はセパレータ6の周辺部にマニホールド14を設け
(図3(ロ))た後、周辺部にセパレータ6と同じ材料
のマスクプレート8を取り付け、空気流路柱4付きのセ
パレータSを作る(図3(ハ))。
On the other hand, as shown in FIG. 3, on the green sheet of the separator 6 made of lanthanum chromite, a large number of the same material as the air electrode 2 was made as close as possible to the thermal contraction behavior of the air electrode 2 by adjusting the particle size and the like. 3 are installed at appropriate intervals (FIG. 3A), and then, in the case of the internal manifold type, the manifold 14 is provided in the peripheral portion of the separator 6 (FIG. 3B), and then the peripheral portion A mask plate 8 made of the same material as the separator 6 is attached to the separator 6 to make the separator S with the air flow channel pillars 4 (FIG. 3C).

【0016】上記した図2の要領で燃料流路柱付きセル
Cを作り、図3の要領で空気流路柱付きセパレータSを
作ると、次に、上記セルCにおける各燃料流路柱5上
に、たとえば、該燃料流路柱5と同じ材料であるが、粒
径等の調整で該燃料極流路柱5及びセパレータ6の熱収
縮挙動とは極端に違う熱収縮挙動を示すようにした燃料
極材料10を第2応力緩和層として塗布すると共に、マ
スクプレート7上に、たとえば、固体電解質板1やセパ
レータ6等と同じ材料であるが粒径等の調整によってセ
パレータ6及びマスクプレート7の熱収縮挙動とは極端
に違う熱収縮挙動を示すようにした材料11を第3応力
緩和層として塗布し、一方、上記空気流路柱付きセパレ
ータSにおける各空気流路柱4上には、該空気流路柱4
やセパレータ6と同じ材料であるが粒径等の調整によっ
て空気流路柱4及び空気極2の熱収縮挙動とは極端に違
う熱収縮挙動を示すようにした空気極材料12を第4応
力緩和層として塗布すると共に、マスクプレート8上
に、上記第3応力緩和層としての材料11と同じ素材で
マスクプレート8及び固体電解質板1の熱収縮挙動とは
極端に違う熱収縮挙動を示すようにした材料13を第5
応力緩和層として塗布する。
When the cell C with the fuel flow channel pillars is manufactured according to the procedure of FIG. 2 and the separator S with the air flow channel pillars is manufactured according to the procedure of FIG. 3, next, on each fuel flow channel pillar 5 in the cell C. In addition, for example, the same material as that of the fuel flow channel pillar 5 is used, but the heat shrinkage behavior is extremely different from the heat shrinkage behavior of the fuel electrode flow channel pillar 5 and the separator 6 by adjusting the particle size and the like. The fuel electrode material 10 is applied as the second stress relaxation layer, and the same material as the solid electrolyte plate 1, the separator 6, etc., but the separator 6 and the mask plate 7 are formed on the mask plate 7 by adjusting the particle size and the like. A material 11 having a heat shrinkage behavior extremely different from the heat shrinkage behavior is applied as a third stress relaxation layer, while the air passage pillars 4 in the separator S with air passage pillars are coated with the material 11 Air passage pillar 4
The same material as the separator 6 and the separator 6, but by adjusting the particle size and the like, the air electrode material 12 that exhibits a heat contraction behavior that is extremely different from the heat contraction behavior of the air passage column 4 and the air electrode 2 is subjected to the fourth stress relaxation. While being applied as a layer, the same material as the material 11 for the third stress relaxation layer should be applied on the mask plate 8 so as to exhibit a heat shrinkage behavior extremely different from that of the mask plate 8 and the solid electrolyte plate 1. Material 13
It is applied as a stress relaxation layer.

【0017】次いで、図1に示すように、燃料流路柱付
きセルCと空気流路柱付きセパレータSとを順次重ね合
わせ、セパレータ6と各燃料流路柱5、マスクプレート
7との間に第2、第3の応力緩和層が挟み込まれ、又、
空気極2と各空気流路柱4との間及び固体電解質板1と
マスクプレート8との間に第4及び第5の応力緩和層が
挟み込まれている状態にする。
Next, as shown in FIG. 1, the cells C with fuel flow channel pillars and the separators S with air flow channel pillars are sequentially stacked, and between the separator 6 and each fuel flow channel pillar 5 and the mask plate 7. The second and third stress relaxation layers are sandwiched, and
The fourth and fifth stress relaxation layers are sandwiched between the air electrode 2 and each air flow channel column 4 and between the solid electrolyte plate 1 and the mask plate 8.

【0018】焼成前に、上記のように重ね合わせると、
空気中で1300℃〜1400℃で焼成し、セルCとセ
パレータSを一体焼結させる。
When laminated as above before firing,
The cells C and the separator S are integrally sintered by firing in air at 1300 ° C to 1400 ° C.

【0019】上記焼成中は、各部材同士の界面に熱収縮
挙動の違いによる応力が発生するが、応力緩和層として
介在させた燃料極材料9,10、空気極材料12、材料
11,13が熱収縮挙動の大きな違いから割れ易いた
め、これらの各材料のみが割れることによって応力を緩
和することができ、固体電解質型燃料電池を構成する各
部材に割れを生じさせることなく、一体焼結させること
ができる。
During the firing, stress is generated at the interface between the respective members due to the difference in heat shrinkage behavior, but the fuel electrode materials 9 and 10, the air electrode material 12 and the materials 11 and 13 interposed as the stress relaxation layers are Since it is easy to crack due to the large difference in heat shrinkage behavior, stress can be relieved by only cracking each of these materials, and it is possible to integrally sinter each member constituting the solid oxide fuel cell without causing cracks. be able to.

【0020】上記において、熱収縮挙動を極力近づける
場合の熱収縮の違いは1%以内のものとし、又、応力緩
和層は、熱収縮挙動を1%以内とした各部材とは5%〜
20%もの熱収縮挙動に差があるものとし、焼成時に、
応力緩和層の部分のみに微小なクラック等が生じて応力
を緩和し、全体の破損が防止されるようにする。なお、
応力緩和層として用いる材料としては、化学組成の異な
るものや、化学組成は同じであるが粒径等の調整によっ
て熱収縮挙動を変えたものを用いる。
In the above, the difference in heat shrinkage when the heat shrinkage behavior is made as close as possible is within 1%, and the stress relaxation layer is 5% to each member whose heat shrinkage behavior is within 1%.
Assuming that there is a difference in heat shrinkage behavior of 20%,
A minute crack or the like is generated only in the portion of the stress relaxation layer to relax the stress and prevent the entire damage. In addition,
As a material used for the stress relaxation layer, a material having a different chemical composition, or a material having the same chemical composition but having a different heat shrinkage behavior by adjusting the grain size or the like is used.

【0021】次に、図4は本発明の他の実施例を示すも
ので、図1に示す空気流路柱付きセパレータSの構成に
代えて、セパレータ6上に、第6応力緩和層として空気
極材料15を塗布して、その上に空気流路柱4を設置し
て、各部材間にすべて応力緩和層を設けたものである。
Next, FIG. 4 shows another embodiment of the present invention. Instead of the structure of the separator S with air flow channel pillars shown in FIG. 1, an air as a sixth stress relaxation layer is formed on the separator 6. The electrode material 15 is applied, the air flow path column 4 is installed thereon, and the stress relaxation layers are all provided between the respective members.

【0022】この実施例によっても図1の場合と同様に
全体に割れや破損を生じさせることなく一体焼結で固体
電解質型燃料電池を製作することができる。
Also in this embodiment, as in the case of FIG. 1, a solid oxide fuel cell can be manufactured by integral sintering without causing cracks or damages on the whole.

【0023】なお、上記の各実施例においては、固体電
解質板1の両面に空気極2と燃料極3を配置し、該空気
極2と空気流路柱4との間と、燃料極3と燃料流路柱5
との間に応力緩和層として割れ易い材料12,9を挟み
込んでいるが、この場合は、空気極2及び燃料極3は薄
いので、バッファ層として機能させることができ、した
がって、固体電解質板1と空気流路柱4及び燃料流路柱
5との接合において、上記空気極2及び燃料極3をバッ
ファ層として用いることができるからである。この場合
に、空気極2や燃料極3に割れが入ることがあるが、電
極はもともと多孔質であるから、割れが入っても問題は
ない。
In each of the above embodiments, the air electrode 2 and the fuel electrode 3 are arranged on both sides of the solid electrolyte plate 1, and the space between the air electrode 2 and the air passage column 4 and the fuel electrode 3 are arranged. Fuel flow column 5
The materials 12 and 9 that are easily broken are sandwiched between the two as a stress relaxation layer. In this case, since the air electrode 2 and the fuel electrode 3 are thin, they can function as a buffer layer, and therefore, the solid electrolyte plate 1 can be used. This is because the air electrode 2 and the fuel electrode 3 can be used as a buffer layer in the joining of the air flow column 4 and the fuel flow column 5. In this case, the air electrode 2 and the fuel electrode 3 may be cracked, but since the electrode is originally porous, there is no problem even if cracks occur.

【0024】[0024]

【発明の効果】以上述べた如く、本発明によれば、固体
電解質型燃料電池を、割れを生じさせたり、破損させた
りすることなく一体焼結で製作することができるので、
製作工数の低減、ガスシール性の向上が図れると共に、
接触抵抗低減による性能向上と部材同士の界面反応阻止
による長寿命化が図れる、という優れた効果を奏し得
る。
As described above, according to the present invention, the solid oxide fuel cell can be manufactured by integral sintering without causing cracks or damage.
The number of manufacturing steps can be reduced and the gas sealability can be improved,
It is possible to obtain an excellent effect that the performance is improved by reducing the contact resistance and the life is prolonged by preventing the interfacial reaction between the members.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す焼成前の断面図であ
る。
FIG. 1 is a cross-sectional view showing an example of the present invention before firing.

【図2】図1の燃料流路柱付きセルを作る工程を示すも
ので、(イ)は空気極の塗布、(ロ)は燃料極の塗布、
(ハ)は第2応力緩和層の塗布、(ニ)は燃料流路柱の
設置、(ホ)はマニホールドの形成、(ヘ)はマスクプ
レートの取り付けの工程である。
FIG. 2 shows a process of making the cell with fuel flow channel pillars of FIG. 1, where (a) is application of an air electrode, (b) is application of a fuel electrode,
(C) is the step of applying the second stress relaxation layer, (D) is the step of installing the fuel flow path column, (E) is the step of forming the manifold, and (F) is the step of attaching the mask plate.

【図3】図1の空気流路付きセパレータを作る工程を示
すもので、(イ)は空気流路柱の設置、(ロ)はマニホ
ールドの形成、(ハ)はマスクプレートの取り付けの工
程である。
3A to 3C show steps of manufacturing the separator with an air flow path of FIG. 1, in which (A) is an air flow path column installation step, (B) is a manifold formation step, and (C) is a mask plate installation step. is there.

【図4】本発明の他の実施例を示す焼成前の断面図であ
る。
FIG. 4 is a cross-sectional view showing another embodiment of the present invention before firing.

【図5】従来の固体電解質型燃料電池の概略断面図であ
る。
FIG. 5 is a schematic cross-sectional view of a conventional solid oxide fuel cell.

【図6】セラミック材料を貼り合わせて焼成するときに
生じる熱収縮状態を示すもので、(イ)は焼成前、
(ロ)は焼成中である。
FIG. 6 shows a state of heat shrinkage that occurs when the ceramic materials are bonded and fired.
(B) is being fired.

【図7】本発明の基本となるセラミック材料間に応力緩
和層を挟み込んで焼成させたときの収縮状況を示すもの
で、(イ)は焼成前、(ロ)は焼成中、(ハ)は焼成後
である。
FIG. 7 shows shrinkage states when a stress relaxation layer is sandwiched between ceramic materials which are the basis of the present invention and fired. (A) is before firing, (b) is during firing, and (c) is After firing.

【符号の説明】[Explanation of symbols]

1 固体電解質板 2 空気極 3 燃料極 4 空気流路柱 5 燃料流路柱 6 セパレータ 7,8 マスクプレート 9 燃料極材料(第1応力緩和層) 10 燃料極材料(第2応力緩和層) 11 材料(第3応力緩和層) 12 空気極材料(第4応力緩和層) 13 材料(第5応力緩和層) 15 空気極材料(第6応力緩和層) C 燃料流路柱付きセル S 空気流路柱付きセパレータ DESCRIPTION OF SYMBOLS 1 Solid electrolyte plate 2 Air electrode 3 Fuel electrode 4 Air passage column 5 Fuel passage column 6 Separator 7,8 Mask plate 9 Fuel electrode material (1st stress relaxation layer) 10 Fuel electrode material (2nd stress relaxation layer) 11 Material (third stress relaxation layer) 12 Air electrode material (fourth stress relaxation layer) 13 Material (fifth stress relaxation layer) 15 Air electrode material (sixth stress relaxation layer) C Fuel channel column cell S Air channel Pillar separator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質板のグリーンシートの両面
に、空気極と燃料極を配置し、燃料極上に、該燃料極の
熱収縮挙動に極力近づけた多数の燃料流路柱を、両者の
熱収縮挙動とは極端に違う熱収縮挙動を示す燃料極材料
を第1応力緩和層として挟んで設置すると共に、周辺部
にマスクプレートを取り付けてなる燃料流路柱付きセル
と、セパレータのグリーンシート上に、上記空気極の熱
収縮挙動に極力近づけた多数の空気流路柱を設置すると
共に、周辺部にマスクプレートを取り付けてなる空気流
路柱付きセパレータとを作り、次いで、上記燃料流路柱
付きセルにおける燃料流路柱上及びマスクプレート上
に、これらの熱収縮挙動とは極端に違う熱収縮挙動を示
す材料を各々第2応力緩和層及び第3応力緩和層として
塗布し、又、上記空気流路柱付きセパレータにおける各
空気流路柱及びマスクプレート上に、これらの熱収縮挙
動とは極端に違う熱収縮挙動を示す材料を第4応力緩和
層及び第5応力緩和層として塗布した後、上記燃料流路
柱付きセルと空気流路柱付きセパレータを順次重ね合わ
せ、しかる後、これを焼成して一体焼結させることを特
徴とする固体電解質型燃料電池の製作方法。
1. An air electrode and a fuel electrode are arranged on both sides of a green sheet of a solid electrolyte plate, and a large number of fuel flow channel columns that are as close as possible to the thermal contraction behavior of the fuel electrode are provided on the fuel electrode. On the green sheet of the separator and the fuel passage column cell, which is installed by sandwiching the fuel electrode material that exhibits a heat shrinkage behavior that is extremely different from the shrinkage behavior as the first stress relaxation layer, and by mounting the mask plate on the periphery. In, in addition to installing a large number of air flow channel pillars that are as close as possible to the thermal contraction behavior of the air electrode, to make a separator with an air flow channel pillar that is equipped with a mask plate in the peripheral portion, and then, the fuel flow channel pillar On the fuel flow channel column and the mask plate in the attached cell, materials exhibiting a heat shrinkage behavior extremely different from these heat shrinkage behaviors are applied as the second stress relaxation layer and the third stress relaxation layer, respectively, and Air flow After applying a material exhibiting a heat shrinkage behavior extremely different from the heat shrinkage behavior to each air flow passage pillar and the mask plate in the separator with a road pillar as the fourth stress relaxation layer and the fifth stress relaxation layer, A method for producing a solid oxide fuel cell, comprising sequentially stacking a cell with a fuel flow channel pillar and a separator with an air flow channel pillar, and then calcining and integrally sintering the cells.
【請求項2】 空気流路柱付きセパレータにおけるセパ
レータと各空気流路柱との間に、両者の熱収縮挙動とは
極端に違う熱収縮挙動を示す空気極材料を挟み込む請求
項1記載の固体電解質型燃料電池の製作方法。
2. The solid according to claim 1, wherein an air electrode material having a heat shrinkage behavior extremely different from the heat shrinkage behavior of the separator is sandwiched between the separator and each air flow passage pillar in the separator with an air flow passage pillar. Manufacturing method of electrolyte fuel cell.
JP4244006A 1992-08-21 1992-08-21 Manufacture of solid electrolytic fuel cell Pending JPH0668885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244006A JPH0668885A (en) 1992-08-21 1992-08-21 Manufacture of solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244006A JPH0668885A (en) 1992-08-21 1992-08-21 Manufacture of solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH0668885A true JPH0668885A (en) 1994-03-11

Family

ID=17112316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244006A Pending JPH0668885A (en) 1992-08-21 1992-08-21 Manufacture of solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH0668885A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866275A (en) * 1996-01-18 1999-02-02 Ngk Insulators, Ltd. Layered sintered body for electrochemical cells
US5964991A (en) * 1996-09-26 1999-10-12 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
JP2001205607A (en) * 2000-01-26 2001-07-31 Nippon Shokubai Co Ltd Ceramic sheet and its manufacturing method
EP1328035A1 (en) * 2002-01-09 2003-07-16 HTceramix S.A. - High Technology Electroceramics PEN of solid oxide fuel cell
US6720101B1 (en) 2001-06-08 2004-04-13 Palcan Fuel Cell Co. Ltd Solid cage fuel cell stack
WO2008044429A1 (en) * 2006-10-05 2008-04-17 Murata Manufacturing Co., Ltd. Solid electrolyte fuel battery support structure and solid electrolyte fuel battery module having same
EP1919021A3 (en) * 2006-10-24 2009-05-06 Ngk Insulators, Ltd. Thin plate member for unit cell of solid oxide fuel cell
JP2009252474A (en) * 2008-04-04 2009-10-29 Murata Mfg Co Ltd Solid electrolyte fuel battery and its manufacturing method
US7736787B2 (en) * 2005-09-06 2010-06-15 Nextech Materials, Ltd. Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
US8192888B2 (en) 2005-04-19 2012-06-05 Nextech Materials, Ltd. Two layer electrolyte supported fuel cell stack
WO2015025642A1 (en) * 2013-08-21 2015-02-26 株式会社村田製作所 Ceramic substrate for electrochemical element, method for manufacturing same, fuel cell, and fuel cell stack
JP2017147219A (en) * 2016-02-17 2017-08-24 日本碍子株式会社 Fuel cell stack

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866275A (en) * 1996-01-18 1999-02-02 Ngk Insulators, Ltd. Layered sintered body for electrochemical cells
US5964991A (en) * 1996-09-26 1999-10-12 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
US6183609B1 (en) 1996-09-26 2001-02-06 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
JP2001205607A (en) * 2000-01-26 2001-07-31 Nippon Shokubai Co Ltd Ceramic sheet and its manufacturing method
US6720101B1 (en) 2001-06-08 2004-04-13 Palcan Fuel Cell Co. Ltd Solid cage fuel cell stack
EP1328035A1 (en) * 2002-01-09 2003-07-16 HTceramix S.A. - High Technology Electroceramics PEN of solid oxide fuel cell
US8192888B2 (en) 2005-04-19 2012-06-05 Nextech Materials, Ltd. Two layer electrolyte supported fuel cell stack
US7736787B2 (en) * 2005-09-06 2010-06-15 Nextech Materials, Ltd. Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP5077238B2 (en) * 2006-10-05 2012-11-21 株式会社村田製作所 Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
WO2008044429A1 (en) * 2006-10-05 2008-04-17 Murata Manufacturing Co., Ltd. Solid electrolyte fuel battery support structure and solid electrolyte fuel battery module having same
EP1919021A3 (en) * 2006-10-24 2009-05-06 Ngk Insulators, Ltd. Thin plate member for unit cell of solid oxide fuel cell
JP2009252474A (en) * 2008-04-04 2009-10-29 Murata Mfg Co Ltd Solid electrolyte fuel battery and its manufacturing method
WO2015025642A1 (en) * 2013-08-21 2015-02-26 株式会社村田製作所 Ceramic substrate for electrochemical element, method for manufacturing same, fuel cell, and fuel cell stack
JP6044717B2 (en) * 2013-08-21 2016-12-14 株式会社村田製作所 CERAMIC SUBSTRATE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, FUEL CELL AND FUEL CELL STACK
US9722259B2 (en) 2013-08-21 2017-08-01 Murata Manufacturing Co., Ltd. Ceramic substrate for electrochemical element, manufacturing method therefore, fuel cell, and fuel cell stack
JP2017147219A (en) * 2016-02-17 2017-08-24 日本碍子株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
US4857420A (en) Method of making monolithic solid oxide fuel cell stack
KR101083701B1 (en) Reversible Solid Oxide Fuel Cell Stack and Method for Preparing Same
US5501914A (en) Solid oxide electrolyte fuel cell
KR101045168B1 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JPH08502851A (en) High temperature fuel cell stack and manufacturing method thereof
JP4845315B2 (en) Laminated structure and method for forming the same
JPH0668885A (en) Manufacture of solid electrolytic fuel cell
JP2016001610A (en) Fuel cell and method of manufacturing fuel cell
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP5113350B2 (en) Gas sealing method and structure for SOFC
EP1328994B1 (en) Electrode pattern for solid oxide fuel cells
JPH06349516A (en) Stack for solid electrolyte type fuel cell
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JPH07220730A (en) Solid electrolyte type fuel cell
WO2017145451A1 (en) Fuel cell power generation unit and fuel cell stack
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JP3310866B2 (en) Cylindrical horizontal stripe solid electrolyte fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH1167243A (en) Support for electrochemical cell, electrochemical cell, and its manufacture
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JP2005322452A (en) Cell plate for solid oxide fuel cell, and solid oxide fuel cell
JPH0837011A (en) Fuel cell base board in hollow flat plate form