JPH04303943A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04303943A
JPH04303943A JP3093363A JP9336391A JPH04303943A JP H04303943 A JPH04303943 A JP H04303943A JP 3093363 A JP3093363 A JP 3093363A JP 9336391 A JP9336391 A JP 9336391A JP H04303943 A JPH04303943 A JP H04303943A
Authority
JP
Japan
Prior art keywords
wiring
interlayer film
film
photoresist
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3093363A
Other languages
Japanese (ja)
Inventor
Kou Noguchi
江 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3093363A priority Critical patent/JPH04303943A/en
Publication of JPH04303943A publication Critical patent/JPH04303943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a method for manufacturing a connection structure, between multilayer wiring, which increases the operating speed of the title device and which can make the device fine. CONSTITUTION:The title manufacture includes the following steps; a process to form first wiring 2 composed of one layer or a plurality of layers so as to be a prescribed shape; a process to cover one part of the first wiring 3 with a mask material, to each the wiring down to the halfway part of its film thickness and to form a pillar-shaped protrusion 7 in one part of the first wiring 2; a process to form an interlayer film 5 on the whole surface so as to cover the first wiring 2; a process to each the interlayer film 5 until the surface of the pillar-shaped protrusion 7 is revealed; and a process to form second wiring 6 on the interlayer film 5 so as to cover one part or the whole of the pillar- shaped protrusion 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に多層配線間の接続構造を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a connection structure between multilayer interconnections.

【0002】0002

【従来の技術】従来の多層配線を有する半導体装置にお
ける異なる配線層間を接続する方法を図6を用いて説明
する。先ず、図6(a)のように、絶縁膜1上に第1の
配線2を全面に形成し、この上に第1の配線領域となる
パターンでフォトレジスト3を形成する。次に、図6(
b)のように、フォトレジスト3をマスクとして第1の
配線2を異方性エッチングし、第1の配線のパターンを
形成する。
2. Description of the Related Art A method for connecting different wiring layers in a conventional semiconductor device having multilayer wiring will be described with reference to FIG. First, as shown in FIG. 6A, a first wiring 2 is formed on the entire surface of an insulating film 1, and a photoresist 3 is formed thereon in a pattern that will become a first wiring area. Next, Figure 6 (
As shown in b), the first wiring 2 is anisotropically etched using the photoresist 3 as a mask to form a first wiring pattern.

【0003】次に、図6(c)のように、フォトレジス
ト3を除去し、全面に層間膜5を形成し、第1の配線2
の所定の領域上の層間膜5にビアホール8を開孔する。 次に、図6(d)のように、全面に第2の配線6として
アルミニウムをスパッタリング法により形成し、所定の
形状のフォトレジストをマスクとして第2の配線を異方
性エッチングすることにより、第1の配線2と第2の配
線6とがビアホール8を通じて接続されることになる。
Next, as shown in FIG. 6(c), the photoresist 3 is removed, an interlayer film 5 is formed on the entire surface, and the first wiring 2 is formed.
A via hole 8 is formed in the interlayer film 5 on a predetermined region of the via hole 8 . Next, as shown in FIG. 6(d), aluminum is formed as a second wiring 6 on the entire surface by sputtering, and the second wiring is anisotropically etched using a photoresist in a predetermined shape as a mask. The first wiring 2 and the second wiring 6 are connected through the via hole 8.

【0004】0004

【発明が解決しようとする課題】この従来の多層配線間
の接続方法では、第1の配線と第2の配線が接続される
ビアホール8の部位においては、層間膜5の段部によっ
て第2の配線6のカバレッジ性が悪く、第2の配線6の
膜厚が平坦部の膜厚に比べ非常に薄くなる。このため、
第2の配線6のビアホール8における配線の断面積が小
さくなり、エレクトロマイグレーションに弱くなり、或
いは抵抗が高くなって動作速度の低下をもたらすという
問題が生じる。このような段部における第2の配線6の
形状を良くするためには、ビアホール8の上部を等方性
エッチングで開孔し、或いは層間膜5の膜厚を小さくす
るという対策が考えられるが、前者は第2の配線の微細
化にとって不利であり、また後者は第2の配線の容量が
大きくなり、動作速度の低下につながるという別な問題
が生じることになる。本発明の目的は動作速度を高めか
つ微細化を可能とした半導体装置の製造方法を提供する
ことにある。
[Problems to be Solved by the Invention] In this conventional method for connecting multilayer wiring, in the region of the via hole 8 where the first wiring and the second wiring are connected, the step of the interlayer film 5 connects the second wiring. The coverage of the wiring 6 is poor, and the thickness of the second wiring 6 is much thinner than the thickness of the flat portion. For this reason,
A problem arises in that the cross-sectional area of the second wiring 6 in the via hole 8 becomes small, making it susceptible to electromigration or increasing the resistance, resulting in a reduction in operating speed. In order to improve the shape of the second wiring 6 in such a stepped portion, it is possible to open the upper part of the via hole 8 by isotropic etching or to reduce the thickness of the interlayer film 5. The former is disadvantageous for miniaturization of the second wiring, and the latter causes another problem in that the capacitance of the second wiring increases, leading to a reduction in operating speed. An object of the present invention is to provide a method for manufacturing a semiconductor device that increases operating speed and enables miniaturization.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、1層または複数の層よりなる第1の配線を所
定の形状に形成する工程と、この第1の配線の一部をマ
スク材で覆ってこれを膜厚の途中までエッチング除去し
、この第1の配線の一部に柱状突起を形成する工程と、
第1の配線を覆うように全面に層間膜を形成する工程と
、前記柱状突起の上面のみが表れるまで前記層間膜をエ
ッチングする工程と、前記柱状突起の一部または全部を
覆うように前記層間膜上に第2の配線を形成する工程と
を含んでいる。
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention includes a step of forming a first wiring made of one layer or a plurality of layers into a predetermined shape, and a step of forming a part of the first wiring. Covering with a mask material and etching away the mask material to the middle of the film thickness to form a columnar protrusion on a part of the first wiring;
a step of forming an interlayer film on the entire surface so as to cover the first wiring; a step of etching the interlayer film until only the upper surface of the columnar projection is exposed; and a step of etching the interlayer film so as to cover part or all of the columnar projection. The method includes a step of forming a second wiring on the film.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。図1及び図2は本発明の第1実施例を工程順に示す
断面図であり、図1は第1の配線を形成する工程を示し
、図2は第2の配線を形成する工程を示している。先ず
、図1(a)のように、絶縁膜1上に第1の配線2とし
てアルミニウム膜を約2μm形成する。このアルミニウ
ム膜の膜厚は、第1の配線として最終的に必要な膜厚よ
りは厚くしておく。そして、この第1の配線上に所定の
形状のフォトレジスト3を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. 1 and 2 are cross-sectional views showing the first embodiment of the present invention in the order of steps. FIG. 1 shows the step of forming the first wiring, and FIG. 2 shows the step of forming the second wiring. There is. First, as shown in FIG. 1(a), an aluminum film having a thickness of about 2 μm is formed as a first wiring 2 on an insulating film 1. The thickness of this aluminum film is set to be thicker than the thickness ultimately required for the first wiring. Then, a photoresist 3 having a predetermined shape is formed on this first wiring.

【0007】次に、図1(b)のように、フォトレジス
ト3をマスクとして第1の配線2を異方性エッチングし
、第1の配線を形成する。そして、フォトレジスト3を
除去した上で、図1(c)のように第1の配線と第2の
配線を接続すべき領域のみにフォトレジスト4を形成す
る。次に、図1(d)のように、フォトレジスト4をマ
スクとして第1の配線2を異方性エッチングする。この
時、第1の配線の膜厚がおよそ1μmになるように途中
でエッチングを止める。この結果、第1の配線と第2の
配線とが接続する予定領域の第1の配線に約1μmの柱
状突起7が形成される。
Next, as shown in FIG. 1B, the first wiring 2 is anisotropically etched using the photoresist 3 as a mask to form a first wiring. Then, after removing the photoresist 3, a photoresist 4 is formed only in the region where the first wiring and the second wiring are to be connected, as shown in FIG. 1(c). Next, as shown in FIG. 1D, the first wiring 2 is anisotropically etched using the photoresist 4 as a mask. At this time, etching is stopped midway so that the film thickness of the first wiring becomes approximately 1 μm. As a result, a columnar protrusion 7 of about 1 μm is formed on the first wire in the area where the first wire and the second wire are to be connected.

【0008】次に、第2の配線を形成する工程として、
図2(a)のように、フォトレジスト4を除去した後に
、全面に層間膜5を形成する。層間膜は例えば化学的気
相成長法による酸化膜または塗布膜またはこれらを組み
合わせた構成が可能である。次に、図2(b)のように
、第1の配線の上面が現れる程度に層間膜5をエッチン
グする。このエッチングは、層間膜5の表面が平坦に近
い場合は、全面エッチングバックを行えばよい。また層
間膜5の表面が下地の第1の配線2を反映して凹凸であ
る場合は、例えばレジスト等の膜を塗布し表面を平坦に
してからエッチングバックし、後で塗布膜を除去すれば
よい。
Next, as a step of forming the second wiring,
As shown in FIG. 2(a), after removing the photoresist 4, an interlayer film 5 is formed on the entire surface. The interlayer film can be, for example, an oxide film formed by chemical vapor deposition, a coating film, or a combination thereof. Next, as shown in FIG. 2(b), the interlayer film 5 is etched to such an extent that the upper surface of the first wiring is exposed. This etching may be performed by etching back the entire surface if the surface of the interlayer film 5 is nearly flat. In addition, if the surface of the interlayer film 5 is uneven reflecting the underlying first wiring 2, for example, apply a film such as a resist to make the surface flat, then etch back, and remove the applied film later. good.

【0009】しかる上で、図2(c)のように、全面に
第2の配線6としてアルミニウム膜を1μm形成し、フ
ォトレジストをマスクとして異方性エッチングすること
により第1の配線2と第2の配線6とが、第1の配線か
ら形成された柱状突起7を介して接続されることになる
。尚、図3は、第1の配線2と第2の配線6とが接続す
る領域の平面図であり、そのA−A断面が図2(c)に
相当する。
Then, as shown in FIG. 2C, an aluminum film of 1 μm thickness is formed as the second wiring 6 on the entire surface, and anisotropic etching is performed using a photoresist as a mask to form the first wiring 2 and the second wiring 6. The second wiring 6 is connected to the second wiring 6 via the columnar protrusion 7 formed from the first wiring. Note that FIG. 3 is a plan view of a region where the first wiring 2 and the second wiring 6 are connected, and the AA cross section thereof corresponds to FIG. 2(c).

【0010】この実施例では第2の配線6は平坦部に形
成されるため、第2の配線の膜厚が薄くなる箇所がなく
、電気的信頼性及び電気的性能は改善される。また、第
1の配線2と第2の配線6の接続部のビアホール部は垂
直段であるため、ビアホールに対する第2の配線の覆い
の余裕は小さくてすみ、第2の配線の微細化、高密度化
を容易にするという利点を有する。
In this embodiment, since the second wiring 6 is formed in a flat area, there is no part where the thickness of the second wiring becomes thin, and electrical reliability and electrical performance are improved. In addition, since the via hole at the connection between the first wiring 2 and the second wiring 6 is a vertical step, there is only a small margin for covering the via hole with the second wiring, which makes it possible to miniaturize and heighten the second wiring. It has the advantage of facilitating densification.

【0011】図4及び図5は本発明の第2実施例を工程
順に示す断面図である。先ず、第1の配線の形成工程は
、図4(a)のように、絶縁膜1上に第1層配線2Aと
してアルミニウム膜を1μm形成する。更に、この上に
第2層配線2Bとしてチタン膜を 0.1μm、第3層
配線2Cとしてアルミニウム膜を1μm形成する。そし
て、第1層目の配線の形状に形成したフォトレジスト3
を形成する。その上で、図4(b)のように、フォトレ
ジストをマスクとして第3層配線2C、第2層配線2B
、第1層配線2Aを異方性エッチングし、第1の配線2
を形成する。
FIGS. 4 and 5 are cross-sectional views showing the second embodiment of the present invention in the order of steps. First, in the step of forming the first wiring, as shown in FIG. 4A, an aluminum film of 1 μm thickness is formed as the first layer wiring 2A on the insulating film 1. Furthermore, a titanium film with a thickness of 0.1 μm is formed as a second layer wiring 2B, and an aluminum film is formed with a thickness of 1 μm as a third layer wiring 2C. Then, a photoresist 3 is formed in the shape of the first layer wiring.
form. Then, as shown in FIG. 4(b), the third layer wiring 2C and the second layer wiring 2B are formed using a photoresist as a mask.
, the first layer wiring 2A is anisotropically etched, and the first wiring 2A is anisotropically etched.
form.

【0012】次に、図4(c)のように、フォトレジス
トを除去し、改めて接続を行う領域にのみフォトレジス
ト4を形成し、このフォトレジスト4をマスクとして、
図4(d)のように、第3層配線2Cのみを異方性エッ
チングする。エッチングは第3層配線2Cと第2層配線
2Bとの選択比が十分大きくなるような条件で行えば、
容易に第3層配線2Cのみをエッチングすることができ
る。その後、フォトレジスト4を除去すると、第1の配
線と第2の配線とが接続する領域にのみ、第3層配線2
Cで形成された柱状突起7が形成されることになる。
Next, as shown in FIG. 4(c), the photoresist is removed and a photoresist 4 is formed only in the area where connections are to be made again, and this photoresist 4 is used as a mask.
As shown in FIG. 4(d), only the third layer wiring 2C is anisotropically etched. If the etching is performed under conditions such that the selectivity between the third layer wiring 2C and the second layer wiring 2B is sufficiently large,
Only the third layer wiring 2C can be easily etched. After that, when the photoresist 4 is removed, the third layer wiring 2 is removed only in the area where the first wiring and the second wiring connect.
A columnar projection 7 made of C is formed.

【0013】次に、図5(a)のように、全面に層間膜
5を形成する。層間膜は第1実施例と同様に、例えば化
学的気相成長法による酸化膜、または塗布膜、またはこ
れらを組み合わせた構成が可能である。そして、図5(
b)のように、柱状突起7の上面が現れる程度に層間膜
5をエッチングする。エッチングは第1実施例に述べた
方法を用いればよい。
Next, as shown in FIG. 5(a), an interlayer film 5 is formed on the entire surface. As in the first embodiment, the interlayer film can be, for example, an oxide film formed by chemical vapor deposition, a coating film, or a combination of these. And Figure 5 (
As shown in b), the interlayer film 5 is etched to such an extent that the upper surfaces of the columnar projections 7 are exposed. For etching, the method described in the first embodiment may be used.

【0014】次に、全面に第2の配線6として例えばア
ルミニウム膜を1μm形成し、フォトレジストをマスク
として異方性エッチングを行い、図5(c)のように、
第2の配線6を形成する。この結果、第1の配線2と第
2の配線6とが、第3層配線2Cで形成される柱状突起
7を介して接続されることになる。尚、この第2実施例
では、柱状突起7を形成するための第3層配線2Cと第
1層配線2Aとの間にエッチング速度の小さい第2層金
属層2Bを挟んでいるため、第3層配線2Cのエッチン
グの際に、下層の第1層配線2Aをエッチングすること
がなく、第1の配線2の膜厚および柱状突起7の高さは
変動が少なく安定しているという利点を有する。
Next, for example, an aluminum film of 1 μm thickness is formed as the second wiring 6 on the entire surface, and anisotropic etching is performed using a photoresist as a mask, as shown in FIG. 5(c).
A second wiring 6 is formed. As a result, the first wiring 2 and the second wiring 6 are connected via the columnar protrusion 7 formed by the third layer wiring 2C. In this second embodiment, since the second layer metal layer 2B having a low etching rate is sandwiched between the third layer wiring 2C and the first layer wiring 2A for forming the columnar protrusions 7, When etching the layer wiring 2C, the underlying first layer wiring 2A is not etched, and the film thickness of the first wiring 2 and the height of the columnar protrusions 7 have the advantage of being stable with little variation. .

【0015】[0015]

【発明の効果】以上説明したように本発明は、第1の配
線の一部に柱状突起を形成し、この柱状突起を利用して
第2の配線に接続させるように製造を行うので、多層配
線間の接続部における第2の配線の膜厚が薄くなること
がなく、上下の配線の接続部におけるエレクトロマイグ
レーションに対する耐性を平坦部における耐性と同等に
向上させることができる。又、第2の配線が平坦に形成
できるので、この上に更に配線を形成する際にも、その
上層の層間膜及び配線を平坦に形成でき、多層配線を形
成する上で有利となる。又、第1の配線と第2の配線の
接続は、垂直な形状の金属層で構成される柱状突起で行
われることになるため、接続部の面積増大がなく、配線
の微細化,高密度化を容易にするという利点がある。こ
の場合、接続は第1の配線の一部を用いて行われるため
、従来の製造工程をそるまま利用して実現できる効果も
ある。更に、層間膜の膜厚は、第1の配線の異方性エッ
チングが安定にできる範囲内で厚くすることが可能であ
るため配線容量は従来例の 1/2〜 1/3程度に低
減でき、素子動作速度の向上につながる効果もある。
Effects of the Invention As explained above, the present invention forms a columnar protrusion on a part of the first wiring, and manufactures it by using this columnar protrusion to connect it to the second wiring. The film thickness of the second wiring at the connection portion between the wirings does not become thinner, and the resistance to electromigration at the connection portion between the upper and lower wirings can be improved to the same level as the resistance at the flat portion. In addition, since the second wiring can be formed flat, even when further wiring is formed thereon, the upper interlayer film and the wiring can be formed flat, which is advantageous in forming multilayer wiring. In addition, since the connection between the first wiring and the second wiring is made by a columnar protrusion made of a vertically shaped metal layer, there is no increase in the area of the connection part, and it is possible to miniaturize and high-density wiring. It has the advantage of being easy to implement. In this case, since the connection is made using a part of the first wiring, there is an advantage that the conventional manufacturing process can be used without modification. Furthermore, since the thickness of the interlayer film can be increased within a range that allows stable anisotropic etching of the first wiring, the wiring capacitance can be reduced to about 1/2 to 1/3 of that of the conventional example. This also has the effect of improving device operating speed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)乃至(d)は本発明の第1実施例の第1
の配線の製造方法を工程順に示す断面図である。
[Fig. 1] (a) to (d) are first embodiments of the present invention.
FIG. 3 is a cross-sectional view showing the method for manufacturing the wiring in order of steps.

【図2】(a)乃至(c)は本発明の第1実施例の第2
の配線の製造方法を工程順に示す断面図である。
FIG. 2 (a) to (c) are second embodiments of the first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the method for manufacturing the wiring in order of steps.

【図3】本発明の第1実施例の完成状態の平面図であり
、そのA−A線断面図が図2(c)に相当する図である
FIG. 3 is a plan view of the completed state of the first embodiment of the present invention, and a cross-sectional view taken along the line A-A corresponds to FIG. 2(c).

【図4】(a)乃至(d)は本発明の第2実施例の第1
の配線の製造方法を工程順に示す断面図である。
FIG. 4 (a) to (d) are the first embodiment of the second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the method for manufacturing the wiring in order of steps.

【図5】(a)乃至(c)は本発明の第2実施例の第2
の配線の製造方法を工程順に示す断面図である。
FIG. 5(a) to (c) are the second embodiment of the second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the method for manufacturing the wiring in order of steps.

【図6】(a)乃至(d)は従来の配線構造の製造方法
を工程順に示す断面図である。
FIGS. 6(a) to 6(d) are cross-sectional views showing a conventional method for manufacturing a wiring structure in the order of steps;

【符号の説明】[Explanation of symbols]

1  絶縁膜 2  第1の配線 2A  第1層配線  2B  第2層配線  2C 
 第3層配線 3,4  フォトレジスト 5  層間膜 6  第2の配線 7  柱状突起
1 Insulating film 2 First wiring 2A First layer wiring 2B Second layer wiring 2C
Third layer wiring 3, 4 Photoresist 5 Interlayer film 6 Second wiring 7 Columnar projection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  1層または複数の層よりなる第1の配
線を所定の形状に形成する工程と、この第1の配線の一
部をマスク材で覆ってこれを膜厚の途中までエッチング
除去し、この第1の配線の一部に柱状突起を形成する工
程と、第1の配線を覆うように全面に層間膜を形成する
工程と、前記柱状突起の上面が表れるまで前記層間膜を
エッチングする工程と、前記柱状突起の一部または全部
を覆うように前記層間膜上に第2の配線を形成する工程
とを含むことを特徴とする半導体装置の製造方法。
Claim 1: A step of forming a first wiring made of one or more layers into a predetermined shape, and covering a part of the first wiring with a mask material and etching it away to the middle of the film thickness. Then, a step of forming a columnar projection on a part of the first wiring, a step of forming an interlayer film on the entire surface so as to cover the first wiring, and etching the interlayer film until the upper surface of the columnar projection is exposed. and forming a second wiring on the interlayer film so as to cover part or all of the columnar protrusion.
JP3093363A 1991-03-30 1991-03-30 Manufacture of semiconductor device Pending JPH04303943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093363A JPH04303943A (en) 1991-03-30 1991-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093363A JPH04303943A (en) 1991-03-30 1991-03-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04303943A true JPH04303943A (en) 1992-10-27

Family

ID=14080210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093363A Pending JPH04303943A (en) 1991-03-30 1991-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04303943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773365A (en) * 1996-05-29 1998-06-30 Nec Corporation Fabrication process of semiconductor device
KR20000028094A (en) * 1998-10-30 2000-05-25 김영환 Method for forming wire for semiconductor device
KR20020086098A (en) * 2001-05-11 2002-11-18 아남반도체 주식회사 a contact structure for interconnecting multi-level wires and a method for forming the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773365A (en) * 1996-05-29 1998-06-30 Nec Corporation Fabrication process of semiconductor device
KR20000028094A (en) * 1998-10-30 2000-05-25 김영환 Method for forming wire for semiconductor device
KR20020086098A (en) * 2001-05-11 2002-11-18 아남반도체 주식회사 a contact structure for interconnecting multi-level wires and a method for forming the same

Similar Documents

Publication Publication Date Title
JPH0982804A (en) Semiconductor device and manufacture thereof
JPH08306774A (en) Semiconductor device and its fabrication
JP2973423B2 (en) Superconducting element and manufacturing method thereof
US5427982A (en) Method for fabricating a semiconductor device
JP2665568B2 (en) Method for manufacturing semiconductor device
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JPH04303943A (en) Manufacture of semiconductor device
JPS59155128A (en) Manufacture of semiconductor device
JP2738682B2 (en) Wiring formation method
JPH04139828A (en) Manufacture of semiconductor device
JPH09306992A (en) Semiconductor device and manufacture thereof
JPH0856024A (en) Manufacture of integrated circuit
JPS6254427A (en) Manufacture of semiconductor device
JP3033839B2 (en) Method for forming contact hole in semiconductor device
JPH0570301B2 (en)
JPH0415925A (en) Manufacture of semiconductor device
JPS63207153A (en) Manufacture of semiconductor device
JPH01189939A (en) Semiconductor integrated circuit
JPS62264642A (en) Formation of through holes
JP2699389B2 (en) Method for manufacturing semiconductor device
JP2723560B2 (en) Method for manufacturing semiconductor device
JPH03205829A (en) Manufacture of semiconductor device
JPS61296722A (en) Manufacture of semiconductor device
JPH02113553A (en) Manufacture of semiconductor integrated circuit
JPH079933B2 (en) Method for manufacturing semiconductor device