JPH04303920A - Insulating film/iii-v compound semiconductor stacked structure on group iv substrate - Google Patents

Insulating film/iii-v compound semiconductor stacked structure on group iv substrate

Info

Publication number
JPH04303920A
JPH04303920A JP9334491A JP9334491A JPH04303920A JP H04303920 A JPH04303920 A JP H04303920A JP 9334491 A JP9334491 A JP 9334491A JP 9334491 A JP9334491 A JP 9334491A JP H04303920 A JPH04303920 A JP H04303920A
Authority
JP
Japan
Prior art keywords
gaas
group
iii
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9334491A
Other languages
Japanese (ja)
Inventor
Kazuo Mori
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9334491A priority Critical patent/JPH04303920A/en
Publication of JPH04303920A publication Critical patent/JPH04303920A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an insulating film/III-V compound semiconductor stacked structure which is formed on a group TV semiconductor single-crystal substrate, whose quality is high and in which the surface of a III-V compound semiconductor single crystal has a large area. CONSTITUTION:A first SiO2 film 2 formed on an Si substrate 1 has an opening part in which the Si substrate 1 to be used as a seed is revealed; a second SiO2 film 3 whose area is larger than the opening part is buried in the upper part of the opening part and in a GaAs growth layer 4 so as to cover the opening part. This structure can be formed in the following manner: a structure provided with a cavity sandwiched between two films by the first SiO2 film 2 and the second SiO2 film 3 is formed beforehand; and GaAs is grown to the transverse direction from the opening part in the SiO2 film 2 by making use of the two SiO2 films as a guide. In the structure, the rise of a dislocation 5 generated at the interface of GaAs/Si in the part of the seed is stopped by the second SiO2 film 3. As a result, the dislocation is not passed up to the surface of the GaAs growth layer 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はIV族半導体単結晶基板
上に形成された高品質かつ大面積なIII −V族化合
物半導体単結晶表面を有する絶縁膜/III −V族化
合物半導体積層構造に関する。
[Field of Industrial Application] The present invention relates to an insulating film/III-V compound semiconductor stacked structure having a high-quality, large-area III-V compound semiconductor single-crystal surface formed on a group-IV semiconductor single-crystal substrate. .

【0002】0002

【従来の技術】現在、Siに代表されるIV族半導体単
結晶基板上にGaAsに代表されるIII−V族化合物
半導体単結晶薄膜を形成する試みが活発に行なわれてい
る。 これは、このような薄膜構造が形成できると、III 
−V族化合物半導体高機能素子を安価なSi基板上に作
製でき、またSiの高い熱伝導率によって光素子等の性
能向上が期待できるためである。さらにSi基板上に選
択的にIII −V族化合物半導体単結晶薄膜を形成で
きれば、Si超高集積回路とIII −V族化合物半導
体超高速素子や光素子を同一基板上に形成できるため、
新しい高機能素子の開発が予測されるからである。
2. Description of the Related Art At present, attempts are being made to form single crystal thin films of group III-V compound semiconductors such as GaAs on single crystal substrates of group IV semiconductors such as Si. This means that if such a thin film structure can be formed, III
This is because a high-performance -V group compound semiconductor device can be fabricated on an inexpensive Si substrate, and the high thermal conductivity of Si can be expected to improve the performance of optical devices and the like. Furthermore, if a III-V group compound semiconductor single crystal thin film can be selectively formed on a Si substrate, a Si ultra-high integrated circuit and a III-V group compound semiconductor ultra-high-speed device or optical device can be formed on the same substrate.
This is because the development of new high-performance devices is predicted.

【0003】しかしながら、III −V族化合物半導
体結晶はIII 族とV族の2種類の元素から成る有極
性結晶であるのに対し、IV族半導体単結晶基板は単一
元素から成る無極性結晶である。従って、通常用いられ
る(100) 面方位を有するIV族半導体単結晶基板
上にIII −V族化合物半導体単結晶薄膜をエピタキ
シャル成長させようとする場合、III 族とV族の配
列の位相がずれ、極性が反転した領域、いわゆるアンチ
・フェイズ・ドメインができやすく、全基板面内でII
I 族とV族の配列の位相がそろったいわゆるシングル
・ドメイン単結晶薄膜を確実に得ることはごく最近まで
は困難であった。
However, while III-V compound semiconductor crystals are polar crystals made of two types of elements, Group III and V, group IV semiconductor single crystal substrates are nonpolar crystals made of a single element. be. Therefore, when attempting to epitaxially grow a III-V group compound semiconductor single crystal thin film on a commonly used group IV semiconductor single crystal substrate having a (100) plane orientation, the phase of the group III and group V arrangements is shifted, resulting in polarity. A so-called anti-phase domain, which is a region where the
Until very recently, it has been difficult to reliably obtain so-called single domain single crystal thin films in which the I and V groups are aligned in phase.

【0004】この問題を解決するために考えられたのが
雑誌「ジャパニーズ・ジャーナル・オブ・アプライド・
フィジクス(Jpn.J.Appl.Phys.)」第
24巻第6号(1985年)第L391−393頁に説
明されている「二段階成長法」と呼ばれる方法である。 すなわちSi単結晶基板の温度を450℃以下の低温と
してまず20nm程度の微細な多結晶もしくは非晶質状
のGaAsバッファ層を堆積した後、Si単結晶基板の
温度を通常の成長温度、上記文献の場合は600℃とし
てGaAs単結晶薄膜を成長させる方法である。この方
法によってシングル・ドメイン単結晶薄膜を確実に得る
ことができるようになった。微細な多結晶もしくは非晶
質状のGaAs薄膜は温度を600℃に昇温する間にア
ニールされて単結晶化する。上記文献の結果はMOCV
D法によるものであったが、以後MBE法でも同様に二
段階成長法が有効であることが確認された。
[0004] The magazine ``Japanese Journal of Applied Science'' was devised to solve this problem.
This is a method called the "two-step growth method" described in "Physics (Jpn. J. Appl. Phys.)", Vol. 24, No. 6 (1985), pp. L391-393. That is, after setting the temperature of the Si single crystal substrate to a low temperature of 450° C. or less and depositing a fine polycrystalline or amorphous GaAs buffer layer of about 20 nm, the temperature of the Si single crystal substrate was set to the normal growth temperature, and then the temperature of the Si single crystal substrate was set to a low temperature of 450° C. In this case, a GaAs single crystal thin film is grown at 600°C. This method has made it possible to reliably obtain single-domain single-crystal thin films. The fine polycrystalline or amorphous GaAs thin film is annealed and turned into a single crystal while the temperature is raised to 600°C. The results of the above literature are MOCV
Although this method was based on the D method, it has since been confirmed that the two-step growth method is similarly effective for the MBE method.

【0005】ところで半導体薄膜の素子応用の観点から
はシングル・ドメイン化とともに結晶品質の向上が重要
である。しかし通常Si基板上にGaAsなどのIII
 −V族化合物半導体を成長すると、SiとGaAsの
界面には基板と成長層との格子不整合から予想されるよ
りはるかに多くの転位や積層欠陥が発生し、さらにその
一部は容易に上層まで伸びて貫通転位となる。二段階成
長法で成長したGaAs層の転位密度は数um厚の成長
表面で約108 cm−2にも達する。その後、歪超格
子層の挿入や熱サイクルアニールの導入で約106 c
m−2まで転位密度は急速に改善された。しかしこの1
06 cm−2を大きな壁としてその後は進展が見られ
ない状態にある。
From the viewpoint of device applications of semiconductor thin films, it is important to improve crystal quality as well as to create a single domain. However, it is common to use III such as GaAs on a Si substrate.
- When a group V compound semiconductor is grown, far more dislocations and stacking faults occur at the interface between Si and GaAs than would be expected from the lattice mismatch between the substrate and the grown layer, and some of them are easily formed in the upper layer. It extends to a threading dislocation. The dislocation density of the GaAs layer grown by the two-step growth method reaches approximately 108 cm-2 on the growth surface of several um thick. After that, by inserting a strained superlattice layer and introducing thermal cycle annealing, the
The dislocation density improved rapidly up to m-2. But this one
06 cm-2 has become a major barrier and no progress has been seen since then.

【0006】この貫通転位の問題を回避する1つの方法
として注目されるのがGaAs/絶縁膜/Si基板構造
の採用である。この様な構造は基板の露出したシード部
分から絶縁膜マスク上へ横方向成長を行なうことで形成
することができる。たとえば雑誌「ジャパニーズ・ジャ
ーナル・オブ・アプライド・フィジクス(Jpn.J.
Appl.Phys.)」第28巻第3号(1989年
)の第L337−339頁に説明されているように、液
相成長法(LPE法)でマスク上へ横方向成長して形成
したGaAs/絶縁膜/Si構造部分のGaAs膜はほ
ぼ無転位となることが報告されている。GaAs/Si
界面で発生した転位は主にシード部分の上方のみに伸び
、横方向には伸びないためである。
One method to avoid this problem of threading dislocations is to employ a GaAs/insulating film/Si substrate structure. Such a structure can be formed by lateral growth from an exposed seed portion of the substrate onto an insulating film mask. For example, the magazine ``Japanese Journal of Applied Physics (Jpn.J.
Appl. Phys. ), Vol. 28, No. 3 (1989), pages L337-339, GaAs/insulating film/ It has been reported that the GaAs film in the Si structure portion has almost no dislocations. GaAs/Si
This is because dislocations generated at the interface mainly extend only above the seed portion and do not extend laterally.

【0007】[0007]

【発明が解決しようとする課題】Si基板上に良質のI
II −V族化合物半導体薄膜を得るために採用された
上記従来構造の問題点を考えてみる。
[Problem to be solved by the invention] Good quality I on a Si substrate
Let us consider the problems of the above-mentioned conventional structure adopted to obtain a II-V compound semiconductor thin film.

【0008】GaAs/絶縁膜/Si構造を形成するた
めには基板に対して垂直方向の成長が十分に抑えられた
横方向成長が必要であり、そのため熱平衡に極めて近い
条件で成長を行なうLPE法が使われた。しかしLPE
法では成長温度が約750℃と高い。そのため基板およ
び絶縁膜と成長膜との熱膨脹係数差のために成長膜にク
ラックが入ったり歪が残ってしまい問題となる。またL
PE法では扱うことができる基板の大きさと枚数に制限
がある。その点、横方向成長にハロゲン輸送法や有機金
属気相成長法(MOCVD法)など気相成長法(VPE
法)を用いることができるならば、より低い温度で成長
でき、量産性に優れており、またデバイス性能の向上に
必要な薄膜構造の成長も可能であるため有利である。し
かしVPE法では基板面方位が特に(111) 面であ
る場合を除くと、デバイス作製に重要な(100)面な
どでの十分な横方向成長は得られない。
In order to form a GaAs/insulating film/Si structure, lateral growth with sufficient suppression of growth perpendicular to the substrate is required, and therefore the LPE method, which performs growth under conditions extremely close to thermal equilibrium, is required. was used. However, L.P.E.
In this method, the growth temperature is as high as about 750°C. Therefore, due to the difference in coefficient of thermal expansion between the substrate and the insulating film and the grown film, cracks or distortions remain in the grown film, causing problems. Also L
In the PE method, there are limits to the size and number of substrates that can be handled. In this respect, vapor phase epitaxy (VPE) methods such as halogen transport method and metal organic chemical vapor deposition method (MOCVD method) are used for lateral growth.
If the method can be used, it is advantageous because it can be grown at a lower temperature, has excellent mass productivity, and also allows the growth of thin film structures necessary for improving device performance. However, in the VPE method, sufficient lateral growth cannot be obtained in the (100) plane, which is important for device fabrication, unless the substrate plane orientation is particularly the (111) plane.

【0009】またマスク上への横方向成長速度には限界
があるので、大きな面積を得るにはたとえばシード部分
を近接して多数配置し横方向成長する必要がある。それ
ぞれのシードからの成長部分はいずれ合体するので一応
大面積化できる。しかしこの構造では転位密度の高いシ
ード領域が表面に周期的に残ってしまう。
Furthermore, since there is a limit to the rate of lateral growth on the mask, in order to obtain a large area, it is necessary, for example, to arrange a large number of seed portions close to each other for lateral growth. The growing parts from each seed will eventually coalesce, so it can be made into a large area. However, in this structure, seed regions with high dislocation density remain periodically on the surface.

【0010】本発明の目的はこのような従来技術の欠点
を克服し、IV族半導体単結晶基板上に高品質なIII
 −V族半導体単結晶表面を有する絶縁膜/III −
V族化合物半導体積層構造を提供することにある。
An object of the present invention is to overcome the drawbacks of the prior art and to produce high-quality III-III semiconductors on a single-crystal group-IV semiconductor substrate.
-Insulating film with group V semiconductor single crystal surface/III-
An object of the present invention is to provide a group V compound semiconductor stacked structure.

【0011】[0011]

【課題を解決するための手段】本発明によれば、IV族
単結晶基板上に非晶質絶縁膜およびIII −V族化合
物半導体単結晶薄膜が交互に積層され、表面はIII 
−V族化合物半導体単結晶であることを基本とする構造
において、前記積層体は少なくとも2層以上の非晶質絶
縁膜層を含み、それぞれの非晶質絶縁膜層はその占有面
内の一部に上下に貫通する穴を有し、この穴を通して上
下のIII −V族化合物半導体単結晶層またはIV族
単結晶基板が互に接続されており、さらに1つの非晶質
絶縁膜層に開けられた前記穴の面内方向の位置はその1
つ上方または下方の非晶質絶縁膜層の穴の位置と重なら
ないことを特徴とするIV族基板上の絶縁膜/III 
−V族化合物半導体積層構造が得られる。
[Means for Solving the Problems] According to the present invention, an amorphous insulating film and a III-V group compound semiconductor single crystal thin film are alternately laminated on a group IV single crystal substrate, and the surface is
- In a structure based on a group V compound semiconductor single crystal, the laminate includes at least two or more amorphous insulating film layers, and each amorphous insulating film layer covers one part of its occupied surface. The upper and lower III-V group compound semiconductor single crystal layers or IV group single crystal substrates are connected to each other through this hole, and a hole is formed in one amorphous insulating film layer. The position of the hole in the in-plane direction is 1
An insulating film on a group IV substrate characterized in that it does not overlap with the position of a hole in an upper or lower amorphous insulating film layer/III
- A group V compound semiconductor stacked structure is obtained.

【0012】0012

【作用】従来のGaAs/絶縁膜/Si構造の利点はG
aAs/Si界面で発生した転位が主にシード部分の上
方のみに伸び、横方向には伸びないことである。そこで
転位のこの様な性質に加え、さらに非晶質、即ち原子配
列に周期性のない絶縁膜中へは転位の貫通が起こらない
という性質も考慮することで本発明の積層構造が得られ
た。すなわち図1に示すようにSi基板1の上に設けら
れた第一のSiO2 膜2にはシードとなるSi基板1
の露出した開口部があり、この開口部の上方、GaAs
成長層4中に開口部より面積の大きい第二のSiO2 
膜3が開口部を覆う形で埋め込まれている。この様な構
造では、シード部分のGaAs/Si界面で発生した転
位の上昇が第二のSiO2 膜3によって阻止されるた
め、GaAs成長層4の表面まで転位が貫通することが
ない。
[Operation] The advantage of the conventional GaAs/insulating film/Si structure is that
The dislocations generated at the aAs/Si interface mainly extend only above the seed portion and do not extend laterally. Therefore, in addition to these properties of dislocations, the stacked structure of the present invention was obtained by taking into consideration the property that dislocations do not penetrate into an amorphous insulating film, that is, an insulating film with no periodicity in atomic arrangement. . That is, as shown in FIG.
There is an exposed opening, and above this opening, the GaAs
A second SiO2 layer having a larger area than the opening in the growth layer 4
A membrane 3 is embedded to cover the opening. In such a structure, the rise of dislocations generated at the GaAs/Si interface in the seed portion is prevented by the second SiO2 film 3, so that dislocations do not penetrate to the surface of the GaAs growth layer 4.

【0013】またこの様な構造を形成するには図1から
GaAs成長層4を除いたような構造、即ち第一のSi
O2 膜2と第二のSiO2 膜3の2つのSiO2 
膜で挟まれた空洞を有する構造を先に形成しておき、次
に2つのSiO2 膜をガイドとしてGaAsをSiO
2膜2の開口部から横方向成長すればよい。その結果、
GaAs層の成長方法としてLPE法に限定する必要が
無くなり、選択成長が可能でさえあれば熱歪が少なく量
産性にも優れた気相成長法を適用することが可能となる
Furthermore, in order to form such a structure, a structure similar to that shown in FIG. 1 with the GaAs growth layer 4 removed, that is, the first Si
Two SiO2: O2 film 2 and second SiO2 film 3
A structure having a cavity sandwiched between films is first formed, and then GaAs is deposited on SiO2 using the two SiO2 films as a guide.
2 may be grown laterally from the opening of the film 2. the result,
It is no longer necessary to limit the growth method of the GaAs layer to the LPE method, and as long as selective growth is possible, it becomes possible to apply the vapor phase growth method, which has less thermal strain and is excellent in mass productivity.

【0014】以上の原理によってIV族半導体単結晶基
板上に高品質かつ大面積なIII −V族化合物半導体
単結晶表面を有する絶縁膜/III −V族化合物半導
体積層構造が実現できる。
According to the above principle, an insulating film/III-V compound semiconductor laminated structure having a high-quality, large-area III-V compound semiconductor single-crystal surface can be realized on a group-IV semiconductor single-crystal substrate.

【0015】[0015]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0016】(実施例1)図2(a)〜(h)には本発
明の構造を得るための一例としての製造工程を各段階に
おける断面図で示した。図2(a)に示すようにまずS
i基板1の表面全面に第一のSiO2 膜2および非晶
質AIN膜21を形成後、Si基板1まで貫通する開口
部を等間隔で複数設ける。次に、図2(b)に示すよう
にSi基板1に貫通する開口部に第一のGaAs選択成
長層22を形成する。GaAsの選択成長には、例えば
III 族有機金属原料としてジエチルガリウムクロラ
イド(DEGaCl)、V族原料としてはアルシン(A
sH3 )を用いたMOCVD法を用いることができ、
この方法は以下でGaAs横方向成長する場合にも適用
することができる。次に図2(c)に示すように、表面
全面に第二のSiO2 膜3および非晶質Si膜23を
形成後、非晶質AlN膜21まで貫通する開口部を設け
る。この開口部の面内の位置は第一のGaAs選択成長
層22と重ならず、かつ周囲にある第一のGaAs選択
成長層22から面内方向で等距離になる位置とする。次
に図2(d)に示すように、開口部を通して非晶質Al
N膜21を選択的に除去し、さらに図2(e)に示すよ
うに、開口部を通して第一のGaAs横方向成長層24
および第二のGaAs選択成長層25を形成する。次に
図2(f)に示すように、表面全面に第三のSiO2 
膜26を形成後、面内の位置が第二のGaAs選択成長
層25と重ならないように非晶質Si膜23まで貫通す
る開口部を設け、さらにこの開口部を通して非晶質Si
膜23を選択的に除去する。この時の開口部の位置も図
2(c)と同様に第二のGaAs選択成長層25から面
内方向で等距離になる様にする。次に図2(g)に示す
ように、開口部を通して第二のGaAs横方向成長層2
7を形成し、最後に図2(h)に示すように、第三のS
iO2 膜26を除去し第二のGaAs選択成長層25
および第二のGaAs横方向成長層27の表面を露出さ
せる。
(Example 1) FIGS. 2(a) to 2(h) show cross-sectional views at each stage of the manufacturing process as an example for obtaining the structure of the present invention. As shown in Figure 2(a), first S
After forming the first SiO2 film 2 and the amorphous AIN film 21 on the entire surface of the i-substrate 1, a plurality of openings penetrating to the Si substrate 1 are provided at equal intervals. Next, as shown in FIG. 2(b), a first GaAs selective growth layer 22 is formed in the opening penetrating the Si substrate 1. For selective growth of GaAs, for example, diethyl gallium chloride (DEGaCl) is used as a group III organic metal raw material, and arsine (A
MOCVD method using sH3) can be used,
This method can also be applied to the case of laterally growing GaAs. Next, as shown in FIG. 2C, after forming the second SiO2 film 3 and the amorphous Si film 23 on the entire surface, an opening penetrating to the amorphous AlN film 21 is provided. The in-plane position of this opening is such that it does not overlap with the first GaAs selectively grown layer 22 and is equidistant from the surrounding first GaAs selectively grown layer 22 in the in-plane direction. Next, as shown in Figure 2(d), the amorphous Al
The N film 21 is selectively removed, and the first GaAs lateral growth layer 24 is then removed through the opening, as shown in FIG.
Then, a second GaAs selective growth layer 25 is formed. Next, as shown in FIG. 2(f), a third layer of SiO2 is applied to the entire surface.
After forming the film 26, an opening penetrating to the amorphous Si film 23 is provided so that the in-plane position does not overlap with the second GaAs selectively grown layer 25, and the amorphous Si film 26 is formed through this opening.
Film 23 is selectively removed. The positions of the openings at this time are also set to be equidistant from the second GaAs selectively grown layer 25 in the in-plane direction, as in FIG. 2(c). Next, as shown in FIG. 2(g), the second GaAs lateral growth layer 2 is inserted through the opening.
7, and finally the third S, as shown in Figure 2(h).
The iO2 film 26 is removed and a second GaAs selectively grown layer 25 is formed.
Then, the surface of the second GaAs lateral growth layer 27 is exposed.

【0017】このような製造工程では、第一のGaAs
選択成長層22および第二のGaAs選択成長層25が
それぞれ第二のSiO2 膜3および第三のSiO2 
膜26に接してこれらを支えているため、原理的に幾ら
でも大面積化が可能である。
[0017] In such a manufacturing process, the first GaAs
The selective growth layer 22 and the second GaAs selective growth layer 25 are the second SiO2 film 3 and the third SiO2 film, respectively.
Since these are supported in contact with the membrane 26, it is possible in principle to increase the area to any extent.

【0018】得られたGaAs層の結晶品質を調べるた
め、図2の工程終了後さらにGaAs層を全面に約3u
m成長した。成長表面でのエッチピットはほとんど観測
されず、また平面TEM観察の結果からも転位密度は多
くても103 〜104 cm−2と極めて良好な結晶
品質が得られた。
In order to examine the crystal quality of the obtained GaAs layer, after the process shown in FIG.
m has grown. Almost no etch pits were observed on the growth surface, and the results of planar TEM observation showed that the dislocation density was at most 103 to 104 cm-2, indicating extremely good crystal quality.

【0019】[0019]

【実施例2】図3(a)〜(h)には本発明の構造を得
るための別の例としての製造工程を各段階における断面
図で示した。図3(a)に示すように、まずSi基板1
の表面全面に第一のGaAs成長層31を形成する。次
に全面に第一のSiO2 膜2を形成後、第一のGaA
s成長層31まで貫通する開口部を一部の領域に等間隔
で複数設ける。次に図3(b)に示すように、まず第一
のGaAs成長層31に貫通する開口部に第一のInP
選択成長層32を形成する。次に表面全面にInP層を
形成後、第一のInP選択成長層32の設けられた領域
上以外は除去して第一のInP成長層33を形成する。 この第一のInP成長層33は第一のInP選択成長層
32上では単結晶、また第一のSiO2膜2上では非晶
質また多結晶となっている。InPの選択成長には例え
ばジメチルインジウムクロライド(DMInCl)とホ
スフィン(PH3 )を用いたMOCVD法を用いるこ
とができる。またDMInClではなく例えばトリエチ
ルインジウム(TEI)を用いて比較的低温で成長すれ
ば、鏡面性良く全面に成長する事ができる。この時Si
O2 膜上では非晶質または多結晶となる。次に図3(
c)に示すように表面全面に第二のSiO2 膜3を形
成後、第一のInP成長層33まで貫通する開口部を設
ける。この開口部の面内の位置は第一のInP選択成長
層32と重ならないように、かつ周囲にある第一のIn
P選択成長層32から面内方向で等距離になる位置とす
る。次に図3(d)に示すように開口部を通して第二の
InP選択成長層34および第二のInP成長層35を
形成する。第二のInP成長層35は第一のInP成長
層33と同様に、まず表面全面にInP層を形成し、続
いて第二のInP選択成長層34の設けられた領域上以
外は除去することで形成する。次に図3(e)に示すよ
うに、表面全面に第三のSiO2 膜26を形成後、第
二のInP成長層35まで貫通する開口部を設ける。こ
の開口部も周囲にある第二のInP選択成長層34から
面内方向で等距離の重ならない位置とする。次に図3(
f)に示すようにこの開口部を通してInP層32、3
3、34、35をすべて選択的に除去する。次に図3(
g)に示すように、開口部を通して第三のSiO2 膜
26より下方の空洞内を第二のGaAs成長層36で埋
める。最後に図3(h)に示すように、第三のSiO2
 膜26のうち第二のGaAs成長層36に接する部分
のみを除去して第二のGaAs成長層36の表面を露出
させる。
[Embodiment 2] FIGS. 3(a) to 3(h) show cross-sectional views at each stage of another example of the manufacturing process for obtaining the structure of the present invention. As shown in FIG. 3(a), first, the Si substrate 1
A first GaAs growth layer 31 is formed over the entire surface. Next, after forming a first SiO2 film 2 on the entire surface, a first GaA film 2 is formed on the entire surface.
A plurality of openings penetrating to the s growth layer 31 are provided in some regions at equal intervals. Next, as shown in FIG. 3(b), first InP is placed in the opening penetrating the first GaAs growth layer 31.
A selective growth layer 32 is formed. Next, after forming an InP layer on the entire surface, the first InP growth layer 33 is formed by removing the region other than the region where the first InP selective growth layer 32 is provided. This first InP growth layer 33 is monocrystalline on the first InP selective growth layer 32, and amorphous or polycrystalline on the first SiO2 film 2. For selective growth of InP, for example, MOCVD using dimethylindium chloride (DMInCl) and phosphine (PH3) can be used. Further, if growth is performed at a relatively low temperature using, for example, triethyl indium (TEI) instead of DMInCl, it is possible to grow the entire surface with good specularity. At this time Si
It becomes amorphous or polycrystalline on the O2 film. Next, Figure 3 (
As shown in c), after forming the second SiO2 film 3 on the entire surface, an opening is provided that penetrates to the first InP growth layer 33. The in-plane position of this opening is such that it does not overlap with the first InP selective growth layer 32 and that it does not overlap with the first InP selective growth layer 32.
The positions are equidistant from the P selective growth layer 32 in the in-plane direction. Next, as shown in FIG. 3(d), a second InP selective growth layer 34 and a second InP growth layer 35 are formed through the opening. As with the first InP growth layer 33, the second InP growth layer 35 is formed by first forming an InP layer on the entire surface, and then removing the area other than the area where the second InP selective growth layer 34 is provided. to form. Next, as shown in FIG. 3(e), after forming a third SiO2 film 26 on the entire surface, an opening penetrating to the second InP growth layer 35 is provided. This opening is also located at a non-overlapping position equidistant from the surrounding second InP selective growth layer 34 in the in-plane direction. Next, Figure 3 (
InP layers 32, 3 are inserted through this opening as shown in f).
3, 34, and 35 are all selectively removed. Next, Figure 3 (
As shown in g), the cavity below the third SiO2 film 26 is filled with the second GaAs growth layer 36 through the opening. Finally, as shown in Figure 3(h), the third SiO2
Only the portion of the film 26 that is in contact with the second GaAs growth layer 36 is removed to expose the surface of the second GaAs growth layer 36.

【0020】この様にして得られたGaAs層の結晶品
質も実施例1と同様に高品質であり、転位密度の極めて
少ない結果が得られた。
The crystal quality of the GaAs layer obtained in this way was also high as in Example 1, and the result was that the dislocation density was extremely low.

【0021】なおこの方法は実施例1とは異なりあまり
大面積化は期待できない。しかし絶縁膜として必要なの
は1種類のみで工程はより単純であり、またSiO2 
膜以外の例えばAlNやSi3 N4 などの非晶質膜
を用いても良い。実施例1でも互に選択除去さえできれ
ば他の絶縁膜の組合わせを用いても良い。
Note that this method is different from the first embodiment and cannot be expected to increase the area very much. However, only one type of insulating film is required, the process is simpler, and SiO2
For example, an amorphous film such as AlN or Si3 N4 may be used instead of the film. In the first embodiment, other combinations of insulating films may be used as long as they can be selectively removed from each other.

【0022】2つの実施例ではGaAsおよびInPの
選択成長方法としてDEGaClなどの塩素系原料を用
いたMOCVDを用いた。これは塩素系原料の方が通常
のトリメチルガリウム(TMG)やトリメチルインジウ
ム(TMI)を用いた場合より選択性が良いためである
。同様の理由から選択成長にはハロゲン輸送法を用いる
ことができる。ただしこの系ではInPの全面成長はで
きず、原料を変えるだけで選択成長と全面成長とを連続
的に行なうことができる点、MOCVDが有利である。 なお全面成長に限れば、より低温で鏡面性良く成長でき
る分子線エピタキシー(MBE)が最も適している。
In the two examples, MOCVD using a chlorine-based raw material such as DEGaCl was used as a selective growth method for GaAs and InP. This is because the chlorine-based raw material has better selectivity than when using normal trimethyl gallium (TMG) or trimethyl indium (TMI). For the same reason, the halogen transport method can be used for selective growth. However, in this system, InP cannot be grown over the entire surface, and MOCVD is advantageous in that selective growth and overall growth can be performed continuously by simply changing the raw material. As far as full-surface growth is concerned, molecular beam epitaxy (MBE) is most suitable because it can grow at a lower temperature and with good specularity.

【0023】また2つの実施例ともにSi基板上の絶縁
膜/GaAs積層構造を例に説明したが、IV族単結晶
基板がGeの場合、またIII −V族化合物半導体が
他のGaPやInP、InGaAsなどの混晶の場合、
さらに積層構造中に複数種類のIII−V族化合物半導
体層が混在する場合にも広く本発明を適用することがで
きる。
[0023]Also, in both embodiments, the insulating film/GaAs laminated structure on a Si substrate was explained as an example, but when the group IV single crystal substrate is Ge, or when the III-V group compound semiconductor is other than GaP, InP, In the case of mixed crystals such as InGaAs,
Furthermore, the present invention can be broadly applied to cases where a plurality of types of III-V compound semiconductor layers coexist in a stacked structure.

【0024】[0024]

【発明の効果】以上のように本発明によればIV族単結
晶基板とIII −V族エピタキシャル界面で発生した
転位が成長表面まで上昇してこないので、IV族半導体
単結晶基板上に高品質かつ大面積なIII −V族化合
物半導体単結晶表面を有する絶縁膜/III −V族化
合物半導体積層構造が実現でき、発明の効果が示された
As described above, according to the present invention, dislocations generated at the interface between a group IV single crystal substrate and a group III-V epitaxial substrate do not rise to the growth surface, so that a high quality product can be obtained on a group IV semiconductor single crystal substrate. Moreover, an insulating film/III-V group compound semiconductor laminated structure having a large-area III-V group compound semiconductor single crystal surface was realized, and the effects of the invention were demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理的な構造を示す模式図。FIG. 1 is a schematic diagram showing the basic structure of the present invention.

【図2】本発明の一実施例の製造工程を示す断面図。FIG. 2 is a sectional view showing the manufacturing process of an embodiment of the present invention.

【図3】本発明の別の実施例の製造工程を示す断面図。FIG. 3 is a sectional view showing the manufacturing process of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    Si基板 2    第一のSiO2 膜 3    第二のSiO2 膜 4    GaAs成長層 5    転位 21    非晶質AlN膜 22    第一のGaAs選択成長層23    非
晶質Si膜 24    第一のGaAs横方向成長層25    
第二のGaAs選択成長層26    第三のSiO2
 膜 27    第二のGaAs横方向成長層31    
第一のGaAs成長層 32    第一のInP選択成長層 33    第一のInP成長層 34    第二のInP選択成長層 35    第二のInP成長層 36    第二のGaAs成長層
1 Si substrate 2 First SiO2 film 3 Second SiO2 film 4 GaAs growth layer 5 Dislocation 21 Amorphous AlN film 22 First GaAs selective growth layer 23 Amorphous Si film 24 First GaAs lateral growth layer 25
Second GaAs selective growth layer 26 Third SiO2
Membrane 27 Second GaAs lateral growth layer 31
First GaAs growth layer 32 First InP selective growth layer 33 First InP growth layer 34 Second InP selective growth layer 35 Second InP growth layer 36 Second GaAs growth layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  IV族単結晶基板上に非晶質絶縁膜お
よびIII −V族化合物半導体単結晶薄膜が交互に積
層され、表面はIII −V族化合物半導体単結晶であ
ることを基本とする構造において、前記積層体は少なく
とも2層以上の非晶質絶縁膜層を含み、それぞれの非晶
質絶縁膜層はその占有面内の一部に上下に貫通する穴を
有し、この穴を通して上下のIII −V族化合物半導
体単結晶層またはIV族単結晶基板が互に接続されてお
り、さらに1つの非晶質絶縁膜層に開けられた前記穴の
面内方向の位置はその1つ上方または下方の非晶質絶縁
膜層の穴の位置と重ならないことを特徴とするIV族基
板上の絶縁膜/III −V族化合物半導体積層構造。
[Claim 1] Basically, an amorphous insulating film and a group III-V compound semiconductor single crystal thin film are alternately laminated on a group IV single crystal substrate, and the surface is a group III-V compound semiconductor single crystal. In the structure, the laminate includes at least two or more amorphous insulating film layers, and each amorphous insulating film layer has a hole penetrating vertically in a part of its occupied surface, and through this hole, The upper and lower III-V group compound semiconductor single crystal layers or IV group single crystal substrates are connected to each other, and the in-plane position of the hole made in one amorphous insulating film layer is one of them. An insulating film/III-V compound semiconductor laminated structure on a group IV substrate, characterized in that the hole position does not overlap with the position of the hole in the upper or lower amorphous insulating film layer.
JP9334491A 1991-03-29 1991-03-29 Insulating film/iii-v compound semiconductor stacked structure on group iv substrate Withdrawn JPH04303920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9334491A JPH04303920A (en) 1991-03-29 1991-03-29 Insulating film/iii-v compound semiconductor stacked structure on group iv substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9334491A JPH04303920A (en) 1991-03-29 1991-03-29 Insulating film/iii-v compound semiconductor stacked structure on group iv substrate

Publications (1)

Publication Number Publication Date
JPH04303920A true JPH04303920A (en) 1992-10-27

Family

ID=14079656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9334491A Withdrawn JPH04303920A (en) 1991-03-29 1991-03-29 Insulating film/iii-v compound semiconductor stacked structure on group iv substrate

Country Status (1)

Country Link
JP (1) JPH04303920A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163404A (en) * 1997-11-25 1999-06-18 Toyoda Gosei Co Ltd Gan-based semiconductor
JP2002505519A (en) * 1998-02-27 2002-02-19 ノース・キャロライナ・ステイト・ユニヴァーシティ Method for producing gallium nitride semiconductor layer by lateral overgrowth through mask and gallium nitride semiconductor structure produced thereby
JP2004247753A (en) * 2004-04-15 2004-09-02 Toyoda Gosei Co Ltd GaN SYSTEM SEMICONDUCTOR
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2006324680A (en) * 2006-06-08 2006-11-30 Sony Corp Crystal film, crystal substrate, and semiconductor device
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2015220463A (en) * 2014-05-14 2015-12-07 三星電子株式会社Samsung Electronics Co.,Ltd. Lateral photodiode, image sensor including the same, and methods of manufacturing photodiode and image sensor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163404A (en) * 1997-11-25 1999-06-18 Toyoda Gosei Co Ltd Gan-based semiconductor
JP2002505519A (en) * 1998-02-27 2002-02-19 ノース・キャロライナ・ステイト・ユニヴァーシティ Method for producing gallium nitride semiconductor layer by lateral overgrowth through mask and gallium nitride semiconductor structure produced thereby
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US7176497B2 (en) 1999-07-27 2007-02-13 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor
US6893945B2 (en) 1999-07-27 2005-05-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride group compound semiconductor
US6835966B2 (en) 1999-07-27 2004-12-28 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6930329B2 (en) 1999-07-27 2005-08-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7560725B2 (en) 1999-12-24 2009-07-14 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7462867B2 (en) 2000-03-14 2008-12-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US7491984B2 (en) 2000-03-31 2009-02-17 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
JP2004247753A (en) * 2004-04-15 2004-09-02 Toyoda Gosei Co Ltd GaN SYSTEM SEMICONDUCTOR
JP2006324680A (en) * 2006-06-08 2006-11-30 Sony Corp Crystal film, crystal substrate, and semiconductor device
JP2015220463A (en) * 2014-05-14 2015-12-07 三星電子株式会社Samsung Electronics Co.,Ltd. Lateral photodiode, image sensor including the same, and methods of manufacturing photodiode and image sensor

Similar Documents

Publication Publication Date Title
JPH04303920A (en) Insulating film/iii-v compound semiconductor stacked structure on group iv substrate
JPH0484418A (en) Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates
KR20100092932A (en) Semiconductor substrate and method for manufacturing semiconductor substrate
JPH04315419A (en) Insulating film/compound semiconductor lamination structure on element semiconductor substrate
CN116666196A (en) kappa-Ga without rotational domains 2 O 3 Film and kappa- (Al) x Ga 1-x ) 2 O 3 /κ-Ga 2 O 3 Preparation method of heterojunction
JP4051311B2 (en) Nitride semiconductor crystal growth method
EP0425244B1 (en) Semiconductor device having a heteroepitaxial substrate
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
JPH05291156A (en) Insulating film/compound semiconductor laminated layer structure on element semiconductor substrate
JP2629625B2 (en) Method for growing semiconductor layer on heterogeneous substrate
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JP3421234B2 (en) Semiconductor device and manufacturing method thereof
JPH0263115A (en) Selective growth of thin film
JPH1032165A (en) Growing method for compound semiconductor layer
KR102062381B1 (en) Method of growing nitride semiconductor layer and fabrication nitride semiconductor device
JPH04314326A (en) Insulating film/compound semiconductor laminated structure on element semiconductor substrate
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof
JPH07193007A (en) Epitaxial growth method
JPH05267175A (en) Compound semiconductor substrate
JPH0654763B2 (en) Method for growing semiconductor thin film
KR960004904B1 (en) Growing method for ga-as on the porous silicon substrate
JP2649928B2 (en) Method for manufacturing semiconductor wafer
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture
Ohdomari et al. DEFECTS FORMED AT THE InGaAs/GaAs INTERFACE
JPH0488627A (en) Deposition of epitaxial layer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514