JPH04301047A - Heat resisting alloy for support surface member for steel material to be heated in heating furnace - Google Patents

Heat resisting alloy for support surface member for steel material to be heated in heating furnace

Info

Publication number
JPH04301047A
JPH04301047A JP13376691A JP13376691A JPH04301047A JP H04301047 A JPH04301047 A JP H04301047A JP 13376691 A JP13376691 A JP 13376691A JP 13376691 A JP13376691 A JP 13376691A JP H04301047 A JPH04301047 A JP H04301047A
Authority
JP
Japan
Prior art keywords
alloy
steel material
heated
heat
surface member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13376691A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamagami
山上 喜昭
Takeshi Shinozaki
斌 篠崎
Hiroyuki Ran
蘭 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13376691A priority Critical patent/JPH04301047A/en
Publication of JPH04301047A publication Critical patent/JPH04301047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To improve a heat resisting alloy for a support surface member for a steel material to be heated in a heating furnace. CONSTITUTION:The alloy is a heat resisting alloy having a chemical composition consisting of 70-80% Cr, 10-15% Ni, and the balance Fe and impurity contents. This alloy has superior compressive deformation resistance, oxidation resistance, etc., in a furnace with high temp. atmosphere and produces a remarkable effect, e.g. on the improvement in service life and maintenance reduction of a steel material supporting surface member (skid button, etc.). The relaxation of forced cooling by means of cooling water is made possible, and further, this alloy can contribute, e.g. to the improvement in steel material rolling quality due to reduction in skid marks in the steel material to be heated and also uniform heating and the energy saving due to reduction in the amount of heat loss in the furnace.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、加熱炉内の被加熱鋼材
支持面部材として使用される耐熱合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant alloy used as a supporting surface member for heated steel in a heating furnace.

【0002】0002

【従来の技術】鋼材加熱炉内における被加熱鋼材(スラ
ブ、ビレット等)の搬送装置、例えばウォーキングビー
ムコンベアの移動ビームおよび固定ビームは、図1に示
すように、スキッドパイプ(炭素鋼管等)(P)の周面
頂部に、被加熱鋼材支持面部材としてスキッドボタン(
10)が、パイプの軸方向に一定の間隔をおいて、溶接
(W)等により取付けられた構造を有している。スキッ
ドボタン(10)は、円錐台形状、角錐台形状等のブロ
ックであり、その頂面を載荷面として被加熱鋼材(S)
が担持される。
2. Description of the Related Art As shown in FIG. 1, a conveyor for conveying steel materials (slabs, billets, etc.) to be heated in a steel heating furnace, such as a walking beam conveyor, has a moving beam and a fixed beam. A skid button (
10) have a structure in which they are attached by welding (W) or the like at regular intervals in the axial direction of the pipe. The skid button (10) is a block in the shape of a truncated cone or a truncated pyramid, and its top surface is used as a loading surface for the heated steel material (S).
is carried.

【0003】従来より、そのスキッドボタン材料として
、高Ni高Cr合金鋼(例えば、SCH12等)や、高
Co合金鋼(例えば、50Co−20Ni−Fe系鋼)
等の耐熱合金鋼が使用され、その側周面に不定形耐火物
層(20)を塗設して炉内雰囲気との接触を遮断すると
共に、スキッドパイプ(P)内に流送される冷却水の強
制冷却作用により、スキッドボタン(10)に対する炉
内高温雰囲気の熱影響を緩和するようにしている。
Conventionally, high Ni, high Cr alloy steel (for example, SCH12, etc.) and high Co alloy steel (for example, 50Co-20Ni-Fe steel) have been used as skid button materials.
A heat-resistant alloy steel such as, etc. is used, and a monolithic refractory layer (20) is coated on the side circumferential surface to cut off contact with the atmosphere inside the furnace, and the cooling material is flowed into the skid pipe (P). The forced cooling effect of water alleviates the thermal influence of the high-temperature atmosphere inside the furnace on the skid button (10).

【0004】0004

【発明が解決しようとする課題】上記耐熱合金製スキッ
ドボタンは、重量物である被加熱鋼材の荷重に耐える強
度を保持するために、約1250℃を越えないように強
制冷却することが必要であり、そのため被加熱銅材はス
キッドボタンとの接触面を介して熱を奪われ局所低温部
、所謂スキドマークを生じるという問題がある。また、
鋼材荷重の反復作用による圧縮変形や、炉内酸化雰囲気
に対する酸化抵抗性も十分なものとは言えない。近時は
加熱炉操業効率の向上等を目的として、1300℃ない
しはそれを越える高温操業が一般化しつつあり、上記支
持面部材の耐用寿命の低下や、強制冷却の強化に伴う加
熱ムラ、冷却水による炉内熱損失量の増加等の問題が一
層顕著となっている。
[Problems to be Solved by the Invention] In order to maintain the strength to withstand the load of the heavy steel material to be heated, the heat-resistant alloy skid button must be forcedly cooled to a temperature not exceeding approximately 1250°C. Therefore, there is a problem that heat is removed from the heated copper material through the contact surface with the skid button, resulting in localized low temperature areas, so-called skid marks. Also,
Compressive deformation due to repeated steel loads and oxidation resistance against the oxidizing atmosphere in the furnace are also not sufficient. Recently, high-temperature operation of 1300°C or higher has become commonplace for the purpose of improving heating furnace operating efficiency, etc., and this has resulted in a reduction in the service life of the supporting surface member, uneven heating due to enhanced forced cooling, and increased cooling water. Problems such as an increase in the amount of heat loss inside the furnace are becoming more prominent.

【0005】この対策として、セラミックをスキッドボ
タンとして使用する試みもなされてはいるが、セラミッ
クは脆性材料であり、機械的・熱的衝撃による割れ、欠
損等を生じ易いため、安定な使用を期し難く、未だ実用
化の例は見当たらない。
[0005] As a countermeasure to this problem, attempts have been made to use ceramics as skid buttons, but since ceramics are brittle materials and are prone to cracking or chipping due to mechanical or thermal shock, stable use must be ensured. It is difficult, and there are no examples of practical implementation yet.

【0006】そこで本発明者等は、被加熱鋼材支持面材
料について詳細な研究と実験を重ねた結果、Cr−Fe
系合金が、従来材である前記耐熱合金をはるかに凌ぐ高
温圧縮変形抵抗性や耐酸化性等の諸特性を具備し、被加
熱鋼材支持面部材に関する前記諸問題を解決するための
極めて有効な材料であることを見出した(特願平1−3
00091号)。本発明は、上記Cr−Fe系合金の材
料特性を更に改良することを目的としてなされたもので
ある。
[0006]The inventors of the present invention have conducted detailed research and experiments on the material for supporting surfaces of heated steel materials, and have found that Cr-Fe
The alloy has various properties such as high-temperature compression deformation resistance and oxidation resistance that far exceed those of the conventional heat-resistant alloys, and is extremely effective for solving the above-mentioned problems regarding heated steel support surface members. found that it is a material (Patent Application Hei 1-3)
No. 00091). The present invention was made for the purpose of further improving the material properties of the above-mentioned Cr-Fe alloy.

【0007】[0007]

【課題を解決するための手段および作用】本発明の被加
熱銅材支持面部材用耐熱合金は、Cr:70〜80%,
Ni:10〜15%,残部Feおよび不純分からなる化
学組成を有している。
[Means and effects for solving the problems] The heat-resistant alloy for supporting surface members of heated copper materials of the present invention has Cr: 70 to 80%,
It has a chemical composition consisting of Ni: 10 to 15%, the balance being Fe and impurities.

【0008】本発明の耐熱合金は、溶解・鋳造プロセス
による鋳造合金として、または粉末冶金の手法により、
例えば熱間静水圧加圧焼結による焼結合金として製造さ
れる。
The heat-resistant alloy of the present invention can be produced as a cast alloy by a melting/casting process or by a powder metallurgy technique.
For example, it is manufactured as a sintered alloy by hot isostatic pressing and sintering.

【0009】本発明の耐熱合金の化学組成について、C
r量を70%以上としたのは、高融点(約1600℃以
上)をもたせ、1300℃を越えるような高温酸化性雰
囲気炉での使用において従来の耐熱合金を大きく凌ぐ高
温強度を確保するためであり、かつこの高Cr含有によ
り卓抜した酸化抵抗性が確保されるからである。他方、
Cr量の上限を80%としたのは、Crの増量に伴う融
点の上昇により、鋳造合金として製造する場合の溶解・
鋳造性、また焼結合金として製造する場合の焼結性が悪
くなり、合金品質の確保が困難となるからである。
Regarding the chemical composition of the heat-resistant alloy of the present invention, C
The reason why the amount of r is set to 70% or more is to have a high melting point (approximately 1,600℃ or higher) and to ensure high-temperature strength that greatly exceeds conventional heat-resistant alloys when used in high-temperature oxidizing atmosphere furnaces exceeding 1,300℃. This is because the high Cr content ensures outstanding oxidation resistance. On the other hand,
The reason why the upper limit of the Cr content was set at 80% is because the melting point increases as the amount of Cr increases.
This is because castability and sinterability when manufactured as a sintered alloy deteriorate, making it difficult to ensure alloy quality.

【0010】Niは、高温ラプチャー強度および耐酸化
性を高める。また70〜80%のCrとの共存下に圧縮
変形抵抗性を改善する。これらの効果は10%以上の添
加により現れるが、約15%までの添加で効果はほぼ飽
和し、15%をこえて増量すると、却ってラプチャー強
度の急激な低下を招き、また圧縮変形抵抗性も大きく低
下する。このため、Ni量は10〜15%とした。
[0010] Ni increases high temperature rupture strength and oxidation resistance. Moreover, the compressive deformation resistance is improved in coexistence with 70 to 80% Cr. These effects appear when the addition amount is 10% or more, but the effects are almost saturated when the addition amount is up to about 15%, and increasing the amount beyond 15% results in a rapid decrease in rupture strength and also reduces compressive deformation resistance. Significant decline. For this reason, the amount of Ni was set to 10 to 15%.

【0011】なお、本発明の耐熱合金の原料に由来する
不純分(代表的にはC、Si等)については、合金の高
融点(約1600℃以上)が保持される範囲内で混在し
て差支えなく、例えば0.8%以下のCや、1%以下の
Siの混在によって本発明の趣旨が損なわなわれること
はない。
[0011] Impurities derived from the raw materials of the heat-resistant alloy of the present invention (typically C, Si, etc.) may be mixed within a range that maintains the high melting point of the alloy (approximately 1600°C or higher). There is no problem, and the spirit of the present invention is not impaired by the presence of, for example, 0.8% or less of C or 1% or less of Si.

【0012】本発明の耐熱合金は、粗粒結晶組織(平均
結晶粒径:約50μm以上)に調整されることが好まし
い。組織の粗粒化によって、高温圧縮強度やラプチャー
強度がより高められるからである。
The heat-resistant alloy of the present invention is preferably adjusted to have a coarse grain crystal structure (average grain size: about 50 μm or more). This is because high-temperature compressive strength and rupture strength are further enhanced by coarsening the structure.

【0013】本発明の耐熱合金を粗粒組織とすることに
困難はなく、鋳造合金として製造する場合においては、
その鋳造に砂型鋳型を使用し、比較的緩慢な冷却凝固を
行わせるか、または鋳造合金塊に加熱処理(例えば、1
300〜1600℃に5〜20Hr保持)を施して結晶
粒を成長粗大化させることにより粗粒組織を与えること
ができる。
There is no difficulty in forming the heat-resistant alloy of the present invention into a coarse-grained structure, and when producing it as a cast alloy,
Either a sand mold is used for the casting and relatively slow cooling solidification is performed, or the cast alloy ingot is heat treated (e.g.
A coarse grained structure can be provided by growing and coarsening crystal grains by holding at 300 to 1600° C. for 5 to 20 hours.

【0014】また焼結合金として製造する場合は、合金
粉末として粗粒粉末(平均粒径:約200μm以上)を
使用するか、または焼結後、焼結合金塊に上記と同様の
加熱処理を施すことにより粗粒組織をもたせることがで
きる。
When producing a sintered alloy, use a coarse powder (average particle size: approximately 200 μm or more) as the alloy powder, or heat the sintered alloy ingot after sintering in the same manner as above. By this, a coarse grain structure can be obtained.

【0015】なお、本発明の耐熱合金を使用して被加熱
鋼材支持面部材を製造する場合、必ずしもその全体を本
発明の耐熱合金とする必要はなく、図1に示すスキッド
ボタンにおいては、被加熱鋼材(S)と接触する載荷面
側の上部(11)のみを本発明の耐熱合金とし、その下
側部分(12)は従来の耐熱合金鋼からなるブロックを
用い、両者の重ね合せ面を接合(例えば拡散接合)して
複合体とすることも可能である。
[0015] When manufacturing a heated steel supporting surface member using the heat-resistant alloy of the present invention, it is not necessarily necessary to use the heat-resistant alloy of the present invention in its entirety; in the skid button shown in FIG. Only the upper part (11) on the loading surface side that contacts the heated steel material (S) is made of the heat-resistant alloy of the present invention, and the lower part (12) is a block made of conventional heat-resistant alloy steel, and the overlapping surfaces of both are made of the heat-resistant alloy of the present invention. It is also possible to form a composite by bonding (for example, diffusion bonding).

【0016】[0016]

【実施例】高周波溶解炉(Ar雰囲気)で溶製した合金
溶湯を砂型(CO2珪砂鋳型)による鋳造に付し、供試
合金ブロック(φ70×90l,mm)を得た。各供試
合金ブロックから試験片を切出し、下記の試験を行った
[Example] A molten alloy produced in a high frequency melting furnace (Ar atmosphere) was cast in a sand mold (CO2 silica sand mold) to obtain a test metal block (φ70×90 l, mm). A test piece was cut out from each test gold block, and the following tests were conducted.

【0017】(1)高温圧縮試験 円柱状試験片(φ30×50l,mm)を固定台上に立
直載置し、1350℃に加熱保持した状態で、試験片天
面に垂直荷重0.5Kgf/mm2を加える。 試験時間:50Hr。 試験片の試験前の高さ寸法(L0)と試験後の高さ寸法
(L)を測定し、圧縮変形速度D%/Hr〔圧縮変形量
D%=(L0−L)/L0×100(%)〕を求める。
(1) High-temperature compression test A cylindrical test piece (φ30×50 l, mm) was placed upright on a fixed table, and while heated and maintained at 1350°C, a vertical load of 0.5 Kgf/ was applied to the top surface of the test piece. Add mm2. Test time: 50 hours. Measure the height dimension (L0) before the test and the height dimension (L) after the test of the test piece, and calculate the compressive deformation rate D%/Hr [compressive deformation amount D%=(L0-L)/L0×100( %)].

【0018】(2)高温ラプチャー試験試験片(φ6×
80l,mm)を1200℃に加熱保持して1.0Kg
f/mm2の引張応力を加え、破断に到るまでの時間を
測定。
(2) High temperature rupture test specimen (φ6×
80l, mm) heated and held at 1200℃ to produce 1.0Kg
A tensile stress of f/mm2 was applied and the time until breakage was measured.

【0019】(3)高温酸化試験 試験片(φ8×50l,mm)を加熱炉(大気雰囲気)
で、1350℃に100時間加熱保持する。試験後、試
験片表面の酸化スケールを除去し、試験片の重量変化か
ら酸化減量(g/m2hr)を求める。
(3) High-temperature oxidation test specimen (φ8 x 50 l, mm) in a heating furnace (atmospheric atmosphere)
Then, heat and hold at 1350°C for 100 hours. After the test, the oxidized scale on the surface of the test piece is removed, and the oxidation weight loss (g/m2hr) is determined from the change in weight of the test piece.

【0020】表1に供試合金ブロックの化学組成(wt
%)を、表2に上記試験結果を示す。表中、No.1〜
4は発明例、No.11〜15は比較例である。比較例
のうち、No.11は従来の代表的なスキッドボタン材
料である高Co耐熱合金鋼であり、No.12はNi添
加を省略したCr−Fe合金の例であり、No.13〜
15はCr−Ni−Fe系合金である点で発明例に類似
しているが、No.13はNi量が不足し、Cr量が過
剰の例、No.14はNi量が過剰である例、No.1
5はNi量に過不足はないがCr量が不足している例で
ある。
Table 1 shows the chemical composition (wt
%), Table 2 shows the above test results. In the table, No. 1~
4 is an invention example, No. Nos. 11 to 15 are comparative examples. Among the comparative examples, No. No. 11 is high Co heat-resistant alloy steel, which is a typical conventional skid button material. No. 12 is an example of a Cr-Fe alloy without Ni addition. 13~
No. 15 is similar to the invention example in that it is a Cr-Ni-Fe alloy, but No. No. 13 is an example in which the amount of Ni is insufficient and the amount of Cr is excessive. No. 14 is an example in which the amount of Ni is excessive. 1
No. 5 is an example in which there is no excess or deficiency in the amount of Ni, but the amount of Cr is insufficient.

【0021】[0021]

【表1】[Table 1]

【0022】[0022]

【表2】[Table 2]

【0023】上記試験結果から、発明例No.1〜5は
、従来のスキッドボタン材料である高CoのCr−Ni
系合金鋼(No.11)に比し、格段にすぐれた高温圧
縮変形抵抗性、ラプチャー強度、および耐酸化性等を有
していることがわかる。
From the above test results, invention example No. 1 to 5 are high Co Cr-Ni, which is a conventional skid button material.
It can be seen that it has significantly superior high temperature compression deformation resistance, rupture strength, oxidation resistance, etc., compared to the alloy steel (No. 11).

【0024】また、比較例No.12〜15を発明例N
o.1〜4と比較すると、No.12(Ni添加省略)
およびNo.13(Ni量不足)は、、ラプチャー強度
が劣り、耐酸化性も低く、No.14(Ni量遇剰)お
よびNo.15(Cr量不足)では、ラプチャー強度だ
けでなく圧縮変形抵抗性も著しく低く、いずれも発明例
のそれに及ばない。
[0024] Also, Comparative Example No. 12 to 15 as invention example N
o. Compared to 1 to 4, No. 12 (Ni addition omitted)
and no. No. 13 (insufficient Ni amount) has poor rupture strength and low oxidation resistance. 14 (Ni quantity surplus) and No. In No. 15 (insufficient Cr content), not only the rupture strength but also the compressive deformation resistance was extremely low, and both were inferior to that of the invention example.

【0025】[0025]

【発明の効果】本発明の耐熱合金は、従来の被加熱鋼材
支持面部材として使用されてきた耐熱合金鋼では得られ
ない卓抜した高温圧縮強度、耐酸化性、ラプチャー強度
を具備しており、近時の高温操炉条件における被加熱鋼
材支持面部材の耐久性の向上・メンテナンスの軽減およ
びそれに伴う操炉効率の向上に大きく寄与するものであ
る。また、そのすぐれた高温特性により、従来の耐熱合
金に比し冷却水による強制冷却を緩和することができ、
それに伴う被加熱鋼材のスキッドマークの軽滅・均一加
熱による鋼材圧延品質の向上等の効果、および冷却水に
よる炉内の熱損失量の減少・省エネルギ効果等が得られ
る。
[Effects of the Invention] The heat-resistant alloy of the present invention has outstanding high-temperature compressive strength, oxidation resistance, and rupture strength that cannot be obtained with heat-resistant alloy steels conventionally used as supporting surface members for heated steel materials. This greatly contributes to improving the durability of the heated steel support surface member under recent high-temperature operating conditions, reducing maintenance, and improving operating efficiency accordingly. In addition, due to its excellent high-temperature properties, forced cooling by cooling water can be alleviated compared to conventional heat-resistant alloys.
As a result, the effects of reducing skid marks on the heated steel material, improving the rolling quality of the steel material due to uniform heating, and reducing the amount of heat loss in the furnace due to cooling water and saving energy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】鋼材加熱炉内のスキッドビームを模式的に示す
断面図
[Figure 1] Cross-sectional view schematically showing a skid beam in a steel heating furnace

【符号の説明】[Explanation of symbols]

10:スキッドボタン,P:スキッドパイプ,S:被加
熱鋼材。
10: Skid button, P: Skid pipe, S: Steel material to be heated.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Cr:70〜80%,Ni:10〜1
5%,残部Feおよび不純分からなる加熱炉内被加熱鋼
材支持面部材用耐熱合金。
[Claim 1] Cr: 70-80%, Ni: 10-1
Heat-resistant alloy for supporting surface members of steel materials to be heated in heating furnaces, consisting of 5% Fe and impurities.
JP13376691A 1991-03-27 1991-03-27 Heat resisting alloy for support surface member for steel material to be heated in heating furnace Pending JPH04301047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13376691A JPH04301047A (en) 1991-03-27 1991-03-27 Heat resisting alloy for support surface member for steel material to be heated in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13376691A JPH04301047A (en) 1991-03-27 1991-03-27 Heat resisting alloy for support surface member for steel material to be heated in heating furnace

Publications (1)

Publication Number Publication Date
JPH04301047A true JPH04301047A (en) 1992-10-23

Family

ID=15112464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13376691A Pending JPH04301047A (en) 1991-03-27 1991-03-27 Heat resisting alloy for support surface member for steel material to be heated in heating furnace

Country Status (1)

Country Link
JP (1) JPH04301047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065389A (en) * 2017-09-29 2019-04-25 日立金属株式会社 Cr-Fe-Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065389A (en) * 2017-09-29 2019-04-25 日立金属株式会社 Cr-Fe-Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR

Similar Documents

Publication Publication Date Title
JP2607157B2 (en) Heat-resistant alloy for supporting steel material to be heated in heating furnace
JPS60200948A (en) Composite material for supporting member of heating furnace
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
JPH04301048A (en) Heat resisting alloy for support surface member for steel material to be heated in heating furnace
JPH04301047A (en) Heat resisting alloy for support surface member for steel material to be heated in heating furnace
CN113957313A (en) Heat-resistant cushion block with ultra-long service life for steel rolling heating furnace and preparation method thereof
US5288228A (en) Heat-resistant materials
CN117026015B (en) High-temperature-resistant alloy and preparation method and application thereof
JPH062065A (en) Heat resistant alloy for supporting face member in heating furnace
JP2599729B2 (en) Ingot making method for alloy articles
JPH01255643A (en) Composite material for supporting member for material to be heated in heating furnace
JPH062066A (en) Heat resistant alloy for supporting face member in heating furnace
JP6153360B2 (en) Skid button
JP2571639Y2 (en) Skid button for heating furnace
JPH07197179A (en) Heat resistant alloy for hearth member in steel material heating furnace
JPH07278718A (en) Super-heat resistant high cr alloy and hearth member of steel heating furnace
JPS6310114B2 (en)
JP2571640Y2 (en) Skid button for heating furnace
JPH07197178A (en) Heat resistant alloy for hearth member in steel material heating furnace
JP2571641Y2 (en) Skid button for heating furnace
JPS6310115B2 (en)
JPH09235642A (en) Super heat resistant high chromium alloy and furnace bottom member of steel material heating furnace
JPH0297614A (en) Steel material transferring member in heating furnace
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JP2802768B2 (en) Composite sintered alloy and steel support in heating furnace