JPH0297614A - Steel material transferring member in heating furnace - Google Patents

Steel material transferring member in heating furnace

Info

Publication number
JPH0297614A
JPH0297614A JP24830388A JP24830388A JPH0297614A JP H0297614 A JPH0297614 A JP H0297614A JP 24830388 A JP24830388 A JP 24830388A JP 24830388 A JP24830388 A JP 24830388A JP H0297614 A JPH0297614 A JP H0297614A
Authority
JP
Japan
Prior art keywords
alloy
sintered body
steel material
heating furnace
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24830388A
Other languages
Japanese (ja)
Inventor
Takeshi Shinozaki
斌 篠崎
Shinji Amako
尼子 晋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24830388A priority Critical patent/JPH0297614A/en
Publication of JPH0297614A publication Critical patent/JPH0297614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To obtain a steel material transferring member having superior strength at high temp. and used in a heating furnace by using a combined sintered body consisting of carbide ceramic particles and a Co-Cr alloy having a specified compsn. as a metal matrix. CONSTITUTION:In a combined sintered body consisting of carbide ceramic particles and a metal matrix, a Co-Cr alloy contg. <=20wt.% Co is used as the matrix to obtain a combined sintered body having a high m.p. of about >=1,400 deg.C, high strength and toughness independently of the blending ratio between the ceramic particles and the Co-Cr alloy. By using the resulting combined sintered body, a steel material transferring member having the high m.p. and satisfactory compressive strength is obtd. The member withstands use in a heating furnace filled with an atmosphere at a high temp. of about >1,300 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加熱炉内の被加熱鋼材搬送用部材に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a member for conveying heated steel materials in a heating furnace.

〔従来の技術〕[Conventional technology]

加熱炉内におけるスラブ、ビレット等の被加熱鋼材を搬
送するための部材、代表的にはウオーキングビームコン
ベア式加熱炉において、第2図のように、そのコンベア
の移動ビームおよび固定ビームであるスキッドパイプ(
A)に形設されるスキッドボタン(10) (その天面
に鋼材が担持される)として、従来より、JIS G5
1225CH12(ION i −20Cr−Fe系鋼
)や高Co合金1ijl(50Co −2ON 1−F
e系鋼)等の耐熱合金が使用されてきた。
A member for conveying heated steel materials such as slabs and billets in a heating furnace, typically in a walking beam conveyor type heating furnace, as shown in Figure 2, skid pipes are the moving beam and fixed beam of the conveyor. (
As the skid button (10) (steel material is supported on the top surface) formed in A), JIS G5 has been conventionally used.
1225CH12 (ION i-20Cr-Fe steel) and high Co alloy 1ijl (50Co-2ON 1-F
Heat-resistant alloys such as e-series steels have been used.

近時、加熱炉操業の高温化が進み、1300°Cをこえ
る高温雰囲気での操業が一般化しつつある。この高温操
業に対するスキッドボタンの材質改善策として、セラミ
ック(Cr、3C2,S i3N4.Af203等)と
、耐熱金属、例えば金属コバルト、C。
In recent years, heating furnace operations have become increasingly hot, and operations in high-temperature atmospheres exceeding 1300°C are becoming commonplace. As a measure to improve the material of the skid button for this high-temperature operation, ceramics (Cr, 3C2, Si3N4.Af203, etc.) and heat-resistant metals such as metal cobalt and C are used.

合金(UMCo50等)、または高co高Ni系合金!
fi1(0,1%C−27%Cr−17%Ni−40%
C。
Alloy (UMCo50, etc.) or high-co, high-Ni alloy!
fi1 (0.1%C-27%Cr-17%Ni-40%
C.

Fe系)とからなる焼結または溶接肉盛された複合体の
実用化がこころみられている。この複合体からなるスキ
ッドボタンは、セラミック粒子とマトリックスである耐
熱金属との複合効果として従来の耐熱合金製スキッドボ
タンを凌ぐ高温特性を有し、またセラミック単体材と異
なって鋼材接触時の衝撃による割れ・欠損を生じにくい
良好な靭性を備えている。
The practical use of sintered or welded composites consisting of Fe-based materials is currently underway. Skid buttons made of this composite material have high-temperature properties that exceed conventional heat-resistant alloy skid buttons due to the combined effect of ceramic particles and the heat-resistant metal matrix, and unlike single ceramic materials, they are resistant to impact when coming into contact with steel materials. It has good toughness that prevents cracking and chipping.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、セラミックとして炭化クロムや炭化けい素等
の炭化物系を用いて形成した複合体は、その構成成分が
高融点材料(例えば、Cr、C,の融点は1950°C
1金属コバルトのそれは1495°C)であるに拘らず
、高温での強度、特に圧縮強度は意外と低く、1300
°C以上の高温使用では鋼材の荷重による圧縮変形が生
じ易い。これは、その複合体の形成工程において、セラ
ミックの炭素分がマトリックス金属中に拡散固溶してマ
トリックス金属の融点を低下させるからである。その融
点の低下幅はむろん炭素の固溶量によるが、金属コバル
トの場合、その融点は約1309°C付近まで低下する
However, composites formed using carbides such as chromium carbide and silicon carbide as ceramics are composed of high melting point materials (for example, Cr, C, whose melting point is 1950°C).
1 metal cobalt (1495°C), its strength at high temperatures, especially its compressive strength, is surprisingly low (1300°C).
When used at high temperatures above °C, compressive deformation is likely to occur due to the load on the steel material. This is because, in the process of forming the composite, the carbon content of the ceramic diffuses into the matrix metal to form a solid solution, lowering the melting point of the matrix metal. The degree of decrease in the melting point naturally depends on the amount of solid solution of carbon, but in the case of metal cobalt, the melting point decreases to around 1309°C.

このため近時−最北しつつある1300″Cをこえる高
温操業加熱炉のスキッドボタンとして適用することはで
きない。
For this reason, it cannot be used as a skid button in heating furnaces that operate at high temperatures exceeding 1300''C, which is becoming more common these days.

本発明は上記に鑑みてなされたものであり、スキッドボ
タン等として1300°Cをこえる高温雰囲気炉での使
用に耐える高融点と十分な圧縮強度を有する複合焼結体
からなる鋼材搬送部材を提供することを目的としている
The present invention has been made in view of the above, and provides a steel material conveying member made of a composite sintered body that has a high melting point and sufficient compressive strength to withstand use in high-temperature atmosphere furnaces exceeding 1300°C as skid buttons, etc. It is intended to.

〔課題を解決するための手段および作用〕本発明の鋼材
搬送部材は、炭化物系セラミック粒子と金属マトリック
スからなる複合焼結体における該マトリックスが、Co
20重量%以下を含むCo−Cr合金であることを特徴
としている。
[Means and effects for solving the problem] The steel material conveying member of the present invention has a composite sintered body composed of carbide ceramic particles and a metal matrix, in which the matrix is made of Co
It is characterized by being a Co-Cr alloy containing 20% by weight or less.

本発明の鋼材搬送部材である複合焼結体は、そのマトリ
ックス金属がクロム合金であるので、焼結工程および実
機使用時の高温加熱下においてセラミック(炭化物系)
からマトリックス金属への炭素分の拡散固溶とそれによ
る融点の低下が生じても、1300°C以上の高温操業
に耐える十分な高融点・高強度を有している。
The matrix metal of the composite sintered body, which is the steel material conveying member of the present invention, is a chromium alloy.
It has a sufficiently high melting point and high strength to withstand high-temperature operations of 1300°C or higher, even if carbon is diffused into the matrix metal and the melting point is lowered thereby.

第1図は、Co−Cr2元合金の状態図であり、図中の
(イ)はその2元合金をCr=Cz炭化クロムセラミッ
ク粒子と複合焼結した場合の炭素分の拡散固溶に伴って
降下する液相線を実験により求めたものである。図示の
ように、Co含有量20重量%以下のCr側の液相線は
、Co側のそれに比し著しく高温であり、炭素分の拡散
固溶による液相線の低下(約200〜30C″C)を生
じても、その融点は約1450°Cと、金属コバルトの
炭素固溶後の融点(約1309°C)に比し極めて高い
ことがわかる。
Fig. 1 is a phase diagram of a Co-Cr binary alloy, and (a) in the figure shows the state caused by the diffusion and solid solution of carbon when the binary alloy is compositely sintered with Cr=Cz chromium carbide ceramic particles. The liquidus line that descends at the peak temperature was determined experimentally. As shown in the figure, the liquidus line on the Cr side with a Co content of 20% by weight or less is significantly higher than that on the Co side, and the liquidus line decreases (approximately 200 to 30 C'') due to the diffusion and solid solution of carbon. It can be seen that even if C) is produced, its melting point is about 1450°C, which is extremely higher than the melting point of metal cobalt after carbon solid solution (about 1309°C).

なお、セラミックと上記クロム合金との複合焼結工程に
おいては、セラミックからクロム合金への炭素分の拡散
固溶のほかに、クロム合金からセラミックへの金属分の
拡散固溶によるセラミックの相変化、例えばCr3C,
の一部のCrtC+への変化を生じることがあるが、そ
の融点は約1782°Cとマトリックス金属に比べて著
しく高温であるので複合焼結体の高温特性に実質的な影
客を生じることはない。従って、本発明の複合焼結体は
、セラミックと上記クロム合金の配合比に拘らず、その
融点は約1400’Cを下廻ることはなく、1300°
Cをこえる高温炉内雰囲気においても鋼材の負荷に耐え
る高度の圧縮変形抵抗性を示す。
In addition, in the composite sintering process of ceramic and the above-mentioned chromium alloy, in addition to diffusion solid solution of carbon from the ceramic to the chromium alloy, phase change of the ceramic due to diffusion solid solution of metal from the chromium alloy to the ceramic. For example, Cr3C,
However, since its melting point is approximately 1782°C, which is significantly higher than that of the matrix metal, it does not substantially affect the high-temperature properties of the composite sintered body. do not have. Therefore, the composite sintered body of the present invention has a melting point of 1300°C, which does not fall below about 1400°C, regardless of the mixing ratio of the ceramic and the chromium alloy.
It exhibits a high degree of compressive deformation resistance that can withstand the load of steel materials even in high-temperature furnace atmospheres exceeding C.

炭化物系セラミック粒子との複合物である上記焼結体の
高融点化を重視する点からは、Co含有クロム合金より
も、Cr単体金属をマトリックスとする方が有利である
に拘らず、そのマトリックス金属をCo含有クロム合金
としたのは、その焼結体の機械衝撃特性を高めるためで
ある。すなわち、クロム単体金属は伸びが低いので、こ
れをマトリックスとする焼結体の靭性は比較的低いレベ
ルにとどまるが、CrにCoを合金化することによりそ
の伸びが向上し焼結体の靭性が高められる。
Although it is more advantageous to use a single Cr metal as a matrix than a Co-containing chromium alloy from the point of view of emphasizing a high melting point of the above-mentioned sintered body, which is a composite with carbide-based ceramic particles, the matrix The purpose of using a Co-containing chromium alloy as the metal is to improve the mechanical impact properties of the sintered body. In other words, since chromium elemental metal has low elongation, the toughness of a sintered body using this as a matrix remains at a relatively low level, but by alloying Cr with Co, its elongation increases and the toughness of the sintered body increases. be enhanced.

その靭性向上効果はCofiを増すに伴って増加するけ
れども、反面融点の急激な低下を招くことは前記したと
おりである。このため、本発明では、Co含有量の上限
を20重量%と規定することにより、高融点を確保しつ
つ靭性を改善しているのである。そのCoのより好まし
い含有量は5〜20重量%である。
As mentioned above, the toughness improvement effect increases as the Cofi increases, but on the other hand, it causes a rapid decrease in the melting point. Therefore, in the present invention, by specifying the upper limit of the Co content as 20% by weight, toughness is improved while ensuring a high melting point. A more preferable Co content is 5 to 20% by weight.

本発明の複合焼結体からなる鋼材搬送部材は、Crsc
z*  S i C等の炭化物系セラミック粉末と、マ
トリックス金属分としての金属クロム粉末および金属コ
バルト粉末(両者の合金粉末であってもよい)との混合
物を焼結原料とし、公知の焼結方法、好ましくは熱間静
水圧加圧焼結法(HI P法)を用い、温度:約120
0〜1300°C1加圧カニ約1000〜2000kg
/cIaに適当時間(例えば約2〜4Hr)保持する焼
結処理により製造される。
The steel material conveying member made of the composite sintered body of the present invention is Crsc
A mixture of carbide ceramic powder such as z* S i C and metallic chromium powder and metallic cobalt powder (may be an alloy powder of both) as a matrix metal is used as a sintering raw material, and a known sintering method is used. , preferably using a hot isostatic pressing sintering method (HIP method), at a temperature of about 120
0~1300°C1 pressurized crab approx. 1000~2000kg
/cIa for an appropriate period of time (for example, about 2 to 4 hours).

本発明の複合焼結体の複合組織に占めるセラミック粒子
の割合は任意であるが、セラミック粒子の分散強化作用
を十分ならしめるために、約30重量%以上であること
が好ましい。その割合を増す程強度は向上するが、あま
り多くするとマトリックス金属量の相対的減少に伴い、
靭性が低下し、鋼材接触による割れを生じ易くなるので
、約70重量%を上限とするのがよい。また、セラミッ
ク粒子の粒径は例えば1〜100μmであってよい。
Although the proportion of the ceramic particles in the composite structure of the composite sintered body of the present invention is arbitrary, it is preferably about 30% by weight or more in order to ensure sufficient dispersion strengthening effect of the ceramic particles. The strength improves as the proportion increases, but if it increases too much, the amount of matrix metal decreases and
The upper limit is preferably about 70% by weight since the toughness decreases and cracks are more likely to occur due to contact with steel materials. Further, the particle size of the ceramic particles may be, for example, 1 to 100 μm.

なお、本発明の鋼材搬送部材は、必ずしもその全体が上
記複合焼結体で形成される必要はなく、第2図に示した
スキッドボタンでは、スキッドパイプ(A)に当接する
側の下半部分(11)、すなわちスキッドパイプ(A)
からの伝導伝熱による十分な冷却作用が及ぶ部分は従来
の耐熱合金(例えば、高Cr高Ni系合金鋼)のブロッ
クを使用し、その耐熱合金ブロック(11)の上半部分
(12)を前記複合焼結体で形成したものであってもよ
い。この場合、複合焼結体との接合面となる耐熱合金ブ
ロックの上側表面に予め金属クロム膜を設けておけば、
セラミックからの炭素分の拡散による耐熱合金ブロック
の融点低下を生じることはない。
Note that the steel material conveying member of the present invention does not necessarily have to be entirely formed of the composite sintered body, and in the skid button shown in FIG. (11), i.e. skid pipe (A)
A block of conventional heat-resistant alloy (e.g., high Cr, high Ni alloy steel) is used for the part where sufficient cooling action is achieved by conductive heat transfer from the heat-resistant alloy block (11). It may be formed from the composite sintered body. In this case, if a metallic chromium film is previously provided on the upper surface of the heat-resistant alloy block that will be the joint surface with the composite sintered body,
The melting point of the heat-resistant alloy block does not decrease due to diffusion of carbon from the ceramic.

〔実施例〕〔Example〕

炭化クロム(Cr 3 Cg)粉末(平均粒径:50μ
m)と下記金属粉末A、BまたはCとの混合物を熱間静
水圧加圧焼結法(但し、加圧カニ 1200kg/c+
lI。
Chromium carbide (Cr3Cg) powder (average particle size: 50μ
m) and the following metal powders A, B or C by hot isostatic pressure sintering (however, pressure crab 1200kg/c+
lI.

温度: 1200〜1250°C)により焼結処理し、
得られた各焼結体の融点および圧縮強度(at1350
°C)を測定し、第1表に示す結果を得た。
Sintering treatment at temperature: 1200-1250°C),
The melting point and compressive strength (at1350
°C) and obtained the results shown in Table 1.

金属粉末A:Co含有クロム合金(Co:0.5〜20
重量%) 金属粉末B:Co合金(50%Cr−3%W−Co1融
点:約1390°C) 金属粉末C:耐熱合金!(0,1%C−27%Cr−1
7%N 1−40%Co−Fe、融点:約1380°C
) 第1図に示したように、マトリックス金属にCo合金を
使用した場合(Nα11)や耐熱合金鋼を用いた場合(
Nα12)、あるいはCo含有クロム合金をマトリック
ス金属とする場合でも、Coを本発明の上限規定からは
ずれて多量に含有するものである場合(Nα13)は、
その融点が著しく低いのに対し、Co含有量が20重量
%以下に規定されたクロム合金をマトリックス金属とす
る発明例の焼結体(Nα1〜5)は1400°Cを上潮
る高融点を有し、また1350°Cの高温度において高
い圧縮強度を有していることがわかる。
Metal powder A: Co-containing chromium alloy (Co: 0.5-20
Weight %) Metal powder B: Co alloy (50%Cr-3%W-Co1 melting point: about 1390°C) Metal powder C: Heat-resistant alloy! (0.1%C-27%Cr-1
7%N 1-40%Co-Fe, melting point: about 1380°C
) As shown in Figure 1, when Co alloy is used as the matrix metal (Nα11) and when heat-resistant alloy steel is used (
Nα12), or even if a Co-containing chromium alloy is used as the matrix metal, if it contains a large amount of Co outside the upper limit of the present invention (Nα13),
In contrast, the sintered bodies of the invention examples (Nα 1 to 5) whose matrix metal is a chromium alloy with a Co content of 20% by weight or less have a high melting point of 1400°C. It can also be seen that it has a high compressive strength at a high temperature of 1350°C.

第 表 〔発明の効果〕 本発明に係る複合焼結体からなる鋼材搬送部材は高融点
を有し、1300″Cをこえる高温雰囲気においても鋼
材の荷重に耐える十分な圧縮強度を有している。従って
近時−膜化しつつある高温雰囲気において安定な使用が
可能であり、炉床メンテナンスの大幅な軽減および操炉
効率の向上円滑化に大きな効果が得られる。
Table [Effects of the Invention] The steel material conveying member made of the composite sintered body according to the present invention has a high melting point and has sufficient compressive strength to withstand the load of steel material even in a high temperature atmosphere exceeding 1300"C. Therefore, it can be used stably in a high-temperature atmosphere that is becoming increasingly membrane-forming in recent years, and has great effects in greatly reducing hearth maintenance and improving furnace operation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Co−Cr2元合金の状態図、第2図は鋼材
搬送部材の側を示す断面図である。 10ニスキツドボタン、A:ビーム(スキッドバイブ)
FIG. 1 is a state diagram of a Co-Cr binary alloy, and FIG. 2 is a sectional view showing the side of a steel material conveying member. 10 skid buttons, A: Beam (skid vibe)

Claims (1)

【特許請求の範囲】[Claims] 1、炭化物系セラミック粒子と金属マトリックスからな
る複合焼結体であって、該マトリックスは、20重量%
以下のCoを含有するCo−Cr合金であることを特徴
とする高温強度にすぐれた加熱炉内鋼材搬送部材。
1. A composite sintered body consisting of carbide ceramic particles and a metal matrix, the matrix containing 20% by weight
A steel material conveying member in a heating furnace having excellent high-temperature strength, characterized by being a Co-Cr alloy containing the following Co.
JP24830388A 1988-09-30 1988-09-30 Steel material transferring member in heating furnace Pending JPH0297614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24830388A JPH0297614A (en) 1988-09-30 1988-09-30 Steel material transferring member in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24830388A JPH0297614A (en) 1988-09-30 1988-09-30 Steel material transferring member in heating furnace

Publications (1)

Publication Number Publication Date
JPH0297614A true JPH0297614A (en) 1990-04-10

Family

ID=17176069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24830388A Pending JPH0297614A (en) 1988-09-30 1988-09-30 Steel material transferring member in heating furnace

Country Status (1)

Country Link
JP (1) JPH0297614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437249U (en) * 1990-07-19 1992-03-30
JPH0437250U (en) * 1990-07-19 1992-03-30
JPH0437251U (en) * 1990-07-19 1992-03-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437249U (en) * 1990-07-19 1992-03-30
JPH0437250U (en) * 1990-07-19 1992-03-30
JPH0437251U (en) * 1990-07-19 1992-03-30

Similar Documents

Publication Publication Date Title
JPH0747793B2 (en) Oxide dispersion strengthened heat resistant sintered alloy
JP2718132B2 (en) Skid rail
JPS60200948A (en) Composite material for supporting member of heating furnace
JPH0297614A (en) Steel material transferring member in heating furnace
Kumar et al. Reactive casting of ceramic composites (r-3C)
JP3837332B2 (en) In-situ powder metallurgy manufacturing method for wear-resistant composite materials
JPS59107058A (en) Heat-resistant ceramic material
Baglyuk et al. Structure and properties of powder austenitic die steels
JPH0297613A (en) Steel material transferring member in heating furnace
JPH0297615A (en) Steel material carrying member in heating furnace and manufacture thereof
JPH0832942B2 (en) Composite sintered alloy, heat resistant member and steel support member in heating furnace
US5226980A (en) Skid rail alloy
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
JPS6310114B2 (en)
JPS61186190A (en) Composite filter rod for building up by welding
JPS6310115B2 (en)
JPS59107970A (en) Heat resistant ceramic material
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPH04301048A (en) Heat resisting alloy for support surface member for steel material to be heated in heating furnace
JP2750240B2 (en) Skid button for walking beam type heating furnace
JPS59107059A (en) Heat-resistant ceramic material
JPH08291355A (en) Chromium-base heat resistant alloy
JPH02232335A (en) Composite sintered alloy and steel material supporting member in heating furnace
JPH03232945A (en) Heat resisting alloy and skid rail using same
JPH02233990A (en) Refractory and steel support member in heating furnace