JPH04289766A - Power supply voltage detecting circuit - Google Patents

Power supply voltage detecting circuit

Info

Publication number
JPH04289766A
JPH04289766A JP5483991A JP5483991A JPH04289766A JP H04289766 A JPH04289766 A JP H04289766A JP 5483991 A JP5483991 A JP 5483991A JP 5483991 A JP5483991 A JP 5483991A JP H04289766 A JPH04289766 A JP H04289766A
Authority
JP
Japan
Prior art keywords
voltage
output
diode
differential amplifier
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5483991A
Other languages
Japanese (ja)
Inventor
Kenichi Katsuyama
憲一 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5483991A priority Critical patent/JPH04289766A/en
Publication of JPH04289766A publication Critical patent/JPH04289766A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To limit the input voltage to a differential amplifier within a controllable range by connecting a diode to the cathode terminal side of a Zener diode thereby feeding a voltage higher than a predetermined level to the input terminal of the differential amplifier even when a second reference voltage is lower than a predetermined level. CONSTITUTION:A diode 4 limits the output voltage V0 to a level, lower by the forward voltage drop of the diode 4 than 0V, even if the negative voltage value increases. A first Zener diode 3 functions to sustain the output voltage V0 at a constant level in negative direction. Consequently, potential at point B does not drop below a predetermined level even if the output voltage V0 increases in the negative direction and the potential at point A has a level for enabling control of a differential amplifier 11 at all times. Consequently, overvoltage state is prevented from occurring at the output.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は電源電圧検出回路に関し
,特にDC−DCコンバータ用の電圧検出回路に関する
。従来のDC−DCコンバータでは,出力電圧を検出し
て電圧レベルが設定された値より大きいか,小さいかに
対応して幅の異なる制御パルスを発生している。 【0002】出力される電源電圧の検出回路としては差
動増幅器(または誤差増幅器)が用いられるが,負の出
力電圧を検出するために差動増幅器の入力側の接続を,
正電圧の検出の場合と異ならせているが,近年は電源電
圧検出回路がIC回路化されてそのような接続替えがで
きないため工夫が施されているが欠点があってその改善
が望まれている。 【0003】 【従来の技術】図3乃至図7は従来の技術を説明するた
めの構成を示し,図3はDC−DCコンバータの従来例
の構成,図4は負の電圧検出回路の従来例の構成,図5
は制御用ICの構成図,図6は制御用ICを用いた負の
電圧検出回路の構成,図7は図6の構成による動作波形
である。 【0004】図3のA.に示すDC−DCコンバータ(
またはスイッチングレギュレータ)の動作を説明すると
,バッテリー等の直流電圧を,トランジスタ32により
断続制御された電流がトランス31を介して流れる。 トランス31の2次側の出力は整流・平滑回路35を介
して出力電圧VO が発生する。 【0005】この出力電圧VO (正電圧とする)は,
抵抗R1 ,R2 で分圧されて電圧検出回路を構成す
る差動増幅器34の−端子に供給され,+端子に供給さ
れた基準電圧Vref と比較される。この比較出力が
パルス幅変調器(PWMで表示)33に供給されて一定
振幅でパルス幅が比較結果に応じて変化する駆動信号を
トランジスタ32のベースに供給する。この時の出力電
圧VO とPWM33から発生する駆動信号の関係は,
図3のB.に示されている。なお,図3のA.のPWM
33と差動増幅器34は点線で囲まれた回路が制御IC
として市販されている。この場合の出力電圧VO と基
準電圧Vref の関係は次の通りである。 【0006】VO =(1+R1 /R2 )Vref
 【0007】上記図3では正の出力電圧VO を検出
しているが,図4は出力電圧が負の(極性)場合に同じ
制御ICを用いた電圧検出回路の構成である。この構成
では,負の電圧を検出するために,差動増幅器34の−
端子に基準電圧(これをVref1とする)を供給して
いる。 その一方で,新たにツェナーダイオードZDにより発生
する基準電圧(これをVref2とする)を設け,この
電圧を抵抗R3 ,R4 で分圧した電圧を制御ICの
差動増幅器34の+端子に供給して,基準電圧Vref
1との比較を行うことにより出力を制御している。この
場合の出力電圧VO と,各基準電圧の関係は次のよう
になる。 【0008】VO =(R4 /R3 ・Vref2−
(1+R4 /R3 )Vref1 【0009】上記図4の構成に対し,最近は集積回路の
進歩により集積度の向上と端子数の削減が図られて,図
5に示すような新しい制御ICが増加している。この制
御ICは,内部で差動増幅器の+端子に基準電圧(+極
性)が固定して接続された構造を備えているため,正電
圧を検出する時は便利であるが,負電圧を検出すること
ができなくなる(差動増幅器の入力の極性を図3のよう
に変更することができないので)。 【0010】そこで,これに対応する電圧検出回路とし
て図6に示す回路が利用されている。この回路は,カレ
ントミラーを利用したレベルシフト回路が用いられてい
る。すなわち,ツェナーダイオードZDによりVCC(
回路電源)に関係しない基準電圧Vref2を設け,こ
の基準電圧に対し出力電圧VO が抵抗R5 ,R6 
により分圧され,両抵抗が接続するB点の電圧によりト
ランジスタTRが駆動されて,抵抗R5 の両端に発生
する電圧に対応する電圧が抵抗R8 の両端に発生して
A点に出力される。このA点の電圧が差動増幅器34の
−端子に供給され出力電圧VO に対応する電圧を発生
する。この時の出力電圧と各抵抗,基準電圧との関係は
次のようになる。 但し,BBEはトランジスタTRのベース・エミッタ電
圧である。 【0011】VO =(1+R6 /R5 ){R6 
・Vref2/(R5 +R6 )−R7 ・Vref
1/R8 −BBE}【0012】図7は上記図6に示
す回路の動作波形を示す。図7の■は基準電圧Vref
2(点線で表示)と入力電圧(回路の電源電圧のVCC
)Vinの変化を表し,■は負の出力電圧VO ,■は
B点電位,■はA点電位を表す。 図7の横方向は各状態を表し,a.は定常状態の時,b
.は入力Vinが急変した時,c.は入力投入時,d.
は出力電圧VO の負荷が急に軽減された時(制御が追
随できず出力電圧が大きくなる)である。 【0013】 【発明が解決しようとする課題】上記の図6に示すよう
に負の出力電圧を検出する構成では,図7に示すように
入力(電源)投入時c.には,基準電圧Vref2がツ
ェナーダイオードや容量の分布等により点線のようにゆ
っくり立ち上がるのに対し制御ICの差動増幅器が動作
を開始して出力電圧VO が表れると,■のB点電位が
基準電圧Vref1より小となる(■のA点電位も高く
ならない)。この状態になると制御ICは,出力電圧V
O が低いものと判断し出力を高い方向へ制御する。出
力が過電圧状態となったままとなる。同様に図7のb.
入力(電源)急変時,d.出力電圧VO の負荷が急に
軽減された場合(B点電位が下がり差動増幅器の制御範
囲を越える)にも出力は過電圧状態になったままになる
という欠点があった。 【0014】本発明は上記のように基準電圧回路内蔵の
差動増幅器を含む制御集積回路を用いた電圧検出回路に
おいて,負の電圧を検出する時に電源投入時などの変動
時においても差動増幅器への入力する電位を制御可能な
範囲にすることができる電源電圧検出回路を提供するこ
とを目的とする。 【0015】 【課題を解決するための手段】図1は本発明の実施例の
構成である。図1において,1は制御集積回路(制御I
C),10はパルス幅変調回路,11は正の第1の基準
電圧が印加される差動増幅器,2はトランジスタ(TR
),3は第1のツェナーダイオード(ZD1 ),4は
ダイオード(D),5〜8はそれぞれ抵抗(R5 〜R
8 ),9は第2のツェナーダイオード(ZD2 )で
ある。 【0016】本発明はトランジスタのベースに印加され
る出力電圧の分圧出力を,第2のツェナーダイオードを
介して印加すると共に,該ツェナーダイオードの陰極端
子側にダイオードを接続することにより第2の基準電圧
が所定の電圧に達しない場合にも,差動増幅器の入力端
子に対し一定レベル以上の電圧を供給するものである。 【0017】 【作用】図1において,DC−DCコンバータの出力電
圧VO は抵抗6,新たに設けた第1のツェナーダイオ
ード(ZD1 )3,抵抗5を介して第2の基準電圧V
ref2に供給される。この抵抗5と第1のツェナーダ
イオード(ZD1 )3の接続点(B点)がトランジス
タ(TR)2のベースに供給され,そのコレクタと抵抗
7が接続する点(A点)から制御IC1の差動増幅器1
1の入力端子(−端子)に供給される。第1のツェナー
ダイオード3と抵抗6の接続点(C点)と電源の0Vと
の間にダイオード(D)4を配置する。 【0018】このダイオード4により出力電圧VO が
負の電圧値が大きくなっても0Vよりダイオード4の順
方向降下電圧だけ低い値に制限される。また,第1のツ
ェナーダイオード(ZD1 )3により出力電圧VO 
の値が負方向の一定レベルに保つように働く。こうして
,出力電圧VO が負方向へ大きくなってもB点電位を
一定値以下にならないようにすることができ,A点電位
を必ず差動増幅器11が制御可能な状態にする。 【0019】 【実施例】図1に示す実施例の構成は,従来例の図6の
回路の電圧検出回路に対し,抵抗R5 ,R6 の直列
回路に新たにツェナーダイオードZD1を抵抗R5 ,
R6 の中間に挿入し,ツェナーダイオードZD1 と
抵抗R6 の交点と0Vの間に0Vをアノードに接続し
たダイオードDを追加したものである。また,第2の基
準電圧Vref2は従来と同様に回路電源のVCCと0
Vとの間の抵抗と第2のツェナーダイオードZD2 の
接続点で発生する。 【0020】この実施例の回路の出力電圧VO と抵抗
,各基準電圧との関係を次の式により表現できる。 【0021】 【数1】 【0022】図2は実施例の動作波形を示す。図2の■
〜■は図7と同様に,■は基準電圧Vref2(点線で
表示)と入力電圧Vin(回路の電源電圧のVCC)の
変化を表し,■は負の出力電圧VO ,■はB点電位,
■はA点電位を表し,横方向のa.は定常状態の時,b
.は入力Vinが急変した時,c.は入力(電源)投入
時,d.は出力電圧VO の負荷が急に軽減された時(
制御が追随できず出力電圧が大きくなる)である。 【0023】図2を参照すれば分かるように実施例の回
路では,入力急変時b,入力電圧投入時や負荷が急に軽
くなった時cのように,出力電圧VO が大きくなって
も,C点(ダイオードのアノード側)の電位は,ダイオ
ードの順方向電圧降下分(例えば,0.7V)程度負に
クランプされる。この結果■に示すB点(第1のツェナ
ーダイオードZD1 のアノード側)は,ツェナーダイ
オードの電圧分だけ正側となり,■に示すA点(制御I
Cへの入力点)の電位も,第1の基準電圧Vref1以
上にすることが可能となり,差動増幅器11は正常動作
を行うことが可能となる。なお,正常時には当然C点電
位は正極になるよう,第1ツェナーダイオードZD1,
抵抗R5 ,R6 が選択される。 【0024】 【発明の効果】本発明によれば正の基準電圧が供給され
るような差動増幅器を内蔵する制御集積回路を使用して
負極性の電圧検出を行う場合に,電源投入時の出力の過
電圧状態の発生を防止すると共に入力変動や出力負荷の
急変による出力過電圧状態の発生を防止することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply voltage detection circuit, and more particularly to a voltage detection circuit for a DC-DC converter. In conventional DC-DC converters, output voltage is detected and control pulses with different widths are generated depending on whether the voltage level is higher or lower than a set value. A differential amplifier (or error amplifier) is used as a detection circuit for the output power supply voltage, but in order to detect a negative output voltage, the input side connection of the differential amplifier is
This is different from the case of positive voltage detection, but in recent years, power supply voltage detection circuits have been integrated into IC circuits and such connection changes are no longer possible, so improvements have been made, but there are drawbacks and improvements are desired. There is. [0003] FIGS. 3 to 7 show configurations for explaining conventional techniques. FIG. 3 shows the configuration of a conventional example of a DC-DC converter, and FIG. 4 shows a conventional example of a negative voltage detection circuit. Configuration, Figure 5
6 is a configuration diagram of a control IC, FIG. 6 is a configuration of a negative voltage detection circuit using a control IC, and FIG. 7 is an operating waveform according to the configuration of FIG. 6. A in FIG. The DC-DC converter shown in (
To explain the operation of the DC voltage of a battery or the like, a current whose intermittent control is controlled by a transistor 32 flows through a transformer 31. The output of the secondary side of the transformer 31 is passed through a rectifier/smoothing circuit 35 to generate an output voltage VO. [0005] This output voltage VO (assumed to be a positive voltage) is:
The voltage is divided by resistors R1 and R2 and supplied to the negative terminal of a differential amplifier 34 constituting a voltage detection circuit, and compared with the reference voltage Vref supplied to the positive terminal. This comparison output is supplied to a pulse width modulator (indicated by PWM) 33, and a drive signal having a constant amplitude and whose pulse width changes according to the comparison result is supplied to the base of the transistor 32. The relationship between the output voltage VO and the drive signal generated from the PWM33 at this time is as follows:
B in Figure 3. is shown. Note that A. in FIG. PWM of
33 and differential amplifier 34, the circuit surrounded by dotted lines is a control IC.
It is commercially available as. The relationship between the output voltage VO and the reference voltage Vref in this case is as follows. [0006]VO=(1+R1/R2)Vref
Although the positive output voltage VO is detected in FIG. 3, FIG. 4 shows the configuration of a voltage detection circuit using the same control IC when the output voltage is negative (polarity). In this configuration, the − of the differential amplifier 34 is used to detect a negative voltage.
A reference voltage (this is referred to as Vref1) is supplied to the terminal. On the other hand, a new reference voltage (this is referred to as Vref2) generated by the Zener diode ZD is provided, and a voltage obtained by dividing this voltage by resistors R3 and R4 is supplied to the + terminal of the differential amplifier 34 of the control IC. , the reference voltage Vref
The output is controlled by comparing it with 1. The relationship between the output voltage VO and each reference voltage in this case is as follows. [0008] VO = (R4 /R3 ・Vref2-
(1+R4 /R3)Vref1 In contrast to the configuration shown in FIG. 4 above, recent advances in integrated circuits have led to improvements in the degree of integration and reduction in the number of terminals, and the number of new control ICs as shown in FIG. 5 has increased. ing. This control IC has a structure in which the reference voltage (+ polarity) is fixedly connected to the + terminal of the differential amplifier internally, so it is convenient for detecting positive voltages, but it also detects negative voltages. (because the polarity of the input of the differential amplifier cannot be changed as shown in FIG. 3). Therefore, a circuit shown in FIG. 6 is used as a voltage detection circuit corresponding to this. This circuit uses a level shift circuit using a current mirror. In other words, VCC (
A reference voltage Vref2 that is not related to the circuit power supply) is provided, and the output voltage VO with respect to this reference voltage is connected to the resistors R5 and R6.
The transistor TR is driven by the voltage at point B where both resistors are connected, and a voltage corresponding to the voltage generated across resistor R5 is generated across resistor R8 and output to point A. This voltage at point A is supplied to the - terminal of the differential amplifier 34 to generate a voltage corresponding to the output voltage VO. The relationship between the output voltage, each resistance, and the reference voltage at this time is as follows. However, BBE is the base-emitter voltage of the transistor TR. [0011] VO = (1+R6 /R5) {R6
・Vref2/(R5 +R6)-R7 ・Vref
1/R8 -BBE} FIG. 7 shows operating waveforms of the circuit shown in FIG. 6 above. ■ in FIG. 7 is the reference voltage Vref
2 (shown as a dotted line) and the input voltage (VCC of the circuit power supply voltage)
) represents the change in Vin, ■ represents the negative output voltage VO, ■ represents the potential at point B, and ■ represents the potential at point A. The horizontal direction in FIG. 7 represents each state, a. is in steady state, b
.. When the input Vin suddenly changes, c. is when input is input, d.
This is when the load on the output voltage VO is suddenly reduced (control cannot follow it and the output voltage increases). [0013] In the configuration for detecting a negative output voltage as shown in FIG. 6, as shown in FIG. 7, when the input (power supply) is turned on, c. , the reference voltage Vref2 rises slowly as shown by the dotted line due to the Zener diode, capacitance distribution, etc., but when the differential amplifier of the control IC starts operating and the output voltage VO appears, the potential at point B in ■ becomes the reference voltage. The voltage becomes smaller than Vref1 (the potential at point A in ■ also does not become high). In this state, the control IC outputs voltage V
It is determined that O is low and the output is controlled in a higher direction. The output remains in an overvoltage condition. Similarly, b. of FIG.
When the input (power supply) suddenly changes, d. Even if the load on the output voltage VO is suddenly reduced (the potential at point B falls and exceeds the control range of the differential amplifier), the output remains in an overvoltage state. As described above, the present invention provides a voltage detection circuit using a control integrated circuit including a differential amplifier with a built-in reference voltage circuit. It is an object of the present invention to provide a power supply voltage detection circuit that can control the potential input to the circuit within a controllable range. Means for Solving the Problems FIG. 1 shows the configuration of an embodiment of the present invention. In Figure 1, 1 is a control integrated circuit (control I
C), 10 is a pulse width modulation circuit, 11 is a differential amplifier to which a positive first reference voltage is applied, and 2 is a transistor (TR
), 3 is the first Zener diode (ZD1), 4 is the diode (D), and 5 to 8 are the resistors (R5 to R
8) and 9 are second Zener diodes (ZD2). The present invention applies a divided voltage output of the output voltage applied to the base of the transistor through the second Zener diode, and connects the diode to the cathode terminal side of the Zener diode. Even when the reference voltage does not reach a predetermined voltage, a voltage above a certain level is supplied to the input terminal of the differential amplifier. [Operation] In FIG. 1, the output voltage VO of the DC-DC converter is connected to the second reference voltage V via the resistor 6, the newly provided first Zener diode (ZD1) 3, and the resistor 5.
Provided to ref2. The connection point (point B) between this resistor 5 and the first Zener diode (ZD1) 3 is supplied to the base of the transistor (TR) 2, and the difference between the control IC 1 and the point where the collector and the resistor 7 are connected (point A) is supplied to the base of the transistor (TR) 2. dynamic amplifier 1
1 input terminal (- terminal). A diode (D) 4 is placed between the connection point (point C) between the first Zener diode 3 and the resistor 6 and 0V of the power supply. This diode 4 limits the output voltage VO to a value lower than 0V by the forward voltage drop of the diode 4 even if the negative voltage value becomes large. In addition, the output voltage VO is increased by the first Zener diode (ZD1) 3.
works to keep the value at a constant level in the negative direction. In this way, even if the output voltage VO increases in the negative direction, the potential at point B can be prevented from falling below a certain value, and the potential at point A can always be controlled by the differential amplifier 11. [Embodiment] The configuration of the embodiment shown in FIG. 1 is different from the voltage detection circuit of the conventional circuit shown in FIG. 6 by adding a Zener diode ZD1 to the series circuit of resistors R5 and R6.
A diode D is inserted between R6 and the intersection of Zener diode ZD1 and resistor R6 and 0V with 0V connected to the anode. In addition, the second reference voltage Vref2 is set to 0 to VCC of the circuit power supply as in the conventional case.
This occurs at the connection point between the resistance between V and the second Zener diode ZD2. The relationship between the output voltage VO of the circuit of this embodiment, the resistance, and each reference voltage can be expressed by the following equation. ##EQU1## FIG. 2 shows operational waveforms of the embodiment. ■ in Figure 2
~ ■ is the same as in Fig. 7, ■ represents the change in the reference voltage Vref2 (indicated by a dotted line) and the input voltage Vin (VCC of the circuit power supply voltage), ■ is the negative output voltage VO, ■ is the potential at point B,
■ represents the potential at point A, and a. is in steady state, b
.. When the input Vin suddenly changes, c. When input (power) is turned on, d. is when the load on the output voltage VO is suddenly reduced (
(The output voltage increases because the control cannot keep up with it.) As can be seen from FIG. 2, in the circuit of the embodiment, even if the output voltage VO becomes large, such as when the input suddenly changes (b), when the input voltage is turned on, or when the load suddenly becomes lighter (c), The potential at point C (on the anode side of the diode) is clamped to a negative level corresponding to the forward voltage drop of the diode (for example, 0.7 V). As a result, point B (anode side of the first Zener diode ZD1) shown in ■ becomes positive by the voltage of the Zener diode, and point A shown in
It is also possible to make the potential of the input point (input point to C) higher than the first reference voltage Vref1, and the differential amplifier 11 can operate normally. Note that the first Zener diode ZD1,
Resistors R5 and R6 are selected. [0024] According to the present invention, when detecting a voltage of negative polarity using a control integrated circuit incorporating a differential amplifier to which a positive reference voltage is supplied, it is possible to It is possible to prevent the occurrence of an output overvoltage state, and also to prevent the occurrence of an output overvoltage state due to input fluctuations or sudden changes in the output load.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】実施例の動作波形である。FIG. 2 is an operational waveform of the embodiment.

【図3】DC−DCコンバータの従来例の構成である。FIG. 3 shows the configuration of a conventional example of a DC-DC converter.

【図4】負の電圧検出回路の従来例の構成である。FIG. 4 is a configuration of a conventional example of a negative voltage detection circuit.

【図5】制御用ICの構成図である。FIG. 5 is a configuration diagram of a control IC.

【図6】制御用ICを用いた負の電圧検出回路の構成図
である。
FIG. 6 is a configuration diagram of a negative voltage detection circuit using a control IC.

【図7】図6の構成による動作波形である。FIG. 7 is an operational waveform according to the configuration of FIG. 6;

【符号の説明】[Explanation of symbols]

1      制御集積回路(制御IC)10    
パルス幅変調回路(PWM)11    差動増幅器(
AMP) 2      トランジスタ(TR) 3      第1のツェナーダイオード(ZD1 )
4      ダイオード(D) 5〜8  抵抗(R5 〜R8 )
1 Control integrated circuit (control IC) 10
Pulse width modulation circuit (PWM) 11 Differential amplifier (
AMP) 2 Transistor (TR) 3 First Zener diode (ZD1)
4 Diode (D) 5~8 Resistor (R5~R8)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  DC−DCコンバータの出力電圧を入
力して正の基準電圧と比較する差動増幅器を内蔵する制
御集積回路により負の出力電圧を検出するための電源電
圧検出回路において,回路電源と第1のツェナーダイオ
ードにより発生する第2の基準電圧に直列の2つの抵抗
を介して出力電圧を接続し,2つの抵抗の接続点の電圧
がベースに供給されるトランジスタの他の1つの端子を
抵抗を介して前記基準電圧に接続し,他の端子を前記制
御集積回路の入力端子に接続し,前記2つの抵抗の間に
第2のツェナーダイオードを直列に接続すると共に該ツ
ェナーダイオードと出力電圧が印加される側の抵抗との
間に一端を0Vに接続したダイオードを接続したことを
特徴とする電源電圧検出回路。
Claim 1: In a power supply voltage detection circuit for detecting a negative output voltage by a control integrated circuit incorporating a differential amplifier that inputs the output voltage of a DC-DC converter and compares it with a positive reference voltage, and the output voltage is connected through two resistors in series to a second reference voltage generated by a first Zener diode, and the other terminal of the transistor is supplied with the voltage at the connection point of the two resistors to the base. is connected to the reference voltage via a resistor, the other terminal is connected to the input terminal of the control integrated circuit, and a second Zener diode is connected in series between the two resistors, and the Zener diode and the output A power supply voltage detection circuit characterized in that a diode with one end connected to 0V is connected between a resistor on the side to which a voltage is applied.
JP5483991A 1991-03-19 1991-03-19 Power supply voltage detecting circuit Withdrawn JPH04289766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5483991A JPH04289766A (en) 1991-03-19 1991-03-19 Power supply voltage detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5483991A JPH04289766A (en) 1991-03-19 1991-03-19 Power supply voltage detecting circuit

Publications (1)

Publication Number Publication Date
JPH04289766A true JPH04289766A (en) 1992-10-14

Family

ID=12981793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5483991A Withdrawn JPH04289766A (en) 1991-03-19 1991-03-19 Power supply voltage detecting circuit

Country Status (1)

Country Link
JP (1) JPH04289766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073754A (en) * 2008-09-16 2010-04-02 Sanyo Electric Co Ltd Semiconductor circuit, and power supply
JP2012231657A (en) * 2010-08-26 2012-11-22 Semiconductor Energy Lab Co Ltd Dc-dc converter and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073754A (en) * 2008-09-16 2010-04-02 Sanyo Electric Co Ltd Semiconductor circuit, and power supply
JP2012231657A (en) * 2010-08-26 2012-11-22 Semiconductor Energy Lab Co Ltd Dc-dc converter and semiconductor device

Similar Documents

Publication Publication Date Title
US4641233A (en) AC to DC converter with voltage regulation
US20040120171A1 (en) Control for a switching power supply having automatic burst mode operation
JPH06225517A (en) Ac-dc converter
US6683798B2 (en) Switching power supply with transfer function control circuit
JP3702142B2 (en) DC power supply circuit and electronic device using the same
EP1058176B1 (en) Power unit, and power supply system
CN111830424B (en) Load state detection device
JPH07255168A (en) Dc-dc converter for generating a plurality of signals
JPH04289766A (en) Power supply voltage detecting circuit
US20040169977A1 (en) Overcurrent protection switched mode power supply
JP2534217Y2 (en) DC-DC converter
JP2001161068A (en) Dc-dc converter with feeding power limiting function
JP7208074B2 (en) Output voltage detection circuit
JPH0640471Y2 (en) Power supply
JPH06106020B2 (en) Switching regulator
JPH06138161A (en) Power source abnormality monitor circuit
JPS6210108B2 (en)
KR0172862B1 (en) Circuit for controlling the pulse width of switching source
JP3286861B2 (en) High voltage power supply
JPS5847444Y2 (en) Overcurrent protection circuit in DC power supply circuit
JPH04165410A (en) Direct-current power unit
JPH04217861A (en) Switching power supply
JPH01315259A (en) Dc converter
JP3721072B2 (en) Line load resistance monitoring circuit and station-fed digital subscriber circuit device
SU1422325A2 (en) Stabilized d.c. voltage converter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514