JP2701586B2 - Negative electrode for non-aqueous electrolyte secondary battery - Google Patents

Negative electrode for non-aqueous electrolyte secondary battery

Info

Publication number
JP2701586B2
JP2701586B2 JP3127321A JP12732191A JP2701586B2 JP 2701586 B2 JP2701586 B2 JP 2701586B2 JP 3127321 A JP3127321 A JP 3127321A JP 12732191 A JP12732191 A JP 12732191A JP 2701586 B2 JP2701586 B2 JP 2701586B2
Authority
JP
Japan
Prior art keywords
negative electrode
binder
aqueous electrolyte
electrolyte secondary
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3127321A
Other languages
Japanese (ja)
Other versions
JPH04355052A (en
Inventor
正樹 長谷川
修二 伊藤
靖彦 美藤
▲吉▼徳 豊口
祐之 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3127321A priority Critical patent/JP2701586B2/en
Priority to US07/826,993 priority patent/US5262255A/en
Publication of JPH04355052A publication Critical patent/JPH04355052A/en
Application granted granted Critical
Publication of JP2701586B2 publication Critical patent/JP2701586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池用
負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム,リチウム合金またはリチウム
化合物を負極とする非水電解質二次電池は、高電圧で高
エネルギー密度が期待され、多くの研究が行われてい
る。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium, a lithium alloy or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted.

【0003】これまで非水電解質二次電池の正極活物質
には、LiCoO2,V25,Cr25,MnO2,Ti
2,MoS2などの遷移金属の酸化物およびカルコゲン
化合物が知られており、これらは層状もしくはトンネル
構造を有し、リチウムイオンが出入りできる結晶構造を
持つ。一方、負極活物質としては金属リチウムが多く検
討されてきた。しかしながら充電時にリチウム表面に樹
枝状にリチウムを析出し、充放電率の低下もしくは正極
と接して内部短絡を生じるという問題点を有していた。
このような問題点を解決する手段として、リチウムの樹
枝状成長を抑制し、リチウムを吸蔵,放出することので
きるアルミニウムやアルミニウム合金などのリチウムを
吸蔵,放出することのできる金属または合金の板もしく
は粉末を負極活物質に用いる検討がなされている。
Hitherto, the positive electrode active materials of non-aqueous electrolyte secondary batteries include LiCoO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 , and Ti.
Oxides of transition metals such as S 2 and MoS 2 and chalcogen compounds are known, which have a layered or tunnel structure and a crystal structure through which lithium ions can enter and exit. On the other hand, lithium metal has been widely studied as a negative electrode active material. However, there has been a problem that lithium is deposited in a dendritic manner on the surface of lithium during charging, and the charge / discharge rate is reduced or an internal short circuit occurs due to contact with the positive electrode.
As a means for solving such problems, a metal or alloy plate or a metal or alloy capable of absorbing and releasing lithium, such as aluminum or an aluminum alloy, capable of suppressing lithium dendritic growth and absorbing and releasing lithium can be used. Studies have been made to use powder as a negative electrode active material.

【0004】[0004]

【発明が解決しようとする課題】しかしながらアルミニ
ウムもしくはアルミニウム合金などのリチウムを吸蔵,
放出することのできる金属または合金の板を負極活物質
として用いた場合、深い充放電を繰り返すと活物質の微
細化が起こって電極が崩れてしまい充分な充放電サイク
ル特性が得られない。また、前記金属または合金の粉末
を負極活物質として用いる場合は結着剤を添加し負極を
形成する方法も検討されている。正極で頻繁に使用され
ているフッ素樹脂も検討されたが、充電時に電解液の分
解を促進してしまった。このため負極用結着剤としてポ
リエチレンなどのポリオレフィン系の結着剤が用いられ
ている。しかしながらこの場合においてもリチウムの吸
蔵,放出に伴う電極の膨張,収縮の結果、活物質保持の
不良や集電不良が生じ充分なサイクル特性が得られない
という欠点を有している。本発明はこのような問題を解
決するもので、充放電サイクル特性に優れた非水電解質
二次電池用負極を提供することを目的とする。
However, lithium, such as aluminum or aluminum alloy, is absorbed,
When a metal or alloy plate that can be released is used as a negative electrode active material, if the charge and discharge are repeated deeply, the active material becomes finer and the electrode collapses, and sufficient charge / discharge cycle characteristics cannot be obtained. In the case where the metal or alloy powder is used as a negative electrode active material, a method of forming a negative electrode by adding a binder has been studied. Fluorine resins frequently used in the positive electrode were also studied, but they accelerated the decomposition of the electrolyte during charging. Therefore, a polyolefin-based binder such as polyethylene is used as the binder for the negative electrode. However, even in this case, as a result of the expansion and contraction of the electrode caused by the occlusion and release of lithium, there is a defect that a poor active material retention or a poor current collection occurs and sufficient cycle characteristics cannot be obtained. The present invention solves such a problem, and an object of the present invention is to provide a negative electrode for a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解質二次電池用負極は、リチウムを吸
蔵,放出することのできる金属粉末もしくは合金粉末を
活物質とし、結着剤として塩化ビニル−酢酸ビニル共重
合樹脂を用いるもので、前記負極中に導電剤として繊維
状黒鉛を用いる。
In order to solve this problem, a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention uses a metal powder or an alloy powder capable of inserting and extracting lithium as an active material and a binder. And a fibrous graphite as a conductive agent in the negative electrode.

【0006】結着剤である塩化ビニル−酢酸ビニル共重
合樹脂としては、塩化ビニル含有量が95%から60%
であることが好ましい。
The vinyl chloride-vinyl acetate copolymer resin as a binder has a vinyl chloride content of 95% to 60%.
It is preferred that

【0007】[0007]

【作用】この構成により本発明の非水電解質二次電池用
負極は、アルミニウムもしくはアルミニウム合金などの
リチウムを吸蔵,放出することのできる金属または合金
の粉末を活物質の結着剤として、結着性に富む塩化ビニ
ル−酢酸ビニル共重合樹脂を用いることで、充放電を繰
り返しても電極中の活物質が保持され、さらに、導電剤
として繊維状黒鉛を添加することにより、電極の膨張時
においても充分な集電が得られることとなる。その結
果、比較的少ない充放電サイクル数で充放電容量が低下
することがなくなり、安定した電池特性を有する非水電
解質二次電池用負極を構成することが可能となる。
According to this structure, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention uses a powder of a metal or alloy capable of occluding and releasing lithium such as aluminum or an aluminum alloy as a binder for an active material. By using a vinyl chloride-vinyl acetate copolymer resin rich in properties, the active material in the electrode is retained even after repeated charging and discharging, and furthermore, by adding fibrous graphite as a conductive agent, the electrode expands when expanded. Thus, sufficient current collection can be obtained. As a result, the charge / discharge capacity does not decrease with a relatively small number of charge / discharge cycles, and a negative electrode for a non-aqueous electrolyte secondary battery having stable battery characteristics can be configured.

【0008】[0008]

【実施例】以下、本発明の実施例の非水電解質二次電池
用負極を図面を基にして詳細に説明するが、これら実施
例に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to these embodiments.

【0009】(実施例1)本実施例においては、アルミ
ニウム粉末を負極活物質に、結着剤に塩化ビニル樹脂を
用いたものならびに塩化ビニルの含有量が85モル%,
65モル%の塩化ビニルと酢酸ビニルの共重合樹脂を用
い、さらに導電剤として繊維径が0.1μmから0.3
μm、繊維径と繊維長さの比率が1:75(アスペクト
比75)の繊維状黒鉛を用いて構成した負極について説
明する。
(Example 1) In this example, aluminum powder was used as a negative electrode active material, a vinyl chloride resin was used as a binder, and the content of vinyl chloride was 85 mol%,
65 mol% of a copolymer resin of vinyl chloride and vinyl acetate was used, and the fiber diameter was 0.1 to 0.3 μm as a conductive agent.
A negative electrode made of fibrous graphite having a ratio of μm and a fiber diameter to a fiber length of 1:75 (aspect ratio 75) will be described.

【0010】負極は、300メッシュパスのアルミニウ
ム粉末と導電剤としての繊維状黒鉛と結着剤を重量比で
45:45:10ならびに47.5:47.5:5の割
合で混合し負極合剤を得た。この負極合剤0.1gを直
径17.5mmに2トン/cm2でプレス成型し負極とし
た。正極活物質にはLiCoO2を用い、正極はLiC
oO2と導電剤であるアセチレンブラックと結着剤であ
るポリ4フッ化エチレン樹脂を重量比で7:2:1の割
合で混合し、得られた正極合剤0.2gを直径17.5
mmに2トン/cm2でプレス成型することで作製した。図
1において、成型した正極1をケース2に置く。正極1
の上にセパレータ3としての多孔性ポリプロピレンフィ
ルムを置いた。負極4を、ポリプロピレン製ガスケット
5を付けた封口板6に圧着した。非水電解質として、1
モル/lの過塩素酸リチウムを溶解したプロピレンカー
ボネート溶媒を用い、これをセパレータ3上および負極
4上に加えた。その後ケース2の上縁部をかしめて電池
を封口した。なお従来例として、導電剤として繊維状黒
鉛ではなくアセチレンブラックを添加し形成した負極を
用いた電池も上記と同様の方法で作製した。
The negative electrode was prepared by mixing aluminum powder of 300 mesh pass, fibrous graphite as a conductive agent and a binder in a weight ratio of 45:45:10 and 47.5: 47.5: 5. Agent was obtained. 0.1 g of this negative electrode mixture was press-formed at a diameter of 17.5 mm at 2 ton / cm 2 to obtain a negative electrode. LiCoO 2 is used for the positive electrode active material, and LiC
oO 2 , acetylene black as a conductive agent and polytetrafluoroethylene resin as a binder were mixed at a weight ratio of 7: 2: 1, and 0.2 g of the obtained positive electrode mixture was mixed with 17.5 mm in diameter.
It was produced by press molding at 2 ton / cm 2 to mm. In FIG. 1, a molded positive electrode 1 is placed in a case 2. Positive electrode 1
A porous polypropylene film as a separator 3 was placed on the substrate. The negative electrode 4 was pressure-bonded to a sealing plate 6 to which a polypropylene gasket 5 was attached. As a non-aqueous electrolyte, 1
A propylene carbonate solvent in which mol / l of lithium perchlorate was dissolved was used, and was added onto the separator 3 and the negative electrode 4. Thereafter, the upper edge of the case 2 was swaged to seal the battery. As a conventional example, a battery using a negative electrode formed by adding acetylene black instead of fibrous graphite as a conductive agent was also manufactured by the same method as described above.

【0011】以上、負極結着剤、および導電剤の異なる
12種類の電池の充放電サイクル特性の比較を行った。
なお本実施例では、負極の充放電サイクル試験を行うた
め、正極によるサイクル劣化を除外できるだけの充分な
正極容量をもつ条件で電池を構成している。充放電サイ
クル試験は、充放電電流0.5mA,電圧範囲4.0Vか
ら3.0Vの間で定電流充放電することで行った。
The charge / discharge cycle characteristics of 12 types of batteries having different negative electrode binders and conductive agents were compared.
In the present embodiment, the battery is configured under conditions that have a sufficient positive electrode capacity to exclude cycle deterioration due to the positive electrode in order to perform a charge / discharge cycle test on the negative electrode. The charge / discharge cycle test was performed by charging / discharging a constant current at a charge / discharge current of 0.5 mA and a voltage range of 4.0 V to 3.0 V.

【0012】(表1)に初期放電容量ならびに初期放電
容量に対する50サイクル目の放電容量の容量維持率を
示す。サンプル数nはそれぞれ50個とした。
Table 1 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 50th cycle with respect to the initial discharge capacity. The number n of samples was 50 each.

【0013】[0013]

【表1】 [Table 1]

【0014】(表1)に示すように、導電剤としてアセ
チレンブラックを添加した負極を用いた従来例の電池
は、50サイクル後の放電容量維持率が75%から80
%程度まで低下する。一方、導電剤として繊維状黒鉛を
含む負極を用いた本実施例の電池は、塩化ビニル−酢酸
ビニル共重合樹脂を結着剤に用いた場合には、いずれも
従来例の電池と比較し放電容量が大きく向上し、また5
0サイクル後の放電容量維持率が85%以上とサイクル
特性も向上している。結着剤量が5重量%ならびに10
重量%の塩化ビニル樹脂単独を負極結着剤に用いた電池
の初期放電容量は、塩化ビニル−酢酸ビニル共重樹脂を
用いた電池に比べ若干大きいものの、50サイクル目の
放電容量維持率は5重量%のものが66%、10重量%
のものが69%まで低下する。二次電池においては、放
電容量ならびに容量維持率が大きい電極が望まれること
から、塩化ビニル−酢酸ビニル共重合樹脂を結着剤と
し、導電剤として繊維状黒鉛を用いた負極が優れた特性
を有している。これら実施例の負極を用いた電池の放電
容量の向上は、導電剤としてアセチレンブラックを添加
した場合には集電がまだ不十分であったものが、導電剤
としての繊維状黒鉛を添加することによって充分な集電
が得られるようになったためと考えられる。
As shown in Table 1, in the conventional battery using the negative electrode to which acetylene black was added as a conductive agent, the discharge capacity retention rate after 50 cycles was from 75% to 80%.
%. On the other hand, in the battery of this example using the negative electrode containing fibrous graphite as the conductive agent, when the vinyl chloride-vinyl acetate copolymer resin was used as the binder, the discharge of the battery was lower than that of the conventional battery. Capacity is greatly improved
When the discharge capacity retention rate after 0 cycles is 85% or more, the cycle characteristics are also improved. 5% by weight or 10% by weight of binder
Although the initial discharge capacity of the battery using the vinyl chloride resin alone in the negative electrode binder by weight% is slightly larger than the battery using the vinyl chloride-vinyl acetate copolymer resin, the discharge capacity retention ratio at the 50th cycle is 5%. 66% by weight, 10% by weight
Are reduced to 69%. In a secondary battery, since an electrode having a large discharge capacity and a large capacity retention ratio is desired, a negative electrode using a vinyl chloride-vinyl acetate copolymer resin as a binder and fibrous graphite as a conductive agent has excellent characteristics. Have. The improvement of the discharge capacity of the battery using the negative electrode of these examples is due to the fact that the current collection was still insufficient when acetylene black was added as a conductive agent, but the addition of fibrous graphite as a conductive agent It is considered that sufficient current collection has been obtained.

【0015】さらに、アスペクト比の異なる繊維状黒鉛
を導電剤として添加することを試みた。導電剤としてア
スペクト比20の繊維状黒鉛を、結着剤として塩化ビニ
ル含有量が85%の塩化ビニル−酢酸ビニル共重合樹脂
を用い、前記と同様の方法で活物質,導電剤,結着剤の
重量比が45:45:10である負極を用いた電池を作
製したところ、50サイクル目での容量維持率は84%
と若干の効果がみられた。また、アスペクト比150の
繊維状黒鉛を用いた場合には、50サイクル目での容量
維持率は89%と(表1)のアスペクト比75の場合と
ほぼ同様の効果が得られた。以上のことより、アスペク
ト比20以上の繊維状黒鉛を用いることが好ましいと考
えられる。
Further, an attempt was made to add fibrous graphite having a different aspect ratio as a conductive agent. Using a fibrous graphite having an aspect ratio of 20 as a conductive agent and a vinyl chloride-vinyl acetate copolymer resin having a vinyl chloride content of 85% as a binder, an active material, a conductive agent, and a binder in the same manner as described above. When a battery using a negative electrode having a weight ratio of 45:45:10 was produced, the capacity retention at the 50th cycle was 84%.
And some effects were seen. When fibrous graphite having an aspect ratio of 150 was used, the capacity retention ratio at the 50th cycle was 89%, and almost the same effect as in the case of the aspect ratio of 75 in Table 1 was obtained. From the above, it is considered preferable to use fibrous graphite having an aspect ratio of 20 or more.

【0016】以上のように、アルミニウム粉末を負極活
物質として、塩化ビニル−酢酸ビニル共重合樹脂を負極
結着剤として用いる電池において、導電剤として繊維状
黒鉛を用いることにより、充放電サイクル特性に優れた
非水電解質二次電池を作製できることを確認した。
As described above, in a battery using aluminum powder as a negative electrode active material and a vinyl chloride-vinyl acetate copolymer resin as a negative electrode binder, by using fibrous graphite as a conductive agent, charge-discharge cycle characteristics are improved. It was confirmed that an excellent non-aqueous electrolyte secondary battery could be manufactured.

【0017】なお、実施例では、金属粉末としてアルミ
ニウムを用いた場合について説明したが、同様にリチウ
ムを吸蔵,放出しリチウムと合金形成することのできる
スズ,鉛,インジウム,ビスマス粉末を用いた場合にお
いても、ほぼ同様の効果が得られることを確認した。
Although the embodiment has been described in connection with the case where aluminum is used as the metal powder, the case where tin, lead, indium, and bismuth powder which can occlude and release lithium to form an alloy with lithium is used. It was confirmed that almost the same effect was obtained also in the above.

【0018】(実施例2)本実施例においては、96%
Al−6%Niで表わされる組成のアルミニウム合金粉
末を負極活物質に、結着剤に塩化ビニル樹脂を用いたも
のならびに塩化ビニルの含有量が85モル%,65モル
%の塩化ビニルと酢酸ビニルの共重合樹脂を用い、さら
に導電剤として繊維径が0.1μmから0.3μm、繊
維径と繊維長さの比率が1:75(アスペクト比75)
の繊維状黒鉛を用いて構成した負極について説明する。
(Embodiment 2) In this embodiment, 96%
An aluminum alloy powder having a composition represented by Al-6% Ni as a negative electrode active material, using a vinyl chloride resin as a binder, and vinyl chloride and vinyl acetate having a vinyl chloride content of 85 mol% and 65 mol%. And a conductive agent having a fiber diameter of 0.1 μm to 0.3 μm and a ratio of fiber diameter to fiber length of 1:75 (aspect ratio 75)
The negative electrode constituted by using the fibrous graphite will be described.

【0019】負極は、300メッシュパスの96%Al
−6%Niアルミニウム合金粉末と導電剤としての繊維
状黒鉛と結着剤を重量比で45:45:10ならびに4
7.5:47.5:5:5の割合で混合し負極合剤を得
た。この負極合剤0.1gを直径17.5mmに2トン/
cm2でプレス成型し負極とした。正極活物質にはLiC
oO2を用い、実施例1と同様の条件で正極を作製し
た。電池の製造も、実施例1と同様の条件で行った。な
お従来例として、導電剤として繊維状黒鉛ではなくアセ
チレンブラックを添加し形成した負極を用いた電池も上
記と同様の方法で作製した。
The negative electrode is a 300 mesh pass 96% Al
-6% Ni aluminum alloy powder, fibrous graphite as a conductive agent and a binder in a weight ratio of 45:45:10 and 4
The mixture was mixed at a ratio of 7.5: 47.5: 5: 5 to obtain a negative electrode mixture. 0.1 g of this negative electrode mixture was added to 2 ton /
A negative electrode was formed by press molding with cm 2 . LiC for the positive electrode active material
A positive electrode was produced using oO 2 under the same conditions as in Example 1. The battery was manufactured under the same conditions as in Example 1. As a conventional example, a battery using a negative electrode formed by adding acetylene black instead of fibrous graphite as a conductive agent was also manufactured by the same method as described above.

【0020】以上、負極結着剤の異なる12種類の電池
の充放電サイクル特性の比較を行った。なお本実施例で
も実施例1と同様、負極の充放電サイクル試験を行うた
め、正極による充放電サイクル劣化を除外できるだけの
充分な正極容量をもつ条件で電池を構成している。充放
電サイクル試験は、充放電電流0.5mA,電圧範囲4.
0Vから3.0Vの間で定電流充放電することで行っ
た。
As described above, the charge / discharge cycle characteristics of 12 types of batteries having different negative electrode binders were compared. In this example, as in Example 1, the battery was constructed under conditions that have a sufficient positive electrode capacity to exclude charge / discharge cycle deterioration due to the positive electrode in order to perform a charge / discharge cycle test on the negative electrode. In the charge / discharge cycle test, the charge / discharge current was 0.5 mA and the voltage range was 4.
This was performed by charging and discharging at a constant current between 0 V and 3.0 V.

【0021】(表2)に初期放電容量ならびに初期放電
容量に対する50サイクル目の放電容量の容量維持率を
示す。
Table 2 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 50th cycle with respect to the initial discharge capacity.

【0022】[0022]

【表2】 [Table 2]

【0023】(表2)に示すように、導電剤としてアセ
チレンブラックを添加した負極を用いた従来例の電池
は、50サイクル後の放電容量維持率が60%程度まで
低下する。一方、導電剤として繊維状黒鉛を含む負極を
用いた本実施例の電池は、塩化ビニル−酢酸ビニル共重
合樹脂を用いた場合は、いずれも従来例の電池と比較し
放電容量が大きく向上し、また50サイクル後の放電容
量維持率が85%以上と充放電サイクル特性も向上して
いる。結着剤量が5重量%ならびに10重量%のポリ塩
化ビニル樹脂単独を負極結着剤に用いた電池の初期放電
容量は塩化ビニル−酢酸ビニル共重合樹脂を用いた電池
に比べて若干大きいものの、50サイクル目の放電容量
維持率は5重量%のものが67%、10重量%のものが
71%まで低下する。二次電池においては、放電容量な
らびに容量維持率が大きい電極が望まれることから、塩
化ビニルと酢酸ビニルの共重合樹脂を結着剤とし、導電
剤として繊維状黒鉛を用いた負極が優れた特性を有して
いる。実施例の負極を用いた電池の大幅な放電容量の向
上は、導電剤としてアセチレンブラックを添加した場合
には集電がまだ不十分であったものが、導電剤としての
繊維状黒鉛を添加することによって充分な集電が得られ
るようになったためと考えられる。
As shown in Table 2, in the conventional battery using the negative electrode to which acetylene black is added as a conductive agent, the discharge capacity retention rate after 50 cycles is reduced to about 60%. On the other hand, the battery of the present example using the negative electrode containing fibrous graphite as the conductive agent, when using a vinyl chloride-vinyl acetate copolymer resin, the discharge capacity was greatly improved as compared with the conventional battery. In addition, the discharge capacity retention rate after 50 cycles is 85% or more, and the charge / discharge cycle characteristics are also improved. Although the initial discharge capacity of a battery using a polyvinyl chloride resin alone having a binder amount of 5% by weight or 10% by weight as a negative electrode binder is slightly larger than that of a battery using a vinyl chloride-vinyl acetate copolymer resin, In the 50th cycle, the discharge capacity retention rate of 5% by weight is reduced to 67% and that of 10% by weight is reduced to 71%. In secondary batteries, an electrode with a large discharge capacity and a large capacity retention ratio is desired, so a negative electrode using a vinyl chloride-vinyl acetate copolymer resin as a binder and fibrous graphite as a conductive agent has excellent characteristics. have. Significant improvement in the discharge capacity of the battery using the negative electrode of the example, when acetylene black was added as a conductive agent, the current collection was still insufficient, but fibrous graphite as a conductive agent was added. It is considered that a sufficient current collection has been obtained.

【0024】さらに、アスペクト比の異なる繊維状黒鉛
を導電剤として添加することを試みた。導電剤としてア
スペクト比20の繊維状黒鉛を、結着剤として塩化ビニ
ル含有量が85%の塩化ビニル−酢酸ビニル共重合樹脂
を用い、前記と同様の方法で活物質,導電剤,結着剤が
重量比で45:45:10である負極を用いて電池を作
製したところ、50サイクル目での容量維持率は85%
で若干の効果がみられた。また、アスペクト比150の
繊維状黒鉛を用いた場合には、50サイクル目での容量
維持率は90%と(表1)のアスペクト比75の場合
と、ほぼ同様の効果が得られた。以上のことより、アス
ペクト比20以上の繊維状黒鉛を用いることが好ましい
と考えられる。
Furthermore, an attempt was made to add fibrous graphite having a different aspect ratio as a conductive agent. Using a fibrous graphite having an aspect ratio of 20 as a conductive agent and a vinyl chloride-vinyl acetate copolymer resin having a vinyl chloride content of 85% as a binder, an active material, a conductive agent, and a binder in the same manner as described above. When a battery was manufactured using a negative electrode having a weight ratio of 45:45:10, the capacity retention ratio at the 50th cycle was 85%.
Had some effect. When fibrous graphite having an aspect ratio of 150 was used, the capacity retention ratio at the 50th cycle was 90%, and almost the same effect as in the case of the aspect ratio of 75 in Table 1 was obtained. From the above, it is considered preferable to use fibrous graphite having an aspect ratio of 20 or more.

【0025】以上のように、アルミニウム合金粉末を負
極活物質として、塩化ビニル−酢酸ビニル共重合樹脂を
負極結着剤として用いる電池において、導電剤として繊
維状黒鉛を用いることにより、充放電サイクル特性に優
れた非水電解質二次電池を作製できることを確認した。
As described above, in a battery using an aluminum alloy powder as a negative electrode active material and a vinyl chloride-vinyl acetate copolymer resin as a negative electrode binder, by using fibrous graphite as a conductive agent, the charge / discharge cycle characteristics can be improved. It was confirmed that a non-aqueous electrolyte secondary battery having excellent characteristics could be produced.

【0026】なお本実施例では、合金粉末として94%
Al−6%Niで表わされるアルミニウム合金を用いた
場合について説明したが、同様にリチウムを吸蔵,放出
することのできる他のアルミニウム合金や、ウッド合金
等のアルミニウム以外の金属を主成分とする合金粉末を
用いた場合においても、ほぼ同様の効果が得られること
を確認した。
In this embodiment, the alloy powder is 94%
Although the case where the aluminum alloy represented by Al-6% Ni is used has been described, similarly, other aluminum alloys capable of inserting and extracting lithium, and alloys mainly composed of metals other than aluminum, such as wood alloys, etc. It was confirmed that substantially the same effect was obtained when powder was used.

【0027】以上の実施例では、正極活物質としてLi
CoO2を用いた場合について説明したが、V25,C
25,MnO2,TiS2,MoS2などの遷移金属の
酸化物およびカルコゲン化合物を用いた場合において
も、ほぼ同様の効果が得られる。ただし、この場合には
負極活物質は予めリチウムを吸収した充電状態としてお
く必要がある。
In the above embodiment, Li was used as the positive electrode active material.
Although the case where CoO 2 is used has been described, V 2 O 5 , C
Almost the same effects can be obtained even when an oxide of a transition metal such as r 2 O 5 , MnO 2 , TiS 2 or MoS 2 and a chalcogen compound are used. However, in this case, the negative electrode active material needs to be in a charged state in which lithium has been absorbed in advance.

【0028】[0028]

【発明の効果】以上の実施例の説明で明らかなように本
発明の非水電解質二次電池用負極によれば、リチウムを
吸蔵,放出することのできる金属粉末もしくは合金粉末
を活物質とし、結着剤として塩化ビニル−酢酸ビニル共
重合樹脂を用いることにより、前記負極中に導電剤とし
て繊維状黒鉛を用いることで、優れた充放電サイクル特
性を有する非水電解質二次電池用負極を得ることができ
る。
As apparent from the above description of the embodiments, according to the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, a metal powder or an alloy powder capable of occluding and releasing lithium is used as an active material, By using a vinyl chloride-vinyl acetate copolymer resin as a binder, and by using fibrous graphite as a conductive agent in the negative electrode, a negative electrode for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics is obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の非水電解質二次電池用負極を
用いた電池の縦断面図
FIG. 1 is a longitudinal sectional view of a battery using a negative electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 封口板 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 村井 祐之 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−294060(JP,A) 特開 平4−286875(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toyoguchi ▲ Yoshitoku 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-294060 (JP, A) JP-A-4-286875 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムを吸蔵,放出することのできる金
属粉末もしくは合金粉末を活物質とし、結着剤として塩
化ビニル−酢酸ビニル共重合樹脂を用いる非水電解質二
次電池の負極において、前記負極中に導電剤として繊維
状黒鉛を用いた非水電解質二次電池用負極。
1. A negative electrode of a non-aqueous electrolyte secondary battery using a metal powder or an alloy powder capable of inserting and extracting lithium as an active material and using a vinyl chloride-vinyl acetate copolymer resin as a binder. A negative electrode for a non-aqueous electrolyte secondary battery in which fibrous graphite is used as a conductive agent.
【請求項2】結着剤である塩化ビニル−酢酸ビニル共重
合樹脂の塩化ビニルの含有量が95モル%から60モル
%である請求項1記載の非水電解質二次電池用負極。
2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the vinyl chloride content of the vinyl chloride-vinyl acetate copolymer resin as a binder is 95 to 60 mol%.
JP3127321A 1991-01-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP2701586B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3127321A JP2701586B2 (en) 1991-05-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery
US07/826,993 US5262255A (en) 1991-01-30 1992-01-28 Negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3127321A JP2701586B2 (en) 1991-05-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04355052A JPH04355052A (en) 1992-12-09
JP2701586B2 true JP2701586B2 (en) 1998-01-21

Family

ID=14957043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3127321A Expired - Fee Related JP2701586B2 (en) 1991-01-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2701586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121731C (en) * 1997-06-27 2003-09-17 Lg化学株式会社 Lithium ion secondary battery and mfg. method of same
KR100615161B1 (en) * 1999-11-11 2006-08-25 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery

Also Published As

Publication number Publication date
JPH04355052A (en) 1992-12-09

Similar Documents

Publication Publication Date Title
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JP2548460B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3405418B2 (en) Non-aqueous electrolyte secondary battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP2701586B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3168600B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JPH10255766A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JP3383454B2 (en) Lithium secondary battery
JP2734793B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2529479B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2679447B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3558751B2 (en) Non-aqueous solvent secondary battery
JPH04289658A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JP4250781B2 (en) Lithium secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees