JPH04281840A - 金属酸化物超微粒子の製造方法及び製造装置 - Google Patents

金属酸化物超微粒子の製造方法及び製造装置

Info

Publication number
JPH04281840A
JPH04281840A JP4186891A JP4186891A JPH04281840A JP H04281840 A JPH04281840 A JP H04281840A JP 4186891 A JP4186891 A JP 4186891A JP 4186891 A JP4186891 A JP 4186891A JP H04281840 A JPH04281840 A JP H04281840A
Authority
JP
Japan
Prior art keywords
raw material
oxygen
metal oxide
oxide particles
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186891A
Other languages
English (en)
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Yasuhisa Mihara
康央 三原
Shuji Aizawa
相沢 周二
Masami Uzawa
正美 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP4186891A priority Critical patent/JPH04281840A/ja
Publication of JPH04281840A publication Critical patent/JPH04281840A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、高純度で、かつ結晶性
の高い球状金属酸化物超微粒子の製造方法及び製造装置
に関するものである。
【0002】
【従来の技術・課題】金属酸化物超微粒子を製造する方
法はいくつかある。例えば、金属原料を抵抗加熱等の適
当な熱源によって坩堝内で溶融、蒸発させ、雰囲気中で
酸化させる方法もその一つである。この方法は比較的簡
易な装置で、金属酸化物超微粒子が製造できる利点があ
る。しかしながら、この方法は、蒸気圧が低い金属材料
や融液が坩堝材と反応を起こしたりする金属材料には不
適当である。
【0003】その他の方法として、金属塩溶液から加水
分解等により金属酸化物を析出、乾燥することにより製
造する方法もある。しかしながら、この方法は原料金属
塩が大気中で不安定なものであるため、製造工程が複雑
となったり、目的元素以外のイオンが洗浄工程で完全に
とれないことがあり、不純物の混入が起こり易い欠点が
あった。
【0004】
【課題を解決するための手段】そこで、本発明者らは、
従来技術の問題点を解決すべく種々研究を行った結果、
少なくとも酸素が充填される気密性容器と、気密性容器
に取り付けられたアーク放電用の陰極と気密性容器内に
回転可能に支持された陽極をなす金属原料インゴット及
び生成した金属酸化物超微粒子を少なくとも酸素を含有
する雰囲気ガス流による輸送によって回収する気密性容
器に取り付けられた回収装置によって構成されているこ
とを特徴とする製造装置によって、少なくとも酸素を含
む雰囲気中で回転する金属原料インゴットをアーク放電
によって溶融後酸化し、金属酸化物微粒子を製造すると
、材料の制約なく簡単な工程で、高純度かつ結晶性の高
い球状金属酸化物超微粒子を製造することを見出し、本
発明を完成するに至った。
【0005】従って、本発明は、アーク放電によるエネ
ルギーによって金属原料インゴットを溶融後酸化し、金
属酸化物超微粒子を製造する方法において、金属原料イ
ンゴットを回転させ、かつ雰囲気中に少なくとも酸素が
存在することを特徴とする金属酸化物超微粒子の製造方
法に係る。
【0006】また、本発明は、少なくとも酸素が充填さ
れる気密性容器と、気密性容器に取り付けられたアーク
放電用の陰極と、気密性容器内に回転可能に支持された
陽極をなす金属原料インゴット及び生成した金属酸化物
超微粒子を少なくとも酸素を含有する雰囲気ガス流によ
る輸送によって回収するための気密性容器に取り付けら
れた回収装置によって構成されていることを特徴とする
金属酸化物超微粒子の製造装置に係る。
【0007】
【作用】本発明方法を実施するための装置は、上述のよ
うに少なくとも酸素が充填される気密性容器と、気密性
容器に取り付けられたアーク放電用の陰極と気密性容器
内に回転可能に支持された陽極をなす金属原料インゴッ
ト及び生成した金属酸化物超微粒子を少なくとも酸素を
含有する雰囲気ガス流による輸送によって回収する気密
性容器に取り付けられた回収装置によって構成されてい
る。
【0008】図1及び図2の概略図によって、本発明装
置を説明する。本発明装置は、少なくとも酸素を含む雰
囲気ガスが充填される気密性の高い容器(1)と、容器
(1)に取り付けられた例えばタングステンを材質とす
るアーク放電用の非消耗電極(3)と、容器(1)内に
回転可能に支持された金属原料インゴット(2)、及び
生成した金属酸化物超微粒子を回収する回収装置(9)
、金属超微粒子を回収装置に運搬するためのガス流を発
生するためのポンプ(10)と、ガス導入口(6)、ガ
ス排出口(7)、また、容器内を真空排気する排気管(
8)によって構成される。
【0009】また、少なくとも酸素を含む雰囲気ガスは
、雰囲気ガス導入管(5)によって容器(1)内に導入
される。容器(1)に取り付けられた金属原料インゴッ
ト(2)は、図示されていない直流アーク電源に陽極と
して取り付けられ、回転電動機(4)によって回転され
る。更に、排気管(8)は真空排気装置(11)に接続
されている。
【0010】次に、本発明方法により金属酸化物超微粒
子を製造する方法について詳述する。使用される金属原
料インゴットの純度は、生成する金属酸化物超微粒子の
純度を直接左右するため、95%以上、好ましくは99
%以上の高純度のものを使用する。金属原料インゴット
と非消耗電極との距離を1〜5mm程度になるように調
節し、金属原料インゴットを固定する。次に、排気管を
通じて容器内を好ましくは10−5トール以下まで真空
排気したのち、導入管を通じて不活性ガス等によって希
釈された酸素を含む雰囲気ガスを約1気圧となるまで導
入する。
【0011】次に、高速回転させた金属原料インゴット
と電極間にアーク放電を起こし、金属酸化物超微粒子を
発生させる。アーク電流は約20〜300Aであるが、
通常50〜200Aの範囲で使用される。金属原料イン
ゴットの回転数は500〜20,000rpm、好まし
くは1000〜10,000rpmである。また、雰囲
気中の酸素濃度は1〜70%、好ましくは5〜50%で
ある。アーク放電とほぼ同時に金属原料インゴットが溶
融し、雰囲気中の酸素によって酸化反応が起こり、金属
酸化物超微粒子が多量に生成する。このような金属酸化
物超微粒子の大量生成の原因については十分解明されて
いないが、金属原料インゴットの融液が回転による遠心
力によって、超微粒子化が促進されているものと思われ
る。
【0012】
【実施例】以下に実施例を示しながら、本発明を更に説
明する。 実施例 気密性の高いステンレス性容器内に、純度99.5%の
金属チタン棒(20φ×100mmL)と、タングステ
ン電極を対向配置させた。次に、容器内を10−5トー
ル以下にまで真空排気したのち、アルゴンガスと酸素ガ
スを混合し、容器内に導入し約1気圧とした。次いで、
金属チタン棒を回転させ、タングステン電極との間で、
150Aの電流値で直流アークを約1分間放電させた。 このときの超微粒子の収量(g)は以下の通りである。
【0013】   実施例    回転数(rpm)    酸素含有
量(Ar中の%割合)    収率(g)    1 
        5000             
    30                   
1.2    2         5000    
             50          
         3.1    3        
10000                 30 
                  3.7比較例1
          0              
   30                   0
.0
【0014】実施例1〜3で得られた酸化チタン超
微粒子は透過型電子顕微鏡写真によれば粒径50〜50
0オングストロームの球状を示していた。更に、実施例
1〜3で製造された超微粒子は粉末X線回折によれば、
二酸化チタン以外に、未反応の金属チタンや一酸化チタ
ンは同定されなかった。また、蛍光X線による定量分析
の結果によれば、電極のタングステンは検出されなかっ
た。
【0015】
【発明の効果】以上のように、本発明方法及び装置によ
って金属酸化物超微粒子が製造される。製造された金属
酸化物微粒子は表面形状がなめらかで、結晶性がよく、
かつ高純度であるため、ファインセラミックス原料や触
媒、磁性材料、センサーに使用可能である。また、酸化
に対するエネルギーは投入したアーク放電エネルギー以
外に、酸化による発熱エネルギーも利用しているため、
経済性も高い。
【図面の簡単な説明】
【図1】本発明の金属酸化物超微粒子の製造装置の1実
施態様を示す概略図である。
【図2】本発明の金属酸化物超微粒子の製造装置の1実
施態様を示す概略図である。
【符号の説明】
1    容器 2    金属原料インゴット 3    非消耗電極 4    回転電動機 5    雰囲気ガス導入管 6    ガス導入口 7    ガス排出口 8    排気管 9    回収容器 10    ポンプ

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】  アーク放電によるエネルギーによって
    金属原料インゴットを溶融後酸化し、金属酸化物超微粒
    子を製造する方法において、金属原料インゴットを回転
    させ、かつ雰囲気中に少なくとも酸素が存在することを
    特徴とする金属酸化物超微粒子の製造方法。
  2. 【請求項2】  少なくとも酸素が充填される気密性容
    器と、気密性容器に取り付けられたアーク放電用の陰極
    と、気密性容器内に回転可能に支持された陽極をなす金
    属原料インゴット及び生成した金属酸化物超微粒子を少
    なくとも酸素を含有する雰囲気ガス流による輸送によっ
    て回収するための気密性容器に取り付けられた回収装置
    によって構成されていることを特徴とする金属酸化物超
    微粒子の製造装置。
JP4186891A 1991-03-07 1991-03-07 金属酸化物超微粒子の製造方法及び製造装置 Pending JPH04281840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186891A JPH04281840A (ja) 1991-03-07 1991-03-07 金属酸化物超微粒子の製造方法及び製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186891A JPH04281840A (ja) 1991-03-07 1991-03-07 金属酸化物超微粒子の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
JPH04281840A true JPH04281840A (ja) 1992-10-07

Family

ID=12620240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186891A Pending JPH04281840A (ja) 1991-03-07 1991-03-07 金属酸化物超微粒子の製造方法及び製造装置

Country Status (1)

Country Link
JP (1) JPH04281840A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
EP0879791A1 (de) * 1997-05-23 1998-11-25 W.C. Heraeus GmbH Verfahren zur Herstellung eines Mischkristallpulvers mit geringem elektrischem Widerstand
WO2003095360A1 (de) * 2002-05-10 2003-11-20 W. C. Heraeus Gmbh & Co. Kg Verfahren zur herstellung eines metalloxidpulvers oder eines halbleiteroxidpulvers, oxidpulver, festkörper und seine verwendung
JP2008105136A (ja) * 2006-10-26 2008-05-08 Ulvac Japan Ltd ナノ粒子作製方法及び燃料電池用触媒
JP2013227612A (ja) * 2012-04-25 2013-11-07 Canon Inc 成膜装置及び成膜方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
EP0711217A1 (en) * 1993-07-27 1996-05-15 Nanophase Technologies Corporation Method and apparatus for making nanostructured materials
EP0711217A4 (en) * 1993-07-27 1996-09-04 Nanophase Tech Corp METHOD AND APPARATUS FOR PRODUCING NANOSTRUCTURED MATERIALS
EP0879791A1 (de) * 1997-05-23 1998-11-25 W.C. Heraeus GmbH Verfahren zur Herstellung eines Mischkristallpulvers mit geringem elektrischem Widerstand
WO2003095360A1 (de) * 2002-05-10 2003-11-20 W. C. Heraeus Gmbh & Co. Kg Verfahren zur herstellung eines metalloxidpulvers oder eines halbleiteroxidpulvers, oxidpulver, festkörper und seine verwendung
CN1330560C (zh) * 2002-05-10 2007-08-08 W.C.贺利氏两合有限公司 制造金属氧化物粉末或半导体氧化物粉末,氧化物粉末,固体的方法及其应用
JP2008105136A (ja) * 2006-10-26 2008-05-08 Ulvac Japan Ltd ナノ粒子作製方法及び燃料電池用触媒
JP2013227612A (ja) * 2012-04-25 2013-11-07 Canon Inc 成膜装置及び成膜方法

Similar Documents

Publication Publication Date Title
WO2017126442A1 (ja) 無水塩化ニッケル及びその製造方法
JPH08217420A (ja) 複合超微粒子の製造方法
JPH04281840A (ja) 金属酸化物超微粒子の製造方法及び製造装置
JPH0327601B2 (ja)
JP2019525002A (ja) マグネシウム蒸気還元により酸化チタンからチタンを生成する方法
JPS6139372B2 (ja)
JPS60121207A (ja) 超微粒子の製造方法
WO2007061012A1 (ja) 金属、金属の製造方法、金属の製造装置及びその用途
US4889665A (en) Process for producing ultrafine particles of ceramics
JP2001220122A (ja) 酸化珪素粉末の製造方法
JPH0686285B2 (ja) 酸化物超微粒子の製造方法
JPH03243732A (ja) チタンの脱酸方法
JP3564852B2 (ja) 高純度金属ルテニウム粉末の製造方法
JPH0867503A (ja) 水素化チタン超微粒子の製造方法
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
JPH07122086B2 (ja) 化学還元による金属微粉末の製造法
JPH028304A (ja) タングステン粉末の製造法
JPS63274725A (ja) 超電導材料からのNbおよびTiの回収方法
JPS6389406A (ja) 酸化物超微粒子の製造装置
WO2002070759A1 (en) Method and apparatus for the production of titanium
JPH0214281B2 (ja)
JP2596434B2 (ja) 合金超微粒子の製造方法
JPH04176887A (ja) 高純度yの製造方法
JP2896727B2 (ja) 金属カドミウム粉末の製造方法
JPH02153807A (ja) 金属窒化物超微粒子の製造法