JPH04281840A - Production of ultrafine particle of metallic oxide and producing equipment - Google Patents

Production of ultrafine particle of metallic oxide and producing equipment

Info

Publication number
JPH04281840A
JPH04281840A JP4186891A JP4186891A JPH04281840A JP H04281840 A JPH04281840 A JP H04281840A JP 4186891 A JP4186891 A JP 4186891A JP 4186891 A JP4186891 A JP 4186891A JP H04281840 A JPH04281840 A JP H04281840A
Authority
JP
Japan
Prior art keywords
raw material
oxygen
metal oxide
oxide particles
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186891A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Yasuhisa Mihara
康央 三原
Shuji Aizawa
相沢 周二
Masami Uzawa
正美 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP4186891A priority Critical patent/JPH04281840A/en
Publication of JPH04281840A publication Critical patent/JPH04281840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain both a method for producing the spherical ultrafine particles of metallic oxide which are high purity and high in crystallinity and an equipment used therefor. CONSTITUTION:In a method for producing the ultrafine particles of metallic oxide, ingot of a metallic raw material is melted by energy due to arc discharge and thereafter oxidized. This method is characterized in that the ingot is rotated and also at least oxygen is present in the atmosphere. Further it is featured that a producing equipment is constituted of an airtight equipment filled with at least oxygen, a cathode for arc discharge which is fitted to the airtight vessel, the ingot of the metallic raw material becoming an anode rotatably supported in the airtight vessel and a recovery device fitted to the airtight vessel for recovering the produced ultrafine particles of metallic oxide by transport due to the atmospheric gas flow contg. at least oxygen.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高純度で、かつ結晶性
の高い球状金属酸化物超微粒子の製造方法及び製造装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing ultrafine spherical metal oxide particles of high purity and crystallinity.

【0002】0002

【従来の技術・課題】金属酸化物超微粒子を製造する方
法はいくつかある。例えば、金属原料を抵抗加熱等の適
当な熱源によって坩堝内で溶融、蒸発させ、雰囲気中で
酸化させる方法もその一つである。この方法は比較的簡
易な装置で、金属酸化物超微粒子が製造できる利点があ
る。しかしながら、この方法は、蒸気圧が低い金属材料
や融液が坩堝材と反応を起こしたりする金属材料には不
適当である。
[Prior Art/Problems] There are several methods for producing ultrafine metal oxide particles. For example, one method is to melt and evaporate the metal raw material in a crucible using a suitable heat source such as resistance heating, and then oxidize it in an atmosphere. This method has the advantage that ultrafine metal oxide particles can be produced using a relatively simple device. However, this method is unsuitable for metal materials whose vapor pressure is low or whose melt reacts with the crucible material.

【0003】その他の方法として、金属塩溶液から加水
分解等により金属酸化物を析出、乾燥することにより製
造する方法もある。しかしながら、この方法は原料金属
塩が大気中で不安定なものであるため、製造工程が複雑
となったり、目的元素以外のイオンが洗浄工程で完全に
とれないことがあり、不純物の混入が起こり易い欠点が
あった。
[0003] Another method is to precipitate a metal oxide from a metal salt solution by hydrolysis or the like, and then dry it. However, since the raw metal salt in this method is unstable in the atmosphere, the manufacturing process is complicated, and ions other than the target element may not be completely removed during the cleaning process, resulting in the contamination of impurities. There was a simple drawback.

【0004】0004

【課題を解決するための手段】そこで、本発明者らは、
従来技術の問題点を解決すべく種々研究を行った結果、
少なくとも酸素が充填される気密性容器と、気密性容器
に取り付けられたアーク放電用の陰極と気密性容器内に
回転可能に支持された陽極をなす金属原料インゴット及
び生成した金属酸化物超微粒子を少なくとも酸素を含有
する雰囲気ガス流による輸送によって回収する気密性容
器に取り付けられた回収装置によって構成されているこ
とを特徴とする製造装置によって、少なくとも酸素を含
む雰囲気中で回転する金属原料インゴットをアーク放電
によって溶融後酸化し、金属酸化物微粒子を製造すると
、材料の制約なく簡単な工程で、高純度かつ結晶性の高
い球状金属酸化物超微粒子を製造することを見出し、本
発明を完成するに至った。
[Means for solving the problem] Therefore, the present inventors
As a result of various studies to solve the problems of conventional technology,
An airtight container filled with at least oxygen, a metal raw material ingot forming an arc discharge cathode attached to the airtight container, an anode rotatably supported in the airtight container, and the produced metal oxide ultrafine particles. A metal raw material ingot rotating in an atmosphere containing at least oxygen is arced by a production apparatus characterized by comprising a recovery device attached to an airtight container that recovers by transportation by an atmospheric gas flow containing at least oxygen. The present inventors have discovered that by melting and oxidizing metal oxide particles by electric discharge, spherical metal oxide ultrafine particles with high purity and high crystallinity can be produced in a simple process without material limitations, and in order to complete the present invention. It's arrived.

【0005】従って、本発明は、アーク放電によるエネ
ルギーによって金属原料インゴットを溶融後酸化し、金
属酸化物超微粒子を製造する方法において、金属原料イ
ンゴットを回転させ、かつ雰囲気中に少なくとも酸素が
存在することを特徴とする金属酸化物超微粒子の製造方
法に係る。
Therefore, the present invention provides a method for producing ultrafine metal oxide particles by melting and oxidizing a metal raw material ingot using energy from arc discharge, in which the metal raw material ingot is rotated and at least oxygen is present in the atmosphere. The present invention relates to a method for producing ultrafine metal oxide particles, characterized in that:

【0006】また、本発明は、少なくとも酸素が充填さ
れる気密性容器と、気密性容器に取り付けられたアーク
放電用の陰極と、気密性容器内に回転可能に支持された
陽極をなす金属原料インゴット及び生成した金属酸化物
超微粒子を少なくとも酸素を含有する雰囲気ガス流によ
る輸送によって回収するための気密性容器に取り付けら
れた回収装置によって構成されていることを特徴とする
金属酸化物超微粒子の製造装置に係る。
The present invention also provides an airtight container filled with at least oxygen, a cathode for arc discharge attached to the airtight container, and a metal raw material forming the anode rotatably supported within the airtight container. A method for collecting ultrafine metal oxide particles characterized by comprising a recovery device attached to an airtight container for recovering the ingot and the generated ultrafine metal oxide particles by transportation by an atmospheric gas flow containing at least oxygen. Related to manufacturing equipment.

【0007】[0007]

【作用】本発明方法を実施するための装置は、上述のよ
うに少なくとも酸素が充填される気密性容器と、気密性
容器に取り付けられたアーク放電用の陰極と気密性容器
内に回転可能に支持された陽極をなす金属原料インゴッ
ト及び生成した金属酸化物超微粒子を少なくとも酸素を
含有する雰囲気ガス流による輸送によって回収する気密
性容器に取り付けられた回収装置によって構成されてい
る。
[Operation] As mentioned above, the apparatus for carrying out the method of the present invention includes an airtight container filled with at least oxygen, a cathode for arc discharge attached to the airtight container, and a rotatable structure inside the airtight container. It is composed of a recovery device attached to an airtight container that recovers the metal raw material ingot forming the supported anode and the produced ultrafine metal oxide particles by transporting them by an atmospheric gas flow containing at least oxygen.

【0008】図1及び図2の概略図によって、本発明装
置を説明する。本発明装置は、少なくとも酸素を含む雰
囲気ガスが充填される気密性の高い容器(1)と、容器
(1)に取り付けられた例えばタングステンを材質とす
るアーク放電用の非消耗電極(3)と、容器(1)内に
回転可能に支持された金属原料インゴット(2)、及び
生成した金属酸化物超微粒子を回収する回収装置(9)
、金属超微粒子を回収装置に運搬するためのガス流を発
生するためのポンプ(10)と、ガス導入口(6)、ガ
ス排出口(7)、また、容器内を真空排気する排気管(
8)によって構成される。
The apparatus of the present invention will be explained with reference to the schematic diagrams of FIGS. 1 and 2. The device of the present invention includes a highly airtight container (1) filled with an atmospheric gas containing at least oxygen, and a non-consumable electrode (3) for arc discharge made of tungsten, for example, attached to the container (1). , a metal raw material ingot (2) rotatably supported in a container (1), and a recovery device (9) for recovering the generated ultrafine metal oxide particles.
, a pump (10) for generating a gas flow for transporting ultrafine metal particles to a collection device, a gas inlet (6), a gas outlet (7), and an exhaust pipe (for evacuating the inside of the container).
8).

【0009】また、少なくとも酸素を含む雰囲気ガスは
、雰囲気ガス導入管(5)によって容器(1)内に導入
される。容器(1)に取り付けられた金属原料インゴッ
ト(2)は、図示されていない直流アーク電源に陽極と
して取り付けられ、回転電動機(4)によって回転され
る。更に、排気管(8)は真空排気装置(11)に接続
されている。
Further, an atmospheric gas containing at least oxygen is introduced into the container (1) through an atmospheric gas introduction pipe (5). The metal raw material ingot (2) attached to the container (1) is attached as an anode to a DC arc power source (not shown) and rotated by a rotating electric motor (4). Further, the exhaust pipe (8) is connected to a vacuum exhaust device (11).

【0010】次に、本発明方法により金属酸化物超微粒
子を製造する方法について詳述する。使用される金属原
料インゴットの純度は、生成する金属酸化物超微粒子の
純度を直接左右するため、95%以上、好ましくは99
%以上の高純度のものを使用する。金属原料インゴット
と非消耗電極との距離を1〜5mm程度になるように調
節し、金属原料インゴットを固定する。次に、排気管を
通じて容器内を好ましくは10−5トール以下まで真空
排気したのち、導入管を通じて不活性ガス等によって希
釈された酸素を含む雰囲気ガスを約1気圧となるまで導
入する。
Next, a method for producing ultrafine metal oxide particles by the method of the present invention will be described in detail. The purity of the metal raw material ingot used directly affects the purity of the produced ultrafine metal oxide particles, so it is 95% or more, preferably 99% or more.
% or higher purity. The distance between the metal raw material ingot and the non-consumable electrode is adjusted to about 1 to 5 mm, and the metal raw material ingot is fixed. Next, the inside of the container is evacuated to preferably 10 -5 Torr or less through the exhaust pipe, and then an atmospheric gas containing oxygen diluted with an inert gas or the like is introduced through the introduction pipe until the pressure reaches about 1 atmosphere.

【0011】次に、高速回転させた金属原料インゴット
と電極間にアーク放電を起こし、金属酸化物超微粒子を
発生させる。アーク電流は約20〜300Aであるが、
通常50〜200Aの範囲で使用される。金属原料イン
ゴットの回転数は500〜20,000rpm、好まし
くは1000〜10,000rpmである。また、雰囲
気中の酸素濃度は1〜70%、好ましくは5〜50%で
ある。アーク放電とほぼ同時に金属原料インゴットが溶
融し、雰囲気中の酸素によって酸化反応が起こり、金属
酸化物超微粒子が多量に生成する。このような金属酸化
物超微粒子の大量生成の原因については十分解明されて
いないが、金属原料インゴットの融液が回転による遠心
力によって、超微粒子化が促進されているものと思われ
る。
[0011] Next, an arc discharge is caused between the metal raw material ingot rotated at high speed and the electrode to generate ultrafine metal oxide particles. The arc current is about 20-300A,
Usually used in the range of 50 to 200A. The rotation speed of the metal raw material ingot is 500 to 20,000 rpm, preferably 1000 to 10,000 rpm. Further, the oxygen concentration in the atmosphere is 1 to 70%, preferably 5 to 50%. Almost simultaneously with the arc discharge, the metal raw material ingot melts, an oxidation reaction occurs due to oxygen in the atmosphere, and a large amount of ultrafine metal oxide particles are generated. The reason for the generation of such large amounts of ultrafine metal oxide particles is not fully understood, but it is thought that the centrifugal force caused by the rotation of the melt of the metal raw material ingot promotes the formation of ultrafine particles.

【0012】0012

【実施例】以下に実施例を示しながら、本発明を更に説
明する。 実施例 気密性の高いステンレス性容器内に、純度99.5%の
金属チタン棒(20φ×100mmL)と、タングステ
ン電極を対向配置させた。次に、容器内を10−5トー
ル以下にまで真空排気したのち、アルゴンガスと酸素ガ
スを混合し、容器内に導入し約1気圧とした。次いで、
金属チタン棒を回転させ、タングステン電極との間で、
150Aの電流値で直流アークを約1分間放電させた。 このときの超微粒子の収量(g)は以下の通りである。
[Examples] The present invention will be further explained below with reference to Examples. Example A metal titanium rod (20φ x 100 mmL) with a purity of 99.5% and a tungsten electrode were placed facing each other in a highly airtight stainless steel container. Next, the inside of the container was evacuated to 10 −5 Torr or less, and then argon gas and oxygen gas were mixed and introduced into the container to create a pressure of about 1 atmosphere. Then,
Rotate the metal titanium rod and connect it to the tungsten electrode.
A DC arc was discharged for about 1 minute at a current value of 150A. The yield (g) of ultrafine particles at this time is as follows.

【0013】   実施例    回転数(rpm)    酸素含有
量(Ar中の%割合)    収率(g)    1 
        5000             
    30                   
1.2    2         5000    
             50          
         3.1    3        
10000                 30 
                  3.7比較例1
          0              
   30                   0
.0
Examples Rotation speed (rpm) Oxygen content (% in Ar) Yield (g) 1
5000
30
1.2 2 5000
50
3.1 3
10000 30
3.7 Comparative Example 1
0
30 0
.. 0

【0014】実施例1〜3で得られた酸化チタン超
微粒子は透過型電子顕微鏡写真によれば粒径50〜50
0オングストロームの球状を示していた。更に、実施例
1〜3で製造された超微粒子は粉末X線回折によれば、
二酸化チタン以外に、未反応の金属チタンや一酸化チタ
ンは同定されなかった。また、蛍光X線による定量分析
の結果によれば、電極のタングステンは検出されなかっ
た。
According to transmission electron micrographs, the ultrafine titanium oxide particles obtained in Examples 1 to 3 had a particle size of 50 to 50
It had a spherical shape of 0 angstrom. Furthermore, according to powder X-ray diffraction, the ultrafine particles produced in Examples 1 to 3 had the following properties:
Other than titanium dioxide, no unreacted metallic titanium or titanium monoxide was identified. Furthermore, according to the results of quantitative analysis using fluorescent X-rays, no tungsten was detected in the electrode.

【0015】[0015]

【発明の効果】以上のように、本発明方法及び装置によ
って金属酸化物超微粒子が製造される。製造された金属
酸化物微粒子は表面形状がなめらかで、結晶性がよく、
かつ高純度であるため、ファインセラミックス原料や触
媒、磁性材料、センサーに使用可能である。また、酸化
に対するエネルギーは投入したアーク放電エネルギー以
外に、酸化による発熱エネルギーも利用しているため、
経済性も高い。
As described above, ultrafine metal oxide particles are produced by the method and apparatus of the present invention. The produced metal oxide fine particles have a smooth surface and good crystallinity.
Because it is highly pure, it can be used as a raw material for fine ceramics, catalysts, magnetic materials, and sensors. In addition, the energy for oxidation is not only the input arc discharge energy, but also the heat generated by oxidation.
It is also highly economical.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の金属酸化物超微粒子の製造装置の1実
施態様を示す概略図である。
FIG. 1 is a schematic diagram showing one embodiment of an apparatus for producing ultrafine metal oxide particles of the present invention.

【図2】本発明の金属酸化物超微粒子の製造装置の1実
施態様を示す概略図である。
FIG. 2 is a schematic diagram showing one embodiment of the apparatus for producing ultrafine metal oxide particles of the present invention.

【符号の説明】[Explanation of symbols]

1    容器 2    金属原料インゴット 3    非消耗電極 4    回転電動機 5    雰囲気ガス導入管 6    ガス導入口 7    ガス排出口 8    排気管 9    回収容器 10    ポンプ 1 Container 2 Metal raw material ingot 3. Non-consumable electrode 4 Rotating electric motor 5 Atmosphere gas introduction pipe 6 Gas inlet 7 Gas outlet 8 Exhaust pipe 9 Collection container 10 Pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  アーク放電によるエネルギーによって
金属原料インゴットを溶融後酸化し、金属酸化物超微粒
子を製造する方法において、金属原料インゴットを回転
させ、かつ雰囲気中に少なくとも酸素が存在することを
特徴とする金属酸化物超微粒子の製造方法。
1. A method for producing ultrafine metal oxide particles by melting and oxidizing a metal raw material ingot using energy from arc discharge, characterized in that the metal raw material ingot is rotated and at least oxygen is present in the atmosphere. A method for producing ultrafine metal oxide particles.
【請求項2】  少なくとも酸素が充填される気密性容
器と、気密性容器に取り付けられたアーク放電用の陰極
と、気密性容器内に回転可能に支持された陽極をなす金
属原料インゴット及び生成した金属酸化物超微粒子を少
なくとも酸素を含有する雰囲気ガス流による輸送によっ
て回収するための気密性容器に取り付けられた回収装置
によって構成されていることを特徴とする金属酸化物超
微粒子の製造装置。
Claim 2: A metal raw material ingot comprising an airtight container filled with at least oxygen, a cathode for arc discharge attached to the airtight container, and an anode rotatably supported within the airtight container, and a produced metal raw material ingot. 1. An apparatus for producing ultrafine metal oxide particles, comprising a recovery device attached to an airtight container for recovering ultrafine metal oxide particles by transportation by an atmospheric gas flow containing at least oxygen.
JP4186891A 1991-03-07 1991-03-07 Production of ultrafine particle of metallic oxide and producing equipment Pending JPH04281840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186891A JPH04281840A (en) 1991-03-07 1991-03-07 Production of ultrafine particle of metallic oxide and producing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186891A JPH04281840A (en) 1991-03-07 1991-03-07 Production of ultrafine particle of metallic oxide and producing equipment

Publications (1)

Publication Number Publication Date
JPH04281840A true JPH04281840A (en) 1992-10-07

Family

ID=12620240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186891A Pending JPH04281840A (en) 1991-03-07 1991-03-07 Production of ultrafine particle of metallic oxide and producing equipment

Country Status (1)

Country Link
JP (1) JPH04281840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
EP0879791A1 (en) * 1997-05-23 1998-11-25 W.C. Heraeus GmbH Process for the preparation of mixed crystalline powders with low electric resistance
WO2003095360A1 (en) * 2002-05-10 2003-11-20 W. C. Heraeus Gmbh & Co. Kg Method for the production of a metal oxide powder or a semiconductor oxide powder, oxide powder, solid body, and the use thereof
JP2008105136A (en) * 2006-10-26 2008-05-08 Ulvac Japan Ltd Method for manufacturing nanoparticle and catalyst for fuel cell
JP2013227612A (en) * 2012-04-25 2013-11-07 Canon Inc Film forming apparatus and film forming method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
EP0711217A1 (en) * 1993-07-27 1996-05-15 Nanophase Technologies Corporation Method and apparatus for making nanostructured materials
EP0711217A4 (en) * 1993-07-27 1996-09-04 Nanophase Tech Corp Method and apparatus for making nanostructured materials
EP0879791A1 (en) * 1997-05-23 1998-11-25 W.C. Heraeus GmbH Process for the preparation of mixed crystalline powders with low electric resistance
WO2003095360A1 (en) * 2002-05-10 2003-11-20 W. C. Heraeus Gmbh & Co. Kg Method for the production of a metal oxide powder or a semiconductor oxide powder, oxide powder, solid body, and the use thereof
CN1330560C (en) * 2002-05-10 2007-08-08 W.C.贺利氏两合有限公司 Method for the manufacture of a metal oxide or nitride powder or a semiconductor oxide or nitride powder, an oxide or nitride powder made thereby, and solids and uses thereof
JP2008105136A (en) * 2006-10-26 2008-05-08 Ulvac Japan Ltd Method for manufacturing nanoparticle and catalyst for fuel cell
JP2013227612A (en) * 2012-04-25 2013-11-07 Canon Inc Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
JPS59227765A (en) Manufacture of ceramic super fine particle
JP3645931B2 (en) Method for producing composite ultrafine particles
WO2017126442A1 (en) Anhydrous nickel chloride and method for producing same
JPH04281840A (en) Production of ultrafine particle of metallic oxide and producing equipment
JPH0327601B2 (en)
JP2019525002A (en) Method for producing titanium from titanium oxide by magnesium vapor reduction
JPS6139372B2 (en)
JPS60121207A (en) Manufacture of hyperfine particle
US4889665A (en) Process for producing ultrafine particles of ceramics
JP2001220122A (en) Method for manufacturing silicon oxide powder
JPH0686285B2 (en) Method for producing ultrafine oxide particles
JPS60224706A (en) Production of ultrafine metallic particles
JPH03243732A (en) Deoxidation of titanium
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
JPH0867503A (en) Production of hydrogenated titanium superfine particle
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
JPS6389406A (en) Apparatus for producing hyperfine oxide particles
JPH07122086B2 (en) Method for producing fine metal powder by chemical reduction
WO2002070759A1 (en) Method and apparatus for the production of titanium
JPH0214281B2 (en)
JP2596434B2 (en) Method for producing ultrafine alloy particles
JPH04176887A (en) Apparatus for producing high-purity y
JP2896727B2 (en) Method for producing metal cadmium powder
JPH02153807A (en) Production of ultrafine particle of metal nitride
JPH0570811A (en) Production of metallic short fiber and grain containing nitrogen