JPH04280957A - Thin film and its production - Google Patents

Thin film and its production

Info

Publication number
JPH04280957A
JPH04280957A JP6785191A JP6785191A JPH04280957A JP H04280957 A JPH04280957 A JP H04280957A JP 6785191 A JP6785191 A JP 6785191A JP 6785191 A JP6785191 A JP 6785191A JP H04280957 A JPH04280957 A JP H04280957A
Authority
JP
Japan
Prior art keywords
thin film
film
target
value
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6785191A
Other languages
Japanese (ja)
Other versions
JP3121851B2 (en
Inventor
Hidemi Nakai
日出海 中井
Hiroaki Kobayashi
浩明 小林
Mikiro Konishi
幹郎 小西
Yoichi Miyazawa
宮沢 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd, Nippon Sheet Glass Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP03067851A priority Critical patent/JP3121851B2/en
Publication of JPH04280957A publication Critical patent/JPH04280957A/en
Application granted granted Critical
Publication of JP3121851B2 publication Critical patent/JP3121851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a thin film with high mechanical strength and excellent chemical stability and its production. CONSTITUTION:The objective thin film has a composition represented by a chemical formula, SiTajCkNmOn, where 0.2<=j<=0.6, 0.3<=k<=1.0, 0.1<=m1.0, and n>=1.0. The thin film is produced by DC reaction sputtering performed in the atmosphere of reduced pressure containing at least oxygen and nitrogen using a target consisting of a sintered body whose main components are SiC and at least one Ta compound selected from a group of TaC, TaN, TaB2, TaSi2 and TaH2. The content of at least one Ta compo9und selected from a group of TaC, TaN, TaB2, TaSi2 and TaH2 is preferably 10 to 50vol.% in the target.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は機械的強度と化学的安定
性を兼ね備えた薄膜及びその薄膜の製造方法に関する。 さらに詳しくは、外気に触れるような厳しい環境下で使
用される薄膜被覆物品とりわけ機械的強度と化学的安定
性を兼ね備えていることが要求される薄膜被覆物品の保
護膜として好適な薄膜や、光学特性を基板に付与するの
に低屈折率層として用いるのに好適な薄膜とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film having both mechanical strength and chemical stability, and a method for producing the thin film. More specifically, we will focus on thin films suitable as protective films for thin film coated products that are used in harsh environments where they are exposed to the outside air, especially those that require both mechanical strength and chemical stability, and optical The present invention relates to a thin film suitable for use as a low refractive index layer to impart properties to a substrate, and a method for manufacturing the same.

【0002】0002

【従来の技術】基板に薄膜を被覆した製品としては、エ
レクトロニクス、特に情報処理の分野では種々の製品が
知られており、その一つに薄膜記録媒体がある。例えば
、ポリカーボネートのようなプラスチック、ガラス、ア
ルミニウムのような基板上に、CoNiCrのような磁
気膜、TbFeCoのような光磁気膜、レーザー読み取
り用のアルミニウム反射膜などを形成した媒体が挙げら
れる。また熱印字記録の分野では、主として薄膜発熱抵
抗体が形成されたサーマルヘッドとよばれる部品が広く
用いられている。
2. Description of the Related Art Various products in which a substrate is coated with a thin film are known in the field of electronics, particularly information processing, and one of them is a thin film recording medium. Examples include media in which a magnetic film such as CoNiCr, a magneto-optical film such as TbFeCo, an aluminum reflective film for laser reading, etc. are formed on a substrate made of plastic such as polycarbonate, glass, or aluminum. Furthermore, in the field of thermal printing and recording, a component called a thermal head, in which a thin film heating resistor is mainly formed, is widely used.

【0003】また、プラスチック材料の実用的な用途を
広げるために、表面にハードコートを施すということが
行われている。また、ガラスやプラスチックのような透
明基板上に薄膜を被覆して、種々の光学特性を付与した
多くの透明物品が知られている。可視光線の反射率を低
減させディスプレー等を見やすくするための反射防止膜
や、任意の波長の透過率や反射率を選択的に高めたり低
めたりしたエッジフィルター、バンドパスフィルターの
ような光学干渉フィルター、さらには高反射ミラーなど
が例示できる。これらの製品で必要とする光学特性を得
るために、ある特定の波長の光を強めあったり弱めあっ
たりするように、各層の膜の厚みと屈折率を調整して光
学干渉作用を利用することがおこなわれる。この場合、
基本的な特性は、その干渉作用を発現させるために用い
られる高い屈折率膜の材料と低い屈折率膜の材料の屈折
率の比によって決まり、その比が大きいほど得られる光
学特性は優れており、例えば選択された波長域での反射
率や透過率はより高くなる。従って、より高い屈折率の
材料とより低い屈折率の材料の組合せを選ぶことが基本
的に重要となる。上記製品の薄膜の製造に際しては、薄
膜の厚みを厳密に制御する必要があることから、真空蒸
着やスパッタリングのような真空成膜法で被覆される場
合が多い。
[0003] Furthermore, in order to expand the practical uses of plastic materials, hard coating has been applied to the surface of the plastic materials. Furthermore, many transparent articles are known in which a transparent substrate such as glass or plastic is coated with a thin film to provide various optical properties. Optical interference filters such as anti-reflection coatings that reduce the reflectance of visible light to make displays etc. easier to see, edge filters that selectively increase or decrease the transmittance or reflectance of arbitrary wavelengths, and bandpass filters. , and further include a high reflection mirror. In order to obtain the optical properties required by these products, we utilize optical interference by adjusting the film thickness and refractive index of each layer to strengthen or weaken each other's light at a specific wavelength. is carried out. in this case,
The basic characteristics are determined by the ratio of the refractive index of the material of the high refractive index film and the material of the low refractive index film used to create the interference effect, and the larger the ratio, the better the optical properties obtained. For example, the reflectance and transmittance in the selected wavelength range become higher. Therefore, it is of fundamental importance to choose a combination of a material with a higher refractive index and a material with a lower refractive index. When manufacturing the thin film of the above-mentioned products, it is necessary to strictly control the thickness of the thin film, so coating is often performed using a vacuum film forming method such as vacuum evaporation or sputtering.

【0004】0004

【発明が解決しようとする課題】従来の薄膜被覆物品の
最大の問題点は、直接外部環境に曝されるような使用環
境での、機械的化学的耐久性が不足していたことである
。とりわけ、真空中で成膜された被膜ではこの問題が深
刻であった。すなわち実用的見地から耐摩耗や耐スクラ
ッチなど機械的に強く、かつ、酸、アルカリの両方に対
して化学的に安定な薄膜は得られていなかった。すなわ
ち、酸化チタン、酸化ジルコニウム、酸化タンタルなど
は、比較的優れた化学的耐久性を示すが、機械的耐久性
、特に耐摩耗性の点で不十分である。逆に、酸化シリコ
ンは、優れた機械的耐久性を示すが、耐アルカリ性に極
めて劣る。このように、優れた化学的耐久性と機械的耐
久性をあわせもった薄膜は、特に真空成膜法で成膜され
る膜の中には実質上存在しないのが実状であり、このこ
とがこれら薄膜被覆物品の普及を著しく阻害する要因に
なっていた。
The biggest problem with conventional thin-film coated articles is that they lack mechanical and chemical durability in use environments where they are directly exposed to the external environment. This problem is especially serious for films formed in a vacuum. That is, from a practical standpoint, a thin film that is mechanically strong with wear resistance and scratch resistance, and chemically stable against both acids and alkalis has not been obtained. That is, titanium oxide, zirconium oxide, tantalum oxide, and the like exhibit relatively excellent chemical durability, but are insufficient in mechanical durability, particularly wear resistance. Conversely, silicon oxide exhibits excellent mechanical durability but extremely poor alkali resistance. In this way, the reality is that thin films with both excellent chemical and mechanical durability do not exist, especially in films formed by vacuum film forming methods. This has become a factor that significantly inhibits the spread of these thin film coated articles.

【0005】また、薄膜を基板に被覆して光学物品とす
るには、低屈折率の薄膜を得ることが重要であるが、真
空成膜法では得られる低屈折率材料が非常に限られてい
た。すなわち、真空蒸着法の場合は、フッ化マグネシウ
ム(MgF2)を始めとする各種フッ化物や二酸化ケイ
素(SiO2 )が知られているが、スパッタリング法
の場合にはSiO2 だけに限られていた。
[0005] Furthermore, in order to coat a substrate with a thin film and make it into an optical article, it is important to obtain a thin film with a low refractive index, but the low refractive index material that can be obtained using the vacuum deposition method is extremely limited. Ta. That is, in the case of the vacuum evaporation method, various fluorides including magnesium fluoride (MgF2) and silicon dioxide (SiO2) are known, but in the case of the sputtering method, it is limited to only SiO2.

【0006】しかしながら、真空蒸着法では、装置の大
きさの制約から大きな面積の基体に成膜することは必ず
しも適当でなく、光学部品や眼鏡のような小さな面積の
基板にもっぱら応用されている。さらに大きな面積の基
板に対して精度よく厚みを制御して成膜する手段として
はスパッタリング法に限られている。その場合は、上述
したように低屈折率材料としては二酸化ケイ素だけしか
用いられないという問題がある。さらに、その二酸化ケ
イ素膜は金属シリコンをターゲットにして酸素を含む雰
囲気中で直流反応性スパッタリング法により成膜する場
合、時間の経過とともにシリコンターゲットの表面が極
めて絶縁性の高いSiO2 膜で覆われるため、直流ス
パッタ放電を持続することが困難になるという重大な課
題が残されている。従って、成膜プロセスが極めて不安
定となるため、工業レベルはもちろん実験室レベルでも
、二酸化ケイ素膜を直流反応性スパッタリングにより形
成することは行われていない。つまり、現状では低屈折
率材料であるSiO2 膜を比較的大きな面積の基板に
安定的に成膜しようとする場合SiO2 からなるター
ゲット(例えば石英ガラス)を用いて、高周波スパッタ
リングによって行われるのが唯一の方法である。
However, with the vacuum evaporation method, it is not necessarily appropriate to form a film on a large area substrate due to restrictions on the size of the apparatus, and the method is mainly applied to small area substrates such as optical parts and eyeglasses. Furthermore, sputtering is the only method that can be used to form a film on a large-area substrate with precise thickness control. In that case, as mentioned above, there is a problem in that only silicon dioxide can be used as the low refractive index material. Furthermore, when the silicon dioxide film is formed using a direct current reactive sputtering method in an oxygen-containing atmosphere using metallic silicon as a target, the surface of the silicon target becomes covered with an extremely highly insulating SiO2 film over time. However, a serious problem remains that it becomes difficult to sustain DC sputter discharge. Therefore, since the film formation process becomes extremely unstable, silicon dioxide films are not formed by direct current reactive sputtering not only at the industrial level but also at the laboratory level. In other words, currently, when attempting to stably form a SiO2 film, which is a low refractive index material, on a relatively large substrate, the only way to do so is by high-frequency sputtering using a target made of SiO2 (for example, quartz glass). This is the method.

【0007】しかしながら、この高周波スパッタリング
法で大きな面積の基板にSiO2 薄膜を成膜しようと
した場合、ターゲットの面積を大きくしなければならず
、大きなターゲットに効率的に高周波電力を投入する電
源がないという問題があった。さらには、成膜中に時間
の経過とともに装置の内壁に絶縁性のSiO2 膜が形
成されることによって装置の電気インピーダンスが変化
し、高周波電力の投入のマッチングをとることが困難に
なるという問題が生じていたため、大きな面積の基板に
低屈折率であるSiO2 膜を成膜するには、依然とし
て未解決の課題が数多く残されていた。
However, when attempting to form a SiO2 thin film on a large-area substrate using this high-frequency sputtering method, the area of the target must be increased, and there is no power source that can efficiently apply high-frequency power to the large target. There was a problem. Furthermore, as time passes during film formation, an insulating SiO2 film is formed on the inner wall of the device, which changes the electrical impedance of the device, making it difficult to match the input of high-frequency power. Therefore, there were still many unresolved problems in forming a low refractive index SiO2 film on a large area substrate.

【0008】本発明は上記の問題点を解決するためにな
されたものであって、薄膜被覆物品とりわけ大きな面積
、たとえば1m×1m以上の大きな面積を有する薄膜被
覆物品を製造するのにも適する機械的強度と化学的安定
性を兼ね備えた薄膜とその製造方法を提供するものであ
る。
The present invention has been made to solve the above-mentioned problems, and provides a machine suitable for manufacturing thin-film coated articles, particularly thin-film coated articles having a large area, for example, 1 m x 1 m or more. The purpose of this invention is to provide a thin film that has both physical strength and chemical stability, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明は、シリコン、タ
ンタル、炭素、窒素、酸素からなり、化学式SiTaj
 Ck Nm On で表される組成を有する薄膜であ
って、前記jの値が0.2以上0.6以下であって、前
記kの値が0.3以上1.0以下であって、前記mの値
が0.1以上1.0以下であって、前記nの値が1.0
以上である薄膜である。
[Means for Solving the Problems] The present invention consists of silicon, tantalum, carbon, nitrogen, and oxygen, and has the chemical formula SiTaj.
A thin film having a composition represented by CkNmOn, wherein the value of j is 0.2 or more and 0.6 or less, the value of k is 0.3 or more and 1.0 or less, The value of m is 0.1 or more and 1.0 or less, and the value of n is 1.0.
This is the thin film described above.

【0010】本発明の薄膜がアルカリと酸の両方に対す
る化学的耐久性と耐摩耗性等の機械的耐久性とをあわせ
もった膜であるためには、jの値は0.2〜0.6の範
囲でなければならない。jの値が0.2より小さいと十
分な化学的耐久性を有する膜とならない。jの値が0.
6より大きいと機械的耐久性が低下する。また、kの値
が1.0以上、あるいはmの値が1.0以上、あるいは
nの値が1.0以下であると、機械的耐久性と、特に耐
アルカリ性が低下してしまう。一方kの値が0.3以下
、あるいはmの値が0.1以下、あるいはnの値が1.
0以上である場合は、化学的耐久性、機械的耐久性とも
低下する。
In order for the thin film of the present invention to have both chemical durability against both alkalis and acids and mechanical durability such as abrasion resistance, the value of j should be 0.2 to 0. Must be in the range of 6. If the value of j is less than 0.2, the film will not have sufficient chemical durability. The value of j is 0.
When it is larger than 6, mechanical durability decreases. Moreover, if the value of k is 1.0 or more, the value of m is 1.0 or more, or the value of n is 1.0 or less, mechanical durability and especially alkali resistance will deteriorate. On the other hand, the value of k is 0.3 or less, or the value of m is 0.1 or less, or the value of n is 1.
When it is 0 or more, both chemical durability and mechanical durability decrease.

【0011】さらに本発明の薄膜を、実用的な機械的強
度と化学的安定性を有する上に、可視光線の領域で屈折
率が1.7以下で、かつ、実質的に光の吸収がない膜と
するためには、前記jの値を0.2以上0.5以下、前
記kの値を0.3以上0.8以下、前記mの値を0.2
以上1.0以下、前記nの値が1.5以上とするのが好
ましい。
Furthermore, the thin film of the present invention has practical mechanical strength and chemical stability, has a refractive index of 1.7 or less in the visible light region, and has substantially no absorption of light. In order to form a film, the value of j should be 0.2 or more and 0.5 or less, the value of k should be 0.3 or more and 0.8 or less, and the value of m should be 0.2.
It is preferable that the value of n be 1.0 or more, and 1.5 or more.

【0012】jの値が0.6より大きいと屈折率が2.
0より大きくなってしまい、また光吸収を生じやすくな
る。屈折率を1.7以下程度に小さくするには、jの値
は0.5以下であるのが望ましい。kの値とmの値の下
限値は厳密には定めにくいが、ターゲットが少なくとも
50容積%以上のSiCを含み、直流反応性スパッタリ
ングを安定的に行うこと、そして得られる膜が光学薄膜
として実用性を発揮するのに十分な機械的・化学的耐久
性を有するためには、kの値は0.3以上、mの値は0
.2以上であることが好ましい。kとmの値の上限値は
、屈折率を1.7以下程度にし、実質的にほとんど光吸
収をなくすためには、kの値を0.8以下、mの値を1
.0以下とすることが好ましい。nの値の下限値も同様
の理由から1.5以上とすることが望ましい。nの値の
上限値は反応性スパッタリングの雰囲気ガスを酸素10
0%の雰囲気内でおこなっても、約3.0以下の値とな
る。
[0012] When the value of j is larger than 0.6, the refractive index is 2.
It becomes larger than 0, and light absorption tends to occur. In order to reduce the refractive index to about 1.7 or less, the value of j is preferably 0.5 or less. Although it is difficult to strictly determine the lower limits of the values of k and m, it is important that the target contains at least 50% by volume of SiC, that DC reactive sputtering is performed stably, and that the resulting film is put to practical use as an optical thin film. In order to have sufficient mechanical and chemical durability to exhibit properties, the value of k should be 0.3 or more, and the value of m should be 0.
.. It is preferable that it is 2 or more. The upper limits of the values of k and m are such that the refractive index is about 1.7 or less, and in order to virtually eliminate light absorption, the value of k should be 0.8 or less, and the value of m should be 1.
.. It is preferable to set it to 0 or less. For the same reason, it is desirable that the lower limit of the value of n be 1.5 or more. The upper limit of the value of n is that the atmospheric gas for reactive sputtering is oxygen 10
Even when carried out in a 0% atmosphere, the value is approximately 3.0 or less.

【0013】本発明の薄膜を薄膜被覆物品の最上層に被
覆して保護膜として用いるときは、前記物品の実用的な
化学的安定性および機械的耐久性を確保するためには、
10nm以上、さらに好ましくは20nm以上の厚みに
被覆するのがよい。一方100nm以上に厚く被覆して
も、化学的・機械的耐久性がさらに向上するわけではな
く、被覆に時間がかかる上に、膜の剥離を生じることが
あるので好ましくない。本発明の薄膜を多層光学薄膜を
構成する低屈折率膜として用いるときは、必要とする光
学特性と光学干渉理論とから膜の構成が定められる。
When the thin film of the present invention is used as a protective film by coating the top layer of a thin film-coated article, in order to ensure practical chemical stability and mechanical durability of the article,
It is preferable to coat with a thickness of 10 nm or more, more preferably 20 nm or more. On the other hand, even if the film is coated thickly to a thickness of 100 nm or more, the chemical and mechanical durability will not be further improved, the coating will take time, and the film may peel off, which is not preferable. When the thin film of the present invention is used as a low refractive index film constituting a multilayer optical thin film, the structure of the film is determined based on required optical properties and optical interference theory.

【0014】本発明の第2は、SiC(炭化ケイ素)と
TaC(炭化タンタル)、TaN(窒化タンタル)、T
aB2 (硼化タンタル)、TaSi2 (珪化タンタ
ル)、TaH2 (水素化タンタル)の群から選ばれた
少なくとも一種以上のTa化合物とを主成分とした焼結
体からなるターゲットを用いて、少なくとも酸素と窒素
とを含む減圧された雰囲気内でおこなう直流反応性スパ
ッタリング法により、基体の上に化学式SiTaj C
k Nm On で表される組成を有する薄膜を製造す
る方法である。
The second aspect of the present invention is that SiC (silicon carbide), TaC (tantalum carbide), TaN (tantalum nitride), T
At least oxygen and The chemical formula SiTaj C was deposited on the substrate by direct current reactive sputtering in a reduced pressure atmosphere containing nitrogen.
This is a method for manufacturing a thin film having a composition expressed by k Nm On.

【0015】ターゲット中のTa化合物の混合割合は、
得られる膜の化学的耐久性と機械的耐久性の両方が十分
に高くなるように、また少なくとも酸素と窒素とを含む
減圧された雰囲気中で、安定した反応性スパッタリング
が可能となるように定められる。そのためにターゲット
中のTaC、TaN、TaB2 、TaSi2 、Ta
H2 の群から選ばれた少なくとも一種以上の含有量を
10〜50容積%とすることが好ましい。これにより前
記化学式中のjの値は、0.2以上0.6以下の範囲に
なり、優れた化学的・機械的耐久性を有する膜となる。
The mixing ratio of Ta compounds in the target is:
The method is designed so that both the chemical durability and the mechanical durability of the resulting film are sufficiently high, and that stable reactive sputtering is possible in a reduced pressure atmosphere containing at least oxygen and nitrogen. It will be done. Therefore, TaC, TaN, TaB2, TaSi2, Ta in the target
The content of at least one selected from the group H2 is preferably 10 to 50% by volume. As a result, the value of j in the chemical formula falls within the range of 0.2 or more and 0.6 or less, resulting in a film having excellent chemical and mechanical durability.

【0016】ターゲット中に混合させるTa化合物の混
合割合が、10容積%以下であると反応性スパッタリン
グが極めて不安定になるので好ましくない。ターゲット
中でTa化合物が連続的な構造となり、電気抵抗を低下
させ成膜プロセスを安定化させるためには、Ta化合物
の混合割合は25容積%以上であることがさらに好まし
い。一方50容積%より多いと、得られる薄膜の屈折率
が高くなり、また光吸収が生じやすくなるので好ましく
ない。
If the mixing ratio of the Ta compound mixed into the target is less than 10% by volume, reactive sputtering becomes extremely unstable, which is not preferable. In order for the Ta compound to form a continuous structure in the target, thereby lowering the electrical resistance and stabilizing the film forming process, the mixing ratio of the Ta compound is more preferably 25% by volume or more. On the other hand, if it is more than 50% by volume, the refractive index of the obtained thin film becomes high and light absorption tends to occur, which is not preferable.

【0017】また、反応性スパッタリングを行う際の雰
囲気のガス組成を変えることによって、本発明の薄膜の
組成を調整することができる。少なくとも酸素と窒素と
を含む雰囲気で反応性スパッタリングを行う場合には、
アルゴンやネオンのような不活性ガスの量が多すぎるの
は好ましくなく、窒素の量が少なくとも0.2Pa以上
の分圧を有し、かつ、全圧の40%以上を占めるように
雰囲気のガス組成を調整するのが好ましい。これにより
得られる薄膜の光吸収が少なくなり、直流反応性スパッ
タリングの安定性も増す。さらに重要なのは雰囲気中の
酸素ガスの割合であって、屈折率が1.7程度以下に小
さくかつ光吸収がなく、十分な機械的強度と化学的耐久
性をもった膜とするには、酸素の分圧は全圧の10%以
上とすることが好ましい。
Furthermore, the composition of the thin film of the present invention can be adjusted by changing the gas composition of the atmosphere during reactive sputtering. When performing reactive sputtering in an atmosphere containing at least oxygen and nitrogen,
It is undesirable to have too much of an inert gas such as argon or neon, and the atmosphere should be made so that the amount of nitrogen has a partial pressure of at least 0.2 Pa or more and accounts for 40% or more of the total pressure. Preferably, the composition is adjusted. This reduces the light absorption of the resulting thin film and increases the stability of DC reactive sputtering. What is even more important is the proportion of oxygen gas in the atmosphere, and in order to obtain a film with a small refractive index of about 1.7 or less, no light absorption, and sufficient mechanical strength and chemical durability, oxygen gas is required. It is preferable that the partial pressure is 10% or more of the total pressure.

【0018】本発明の薄膜を含む薄膜被覆物品を製造す
るに際しては、本発明の薄膜以外の膜の成膜法は特に限
定されるものではなく、真空蒸着法、イオンプレーティ
ング法、スパッタリング法などが用いられる。必要とす
る薄膜を連続して効率よく成する上からは、スパッタリ
ング法が好ましい。
When producing a thin film-coated article containing the thin film of the present invention, the method of forming a film other than the thin film of the present invention is not particularly limited, and may include vacuum evaporation, ion plating, sputtering, etc. is used. The sputtering method is preferable from the viewpoint of continuously and efficiently forming the required thin film.

【0019】[0019]

【作用】本発明のSi−Ta−C−N−O系の薄膜中の
炭素、窒素、酸素は、シリコン、タンタルと結合して化
合物を形成し、またそれらの膜中の含有量が限定される
ことにより、薄膜に大きな機械的強度と優れた化学安定
性を付与する。さらに薄膜を可視光線の波長域で透明で
かつ低屈折率にする。
[Operation] Carbon, nitrogen, and oxygen in the Si-Ta-C-N-O thin film of the present invention combine with silicon and tantalum to form a compound, and their contents in the film are limited. This gives the thin film great mechanical strength and excellent chemical stability. Furthermore, the thin film is made transparent in the visible light wavelength range and has a low refractive index.

【0020】本発明の薄膜を直流反応性スパッタリング
により製造するに際しては、ターゲット中に混合された
Ta化合物は、ターゲットの電気抵抗を低下させ、また
ターゲット表面上に形成される被膜やスパッタリング装
置の内壁に形成される被膜の電気抵抗を低下させる。こ
れにより成膜プロセスの安定性が向上する。
When producing the thin film of the present invention by DC reactive sputtering, the Ta compound mixed in the target lowers the electrical resistance of the target and also reduces the coating formed on the target surface and the inner wall of the sputtering device. lowers the electrical resistance of the coating formed on the This improves the stability of the film forming process.

【0021】[0021]

【実施例】以下に実施例に基づき、本発明をさらに詳細
に説明する。図1(a)、(b)は、本発明の薄膜を用
いた薄膜被覆物品の一実施例の一部断面図である。図1
(a)では、ガラス基板3の上に磁気記録膜2が被覆さ
れ、磁気記録膜2の上に本発明の薄膜1が保護膜として
被覆されている。本発明の薄膜を用いた薄膜被覆物品と
しては、基板1としてプラスチックス、アルミニウムな
どの金属板、セラミックス板を用いることができ、磁気
記録膜の他に、透明誘電体膜、電気抵抗膜無反射多層膜
などを用いることが出来る。図1(b)は本発明の薄膜
を低屈折率層、本発明の膜よりも高い屈折率を有する膜
を高屈折率層とする光学多層膜を被覆した物品の一実施
例であり、本発明の薄膜1と高屈折率膜4が交互に被覆
されている。
EXAMPLES The present invention will be explained in more detail below based on examples. FIGS. 1(a) and 1(b) are partial cross-sectional views of an example of a thin film-coated article using the thin film of the present invention. Figure 1
In (a), a glass substrate 3 is coated with a magnetic recording film 2, and the magnetic recording film 2 is coated with the thin film 1 of the present invention as a protective film. As a thin film-coated article using the thin film of the present invention, a plastic plate, a metal plate such as aluminum, or a ceramic plate can be used as the substrate 1, and in addition to a magnetic recording film, a transparent dielectric film, an electrically resistive film, a non-reflective film, etc. A multilayer film or the like can be used. FIG. 1(b) is an example of an article coated with an optical multilayer film in which the thin film of the present invention is used as a low refractive index layer, and the film having a higher refractive index than the film of the present invention is used as a high refractive index layer. The thin film 1 of the invention and the high refractive index film 4 are alternately coated.

【0022】実施例1 スパッタリングターゲットとして、65容積%(32重
量%)のSiCと30容積%(66重量%)のTaCと
焼結助剤(残分)とからなるものを用いた。清浄にされ
た2.1mm厚のフロートガラスをスパッタ装置に入れ
、上記ターゲットを設置した真空槽を約5×10−4P
aまで排気し、その後窒素と酸素の合計流量で100s
ccmのガスをスパッタ装置に導入して、真空槽内の圧
力を0.4Paに調節した。そして、直流電源からター
ゲットに電力を投入して放電を開始し、4Aの電流値で
約75nmの厚みの被膜をガラス基板上に成膜した。真
空槽に導入する窒素と酸素のガス流量の比を変えて、同
様の手順を繰り返し、5種類のサンプル1〜5を作成し
た。得られたサンプル1〜5の薄膜の屈折率と化学組成
を表1
Example 1 A sputtering target consisting of 65% by volume (32% by weight) of SiC, 30% by volume (66% by weight) of TaC, and a sintering aid (residue) was used. A cleaned 2.1 mm thick float glass was placed in a sputtering device, and the vacuum chamber in which the target was installed was heated to approximately 5×10-4P.
Evacuate to a, then 100 s at the total flow rate of nitrogen and oxygen.
ccm of gas was introduced into the sputtering apparatus, and the pressure in the vacuum chamber was adjusted to 0.4 Pa. Then, electric power was applied to the target from a DC power source to start discharging, and a film with a thickness of about 75 nm was formed on the glass substrate at a current value of 4 A. Five types of samples 1 to 5 were created by repeating the same procedure by changing the ratio of the gas flow rates of nitrogen and oxygen introduced into the vacuum chamber. Table 1 shows the refractive index and chemical composition of the obtained thin films of Samples 1 to 5.

【0023】[0023]

【表1】[Table 1]

【0024】にまとめて示す。屈折率はエリプソメータ
ーを用いて、632.8nmの波長での屈折率nと消衰
係数kを測定した。化学組成はESCAを用いて測定し
た。 実施例2 ターゲット中に含有するTa化合物の種類と含有割合を
変えて成膜し、成膜時の直流反応性スパッタリングの安
定性を観察すると共に、得られた薄膜の屈折率と化学組
成を分析した結果を、
[0024] The refractive index was determined by measuring the refractive index n and extinction coefficient k at a wavelength of 632.8 nm using an ellipsometer. Chemical composition was measured using ESCA. Example 2 Films were formed by changing the type and content ratio of Ta compounds contained in the target, and the stability of DC reactive sputtering during film formation was observed, and the refractive index and chemical composition of the obtained thin films were analyzed. The result is

【0025】[0025]

【表2】[Table 2]

【0026】表2に示す。サンプル6〜11の作成は、
それぞれのターゲットをスパッタ装置に設置し、清浄に
された2.1mm厚のフロートガラス板を真空槽にセッ
トした後、約5×10−4Paまで排気し、その後、窒
素70sccmと酸素30sccmの混合ガスをスパッ
タ装置に導入して、真空槽内の圧力を0.4Paに調節
した。そして、直流電源からターゲットに電力を投入し
スパッタ放電を開始し、4Aの電流値で約75nmの膜
厚の被膜をガラス基板上に形成するようにした。
[0026] It is shown in Table 2. To create samples 6 to 11,
After installing each target in a sputtering device and setting a cleaned 2.1 mm thick float glass plate in a vacuum chamber, it was evacuated to about 5 x 10-4 Pa, and then a mixed gas of 70 sccm of nitrogen and 30 sccm of oxygen was applied. was introduced into the sputtering apparatus, and the pressure in the vacuum chamber was adjusted to 0.4 Pa. Then, power was applied to the target from a DC power source to start sputtering discharge, and a film with a thickness of about 75 nm was formed on the glass substrate at a current value of 4 A.

【0027】サンプル6の作成において、同じ条件で約
6時間継続してスパッタリングを行ったが、異常アーク
放電の発生によってプロセスが不安定になるということ
はなかった。スパッタ放電開始直後の放電電圧は約56
0Vであり、6時間経過後の放電電圧は約580Vであ
り、電圧上昇は約4%程度と極めて安定していた。
In preparing Sample 6, sputtering was continued for about 6 hours under the same conditions, but the process did not become unstable due to the occurrence of abnormal arc discharge. The discharge voltage immediately after the start of sputter discharge is approximately 56
0V, and the discharge voltage after 6 hours was about 580V, and the voltage increase was about 4%, which was extremely stable.

【0028】サンプル7の作成に用いたターゲットは、
サンプル6のターゲットに比べてTaCの含有量が10
容積%少ないため、ターゲットの導電性がやや低い。そ
のため、スパッタ放電がやや不安定になる現象が観察さ
れた。すなわち、放電開始後約1時間までは、安定に連
続放電していたが、その後異常アーク放電が発生するよ
うになり、約3時間後には、1時間当り数回は電源が停
止し、再放電させる必要があった。しかし、同じターゲ
ットを用いても、反応性スパッタの際の雰囲気中の酸素
の流量比が30%以下の場合には、3時間以上の連続放
電でもプロセスは安定していた。サンプル8は、ターゲ
ット中のTa化合物の含有量は30容積%であるが、T
aCからTaNに変更して行った実施例であって、放電
安定性の点では、TaCを用いた場合よりもやや悪くな
る傾向が認められ、放電開始3時間後くらいから異常ア
ーク放電が散発的に発生するようになった。
[0028] The target used to create sample 7 was:
Compared to the target of sample 6, the TaC content is 10
Since the volume % is small, the conductivity of the target is slightly low. Therefore, a phenomenon was observed in which sputter discharge became somewhat unstable. In other words, the discharge was stable and continuous for about an hour after the discharge started, but then abnormal arc discharge started to occur, and after about 3 hours, the power supply stopped several times per hour and the discharge started again. I needed to do it. However, even if the same target was used, if the flow rate ratio of oxygen in the atmosphere during reactive sputtering was 30% or less, the process was stable even with continuous discharge for 3 hours or more. In sample 8, the content of Ta compound in the target is 30% by volume, but T
This is an example in which TaN was used instead of aC, and in terms of discharge stability, it was observed that the discharge stability tended to be slightly worse than when TaC was used, and abnormal arc discharge occurred sporadically from about 3 hours after the start of discharge. started to occur.

【0029】サンプル9〜11は、ターゲット中のTa
化合物の量が40〜50容積%と多い例である。サンプ
ル9の作成においては、サンプル6に比べて、放電安定
性に向上はみられなかった。また、屈折率がやや高くな
りまた若干の光吸収が生じていた。サンプル10,11
においては、成膜中の放電安定性はサンプル6と同程度
に優れており、異常なアーク放電が発生するということ
は少なくとも6時間以内には起こらなかった。但し、両
方のサンプルとも薄膜の屈折率が1.8以上にまで高く
なってしまい光吸収が認められた。
Samples 9 to 11 contain Ta in the target.
This is an example in which the amount of the compound is as large as 40 to 50% by volume. In the preparation of Sample 9, no improvement in discharge stability was observed compared to Sample 6. In addition, the refractive index became slightly high and some light absorption occurred. Samples 10 and 11
The discharge stability during film formation was as good as Sample 6, and abnormal arc discharge did not occur within at least 6 hours. However, in both samples, the refractive index of the thin film increased to 1.8 or higher, and light absorption was observed.

【0030】実施例3 3つのカソードが設置できるマグネトロンスパッタ装置
の第1のカソードに金属クロムを、第2のカソードに金
属チタンを、第3のカソードに65容積%(32重量%
)のSiCと30容積%(66重量%)のTaCと焼結
助剤(残分)とからなるターゲットをそれぞれセットと
した。清浄にされた3mm厚のフロートガラス板を真空
装置内に入れ、真空ポンプで約5×10−4Paまで排
気した。次いで、100sccmの流量のアルゴン(A
r)ガスを真空槽に導入し0.4Paの圧力に調整した
のち、第1のカソードに電力を投入してスパッタ放電を
開始し5Aの電流値に維持した。第1のカソードの上を
所定の速度でガラス基板を通過させることにより、約6
0nmのクロム膜を形成した。再び約5×10−4Pa
まで排気した後、Arガスを50sccm、酸素ガスを
50sccmの流量で真空槽内に導入し圧力を0.4P
aに調整した。第2のカソードに電力を投入しスパッタ
放電を開始し5Aの電流値に維持した。そして、第2の
カソード上を所定の速度でガラス基板を通過させること
により、クロム膜の上に70nmの酸化チタン膜を形成
した。再び約5×10−4Paまで排気した後、窒素ガ
スを70sccm、酸素ガスを30sccmの流量で真
空槽内に導入し圧力を0.4Paに調整した。第3のカ
ソードに電力を投入しスパッタ放電を開始し3Aの電流
値に維持した。そして、第3のカソードの上を所定の速
度でガラス基板を通過させることにより、酸化チタン膜
の上に約15nmの厚みのSi、Ta、C、N、Oから
なる薄膜を形成した。
Example 3 In a magnetron sputtering apparatus capable of installing three cathodes, the first cathode was filled with metallic chromium, the second cathode was filled with metallic titanium, and the third cathode was filled with 65% by volume (32% by weight).
) of SiC, 30% by volume (66% by weight) of TaC, and a sintering aid (residue) were each set. A cleaned float glass plate with a thickness of 3 mm was placed in a vacuum device, and the pressure was evacuated to about 5×10 −4 Pa using a vacuum pump. Then, argon (A
r) After introducing gas into the vacuum chamber and adjusting the pressure to 0.4 Pa, power was applied to the first cathode to start sputter discharge and maintain the current value at 5 A. By passing the glass substrate over the first cathode at a predetermined speed, about 6
A chromium film with a thickness of 0 nm was formed. Again about 5×10-4Pa
After evacuating the chamber to 50 sccm, Ar gas was introduced into the vacuum chamber at a flow rate of 50 sccm, and oxygen gas was introduced at a flow rate of 50 sccm to a pressure of 0.4 P.
Adjusted to a. Power was applied to the second cathode to start sputtering discharge, and the current value was maintained at 5A. A 70 nm titanium oxide film was then formed on the chromium film by passing the glass substrate over the second cathode at a predetermined speed. After evacuating to about 5×10 −4 Pa again, nitrogen gas was introduced into the vacuum chamber at a flow rate of 70 sccm and oxygen gas was introduced at a flow rate of 30 sccm to adjust the pressure to 0.4 Pa. Power was applied to the third cathode to start sputtering discharge, and the current value was maintained at 3A. Then, by passing the glass substrate over the third cathode at a predetermined speed, a thin film made of Si, Ta, C, N, and O with a thickness of about 15 nm was formed on the titanium oxide film.

【0031】このようにして得られたサンプル12は、
波長450nmでの反射率が約55%で、青色の反射色
を示す自動車用の車外用ミラーとして好適な光学特性を
示していた。このサンプルの耐摩耗性、耐酸性、耐アル
カリ性を評価した。耐摩耗性は市販のテーバー摩耗試験
機を用いて、No.CS10Fの2つの摩耗輪に各50
0gの荷重をかけ60rpmの回転数で500回転の摩
耗を被膜に加えた後のヘイズ率で評価した。ヘイズ率は
2.1%と低く優れた耐摩耗性を示した。耐酸性と耐ア
ルカリ性はそれぞれ0.1NのH2 SO4 中、Na
OH中に6時間浸漬した後の透過率の変化とヘイズ率を
測定することにより評価した。耐酸性テストでは、透過
率変化が2.5%、ヘイズ率も0.8%と低く優れた耐
酸性を示した。耐アルカリ性テストでも透過率変化が1
.8%、ヘイズ率も0.6%と低く優れた耐アルカリ性
を示した。最上層の膜の組成をESCAにより測定した
ところ、SiTa0.45C0.65N0.41O2.
55という原子組成比で表されることがわかった。
Sample 12 thus obtained is:
The reflectance at a wavelength of 450 nm was approximately 55%, and it exhibited optical properties suitable for use as an exterior mirror for automobiles, exhibiting a blue reflected color. The abrasion resistance, acid resistance, and alkali resistance of this sample were evaluated. Abrasion resistance was measured using a commercially available Taber abrasion tester. 50 each for the two wear wheels of CS10F
The haze rate after applying a load of 0 g and abrasion of 500 rotations at a rotation speed of 60 rpm to the coating was evaluated. The haze rate was as low as 2.1%, indicating excellent wear resistance. Acid resistance and alkali resistance are measured in 0.1N H2SO4 and Na
Evaluation was made by measuring the change in transmittance and haze rate after being immersed in OH for 6 hours. In the acid resistance test, the transmittance change was as low as 2.5% and the haze rate was as low as 0.8%, indicating excellent acid resistance. Even in the alkali resistance test, the transmittance change was 1
.. 8%, and the haze rate was as low as 0.6%, showing excellent alkali resistance. When the composition of the top layer film was measured by ESCA, it was found to be SiTa0.45C0.65N0.41O2.
It was found that it is expressed by an atomic composition ratio of 55.

【0032】実施例4 スパッタリングターゲットとして、実施例3で用いた第
3のターゲットと同じものを用いた。基板として、10
cm×10cm×6mm厚の有機プラスチック(CR3
9)を市販のオルガノシロキサン塗布液で浸漬塗布し、
空気中で硬化させさらに85℃のオーブンで熱的硬化さ
せたハードコート層を有するものを用いた。この基板を
清浄にした後、スパッタ装置に入れ、上記ターゲットを
設置した真空槽を約5×10−4Paまで排気し、その
後窒素ガスを70sccm、酸素ガスを30sccmの
流量でスパッタ装置に導入して、真空槽内の圧力を0.
4Paに調節した。そして、直流電源からターゲットに
電力を投入して2Aの電流で放電を維持し、このターゲ
ット上を繰り返し、基板を通過させることにより約80
nmの厚みの被膜を基板上に形成した。
Example 4 The same sputtering target as the third target used in Example 3 was used. As a substrate, 10
cm x 10 cm x 6 mm thick organic plastic (CR3
9) with a commercially available organosiloxane coating solution,
A hard coat layer was used which was cured in air and then thermally cured in an oven at 85°C. After cleaning this substrate, it was placed in a sputtering device, and the vacuum chamber in which the target was installed was evacuated to about 5 × 10-4 Pa, and then nitrogen gas was introduced into the sputtering device at a flow rate of 70 sccm and oxygen gas was introduced into the sputtering device at a flow rate of 30 sccm. , the pressure inside the vacuum chamber is set to 0.
It was adjusted to 4Pa. Then, power is applied to the target from a DC power supply to maintain a discharge with a current of 2A, and the target is repeatedly passed over and passed through the substrate for about 80 minutes.
A film with a thickness of nm was formed on the substrate.

【0033】得られたサンプル13の耐摩耗性、耐酸性
、耐アルカリ性を評価した。耐摩耗性は市販のテーパー
摩耗試験機を用いて、No.CS10Fの2つの摩耗輪
に各250gの荷重をかけ、60rpmの回転数で50
0回転の摩耗を被膜に加えた後のヘイズ率で評価した。 ヘイズ率は0.5%という優れた値を示した。加えて、
#0000のスチールウールで約5kgの荷重で被膜面
をこすり、傷のつき具合いを判定したところ、わずかに
傷あとが認められる程度であった。耐酸性と耐アルカリ
性はそれぞれ0.1NのH2 SO4 中、NaOH中
に24時間浸漬した後のヘイズ率を測定することにより
評価した。耐酸性テストではヘイズ率は0.3%、耐ア
ルカリ性テストではヘイズ率は0.5%という優れた化
学的耐久性を示した。
The abrasion resistance, acid resistance, and alkali resistance of the sample 13 obtained were evaluated. Abrasion resistance was measured using a commercially available taper abrasion tester. A load of 250 g is applied to each of the two wear wheels of CS10F, and the rotation speed is 50 rpm at 60 rpm.
The haze rate after applying 0-rotation abrasion to the coating was evaluated. The haze rate showed an excellent value of 0.5%. In addition,
When the coated surface was rubbed with #0000 steel wool under a load of approximately 5 kg and the extent of scratches was determined, only slight scratches were observed. Acid resistance and alkali resistance were evaluated by measuring the haze rate after immersion in 0.1N H2SO4 and NaOH for 24 hours, respectively. It showed excellent chemical durability, with a haze rate of 0.3% in the acid resistance test and a haze rate of 0.5% in the alkali resistance test.

【0034】実施例5 実施例3、4で用いたのと同様のスパッタ装置の第1の
カソードに金属磁性層として用いられるコバルト−ニッ
ケル−クロム合金ターゲットを、第2のカソードにSi
C70容積%とTaN30容積%を微量の焼結助剤で焼
結させたものをターゲットとして設置した。実施例3と
同様の手順を用いて、2mm厚フロートガラス基板上に
約50nmの厚さのCo−Ni−Cr合金からなる第1
層と、約30nmの厚さのSi−Ta−C−N−Oから
なる第2層を形成した。
Example 5 A cobalt-nickel-chromium alloy target used as a metal magnetic layer was placed on the first cathode of a sputtering apparatus similar to that used in Examples 3 and 4, and a Si was placed on the second cathode.
A target made by sintering 70% by volume of C and 30% by volume of TaN with a small amount of sintering aid was set up. Using the same procedure as in Example 3, a first layer of Co-Ni-Cr alloy with a thickness of about 50 nm was deposited on a 2 mm thick float glass substrate.
A second layer of Si-Ta-C-N-O with a thickness of about 30 nm was formed.

【0035】実施例3と同じ方法で耐摩耗性、耐酸性、
耐アルカリ性を評価したところ、ヘイズ率は1.8%と
低く優れた耐摩耗性を示した。耐酸性テストでは、透過
率変化が2.2%、ヘイズ率も0.7%と低く優れた耐
酸性を示した。耐アルカリ性テストでも透過率変化が2
.0%、ヘイズ率も0.5%と低く優れた耐アルカリ性
を示した。最上層の膜の組成をESCAにより測定した
ところ、SiTa0.44C0.35N0.60O2.
28という原子組成比で表されることがわかった。
Abrasion resistance, acid resistance,
When the alkali resistance was evaluated, the haze rate was as low as 1.8%, indicating excellent wear resistance. In the acid resistance test, the transmittance change was as low as 2.2% and the haze rate was as low as 0.7%, indicating excellent acid resistance. Even in the alkali resistance test, the transmittance change was 2.
.. 0%, and the haze rate was as low as 0.5%, showing excellent alkali resistance. The composition of the top layer film was measured by ESCA and was found to be SiTa0.44C0.35N0.60O2.
It was found that it is expressed by an atomic composition ratio of 28.

【0036】比較例1 実施例1のサンプル1〜5を成膜したときとは異なるガ
ス流量を用いて、同様の手順でガラス基板上に被膜を成
膜し、比較サンプル1および2を作成した。得られた比
較サンプル1および2の屈折率と化学組成を表1に示す
Comparative Example 1 Comparative Samples 1 and 2 were formed by forming a film on a glass substrate in the same manner as in Example 1, using a different gas flow rate from that used for forming Samples 1 to 5. . Table 1 shows the refractive index and chemical composition of Comparative Samples 1 and 2 obtained.

【0037】比較例2 リンをドープすることによって比抵抗を0.0012Ω
・cmに低下させたシリコンターゲットを用いて、実施
例1〜11と同じ装置で、直流反応性スパッタリングに
よるSiO2 膜の成膜を行った。清浄にされた2.1
mm厚のフロートガラス板を真空槽にセットした後、約
5×10−4Paまで排気し、その後、窒素90scc
mと酸素10sccmの混合ガスをスパッタ装置に導入
して、真空槽内の圧力を0.4Paに調節した。そして
、直流電源からターゲットに電力を投入してスパッタ放
電を開始し、1Aの電流値にセットした。約10分経過
後からすでに異常アーク放電が発生し始め、約20分後
にはスパッタ放電を維持することが困難になり、実験を
中止した。
Comparative Example 2 The specific resistance was reduced to 0.0012Ω by doping with phosphorus.
A SiO2 film was formed by direct current reactive sputtering using the same apparatus as in Examples 1 to 11 using a silicon target lowered to cm. Cleaned 2.1
After setting a mm-thick float glass plate in a vacuum chamber, it was evacuated to about 5 x 10-4 Pa, and then nitrogen was heated at 90 scc.
A mixed gas of m and oxygen at 10 sccm was introduced into the sputtering apparatus, and the pressure in the vacuum chamber was adjusted to 0.4 Pa. Then, power was applied to the target from a DC power supply to start sputtering discharge, and the current value was set to 1A. After about 10 minutes, abnormal arc discharge began to occur, and after about 20 minutes, it became difficult to maintain sputter discharge, and the experiment was discontinued.

【0038】比較例3 市販されている、反応焼結法により製造されたSiCス
パッタリングターゲットを用いて、比較例2と同一の条
件で反応性スパッタリングを行ったところ、放電開始後
30分くらいから異常なアーク放電が発生し始めた。放
電電圧は初期には約440Vであったのに対して、30
分後には約550V程度まで上昇していた。そして、約
45分後には放電を維持し膜を形成することが困難にな
り実験を中止した。
Comparative Example 3 When reactive sputtering was performed under the same conditions as Comparative Example 2 using a commercially available SiC sputtering target manufactured by the reactive sintering method, an abnormality occurred about 30 minutes after the start of discharge. Arc discharge started to occur. The discharge voltage was about 440V at the beginning, but it increased to 30V.
Minutes later, the voltage had risen to about 550V. After about 45 minutes, it became difficult to maintain the discharge and form a film, so the experiment was stopped.

【0039】比較例4 実施例3と比較するサンプルとして、本発明の薄膜を最
上層に保護膜として被覆しない薄膜被覆物品を作成した
。実施例3に記述したのと同様の方法で、3mm厚フロ
ートガラス基板上に、約60nmの厚みのクロム膜と、
約75nmの厚みの酸化チタン膜を形成し比較サンプル
4を得た。この比較サンプル4は実施例3と同様の光学
特性を有した青色反射ミラーであった。実施例3で述べ
たのと同様の方法で耐摩耗性、耐酸性、耐アルカリ性を
評価した。耐摩耗性テストでのヘイズ率は4.3%であ
り、耐酸性テストでの透過率変化は2.9%、ヘイズ率
は1.2%、耐アルカリ性テストでの透過率変化は2.
4%、ヘイズ率は0.9%と、いずれのテストにおいて
も、実施例3で得られたサンプルより劣ることがわかっ
た。
Comparative Example 4 As a sample for comparison with Example 3, a thin film-coated article was prepared in which the thin film of the present invention was not coated as the top layer as a protective film. In the same manner as described in Example 3, a chromium film with a thickness of about 60 nm was formed on a 3 mm thick float glass substrate.
Comparative sample 4 was obtained by forming a titanium oxide film with a thickness of about 75 nm. Comparative Sample 4 was a blue reflecting mirror having optical characteristics similar to those of Example 3. Abrasion resistance, acid resistance, and alkali resistance were evaluated in the same manner as described in Example 3. The haze rate in the abrasion resistance test was 4.3%, the change in transmittance in the acid resistance test was 2.9%, the haze rate was 1.2%, and the change in transmittance in the alkali resistance test was 2.9%.
4%, and the haze rate was 0.9%, which was found to be inferior to the sample obtained in Example 3 in all tests.

【0040】比較例5 実施例4と比較するサンプルとして、プラスチック基板
上に本発明の薄膜を最上層に保護膜として被覆しない薄
膜被覆物品を作成した。実施例4で用いたのと同じハー
ドコート層を有する有機プラスチック(CR−39)を
比較サンプル5として評価した。実施例4と同じ方法で
耐摩耗性、耐酸性、耐アルカリ性を評価した。テーバー
摩耗試験でのヘイズ率は4.8%、耐酸性テストでのヘ
イズ率は0.9%、耐アルカリ性テストでのヘイズ率は
1.4%と、いずれのテストにおいても、比較サンプル
5は実施例4で得られたサンプル13より劣ることがわ
かった。また、#0000のスチールウールによる傷つ
き性も劣ることがわかった。
Comparative Example 5 As a sample for comparison with Example 4, a thin film-coated article was prepared on a plastic substrate without coating the thin film of the present invention as the uppermost layer as a protective film. An organic plastic (CR-39) having the same hard coat layer as used in Example 4 was evaluated as Comparative Sample 5. Abrasion resistance, acid resistance, and alkali resistance were evaluated in the same manner as in Example 4. The haze rate in the Taber abrasion test was 4.8%, the haze rate in the acid resistance test was 0.9%, and the haze rate in the alkali resistance test was 1.4%. It was found to be inferior to Sample 13 obtained in Example 4. It was also found that the scratch resistance caused by #0000 steel wool was poor.

【0041】比較例6 実施例5と同様の方法でガラス基板上にCo−Ni−C
r磁性層を形成したのち、現在磁性層の保護膜として最
もよく用いられているカーボン膜を40nmの厚みで形
成し、比較サンプル6とした。実施例5と同じ方法で耐
摩耗性、耐酸性、耐アルカリ性を評価したところ、ヘイ
ズ率は2.5%であった。耐酸性テストでは、透過率変
化が2.9%、ヘイズ率が1.2%、耐アルカリ性テス
トでは、透過率変化が3.4%、ヘイズ率が0.9%と
いう値を示した。これらの結果から、本発明に基づく最
上層の膜が、磁気ディスクの耐久性を向上させることが
わかった。
Comparative Example 6 Co-Ni-C was deposited on a glass substrate in the same manner as in Example 5.
After forming the r magnetic layer, a carbon film, which is currently most commonly used as a protective film for the magnetic layer, was formed to a thickness of 40 nm, and a comparative sample 6 was prepared. When the wear resistance, acid resistance, and alkali resistance were evaluated in the same manner as in Example 5, the haze rate was 2.5%. In the acid resistance test, the change in transmittance was 2.9% and the haze rate was 1.2%, and in the alkali resistance test, the change in transmittance was 3.4% and the haze rate was 0.9%. From these results, it was found that the top layer film based on the present invention improves the durability of the magnetic disk.

【0042】[0042]

【発明の効果】本発明の薄膜を、薄膜被覆物品の最上層
に保護膜として用いることにより、化学的耐久性と機械
的耐久性の両方に優れた物品とすることが出来る。これ
により外部環境に触れる状態で使用される薄膜被覆物品
の被膜の耐久性が大幅に向上する。本発明の方法によれ
ば、このような優れた耐久性を有する被膜を、直流の反
応性スパッタリングにより形成することを可能にするの
で、薄膜付物品を真空成膜法により製造する場合に極め
て有利であり、また大きな面積の基板に安定に被覆する
ことができるので、量産性を向上させコストを低下させ
ることに寄与する。本発明の薄膜は屈折率が低いので、
光学干渉作用を利用した光学フィルターなどの光学膜の
低屈折率層として用いると、機械的強度が大きくかつ化
学的安定性が優れた光学薄膜被覆物品が得られる。また
、本発明の薄膜の製造方法は、とりわけ大面積の基板に
安定したグロー放電を長時間維持して成膜することが出
来、操業安定性、量産性が優れている。
Effects of the Invention By using the thin film of the present invention as a protective film on the top layer of a thin film-coated article, the article can be made to have excellent both chemical durability and mechanical durability. This greatly improves the durability of the coating of thin-film coated articles that are used in contact with the external environment. According to the method of the present invention, it is possible to form a film having such excellent durability by direct current reactive sputtering, which is extremely advantageous when manufacturing thin film-coated articles by vacuum film forming. Moreover, since it is possible to stably coat a large area of a substrate, it contributes to improving mass productivity and reducing costs. Since the thin film of the present invention has a low refractive index,
When used as a low refractive index layer of an optical film such as an optical filter that utilizes optical interference, an optical thin film coated article with high mechanical strength and excellent chemical stability can be obtained. In addition, the method for producing a thin film of the present invention can particularly form a film on a large-area substrate while maintaining stable glow discharge for a long time, and is excellent in operational stability and mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の薄膜を用いた薄膜被覆物品の一部断面
FIG. 1: Partial cross-sectional view of a thin film-coated article using the thin film of the present invention.

【符号の説明】[Explanation of symbols]

1    Si、Ta、C、N、Oからなる薄膜2  
  磁気記録膜 3    ガラス基板 4    高屈折率膜
1 Thin film 2 made of Si, Ta, C, N, and O
Magnetic recording film 3 Glass substrate 4 High refractive index film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  シリコン、タンタル、炭素、窒素、酸
素からなり化学式SiTaj Ck Nm On で表
される組成を有する薄膜であって、前記jの値が0.2
以上0.6以下であって、前記kの値が0.3以上1.
0以下であって、前記mの値が0.1以上1.0以下で
あって、前記nの値が1.0以上である薄膜。
1. A thin film comprising silicon, tantalum, carbon, nitrogen, and oxygen and having a composition represented by the chemical formula SiTaj Ck Nm On , wherein the value of j is 0.2.
0.6 or less, and the value of k is 0.3 or more and 1.
0 or less, the value of m is 0.1 or more and 1.0 or less, and the value of n is 1.0 or more.
【請求項2】  SiCとTaC、TaN、TaB2 
、TaSi2、TaH2 の群から選ばれた少なくとも
一種以上のTa化合物とを主成分とした焼結体からなる
ターゲットを用い、少なくとも酸素と窒素とを含む減圧
された雰囲気内でおこなう直流反応性スパッタリング法
により、基板の上に化学式SiTaj Ck Nm O
n で表される組成を有する薄膜を製造する方法。
[Claim 2] SiC and TaC, TaN, TaB2
A direct current reactive sputtering method using a target made of a sintered body mainly containing at least one Ta compound selected from the group of , TaSi2, and TaH2 in a reduced pressure atmosphere containing at least oxygen and nitrogen. The chemical formula SiTaj Ck Nm O is deposited on the substrate by
A method for producing a thin film having a composition represented by n.
【請求項3】  前記ターゲット中のTaC、TaN、
TaB2 、TaSi2 、TaH2 の群から選ばれ
た少なくとも一種以上の含有量を10〜50体積%とし
たことを特徴とする請求項2に記載の方法。
3. TaC, TaN,
The method according to claim 2, characterized in that the content of at least one selected from the group of TaB2, TaSi2, and TaH2 is 10 to 50% by volume.
JP03067851A 1991-03-07 1991-03-07 Thin film and manufacturing method Expired - Fee Related JP3121851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03067851A JP3121851B2 (en) 1991-03-07 1991-03-07 Thin film and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03067851A JP3121851B2 (en) 1991-03-07 1991-03-07 Thin film and manufacturing method

Publications (2)

Publication Number Publication Date
JPH04280957A true JPH04280957A (en) 1992-10-06
JP3121851B2 JP3121851B2 (en) 2001-01-09

Family

ID=13356878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03067851A Expired - Fee Related JP3121851B2 (en) 1991-03-07 1991-03-07 Thin film and manufacturing method

Country Status (1)

Country Link
JP (1) JP3121851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173333A (en) * 2019-04-10 2020-10-22 デクセリアルズ株式会社 Thin film for optical element and manufacturing method thereof, inorganic polarizer and manufacturing method thereof, and optical element and optical apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173333A (en) * 2019-04-10 2020-10-22 デクセリアルズ株式会社 Thin film for optical element and manufacturing method thereof, inorganic polarizer and manufacturing method thereof, and optical element and optical apparatus
CN111812764A (en) * 2019-04-10 2020-10-23 迪睿合株式会社 Film for optical element and method for producing same, inorganic polarizing plate and method for producing same, optical element and optical instrument
CN111812764B (en) * 2019-04-10 2024-02-06 迪睿合株式会社 Film for optical element and method for producing same, inorganic polarizing plate and method for producing same

Also Published As

Publication number Publication date
JP3121851B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3836163B2 (en) Method for forming high refractive index film
EP0657562B1 (en) Durable sputtered metal oxide coating
CA2374768C (en) Protective layers for sputter coated article
US4990234A (en) Process for coating substrates made of a transparent material, for example floatglass
JPS63247352A (en) Transparent coating by reactive sputtering
JP4670097B2 (en) Target and method for producing high refractive index film using the target
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JP2005298833A (en) Multilayer film-coated substrate and its manufacturing method
JP2720919B2 (en) target
JPH03177568A (en) Sputtering target and film composed essentially of silicon dioxide
EP2159301A1 (en) Low-refractive index film, method for forming the low-refractive index film, and antireflection film
JP2008057045A (en) Oxide sintered compact sputtering target
JP3121851B2 (en) Thin film and manufacturing method
JP3200637B2 (en) Heat shielding glass
Tang et al. Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method
Williams et al. Metal oxides deposited using ion assisted deposition at low temperature
KR100711826B1 (en) Laminate structure and production method thereof
JP3028576B2 (en) Heat shielding glass
JP4121022B2 (en) Target manufacturing method
JP2004084033A (en) METHOD FOR DEPOSITING SiO2 FILM AND ARTICLE WITH SiO2 FILM DEPOSITED BY THE METHOD
Schiller et al. PICVD: a novel technique for hard-and AR coating of spectacles
JP3208795B2 (en) Transparent article and method for producing the same
JP3057785B2 (en) Heat shielding glass
JP2817287B2 (en) Transparent goods
JPH08283935A (en) Target and production of high refractive index film using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees