JPH0361609B2 - - Google Patents

Info

Publication number
JPH0361609B2
JPH0361609B2 JP10319184A JP10319184A JPH0361609B2 JP H0361609 B2 JPH0361609 B2 JP H0361609B2 JP 10319184 A JP10319184 A JP 10319184A JP 10319184 A JP10319184 A JP 10319184A JP H0361609 B2 JPH0361609 B2 JP H0361609B2
Authority
JP
Japan
Prior art keywords
titanium
aqueous solution
zirconium
salt
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10319184A
Other languages
Japanese (ja)
Other versions
JPS60246221A (en
Inventor
Toichi Takagi
Kohei Ametani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10319184A priority Critical patent/JPS60246221A/en
Publication of JPS60246221A publication Critical patent/JPS60246221A/en
Publication of JPH0361609B2 publication Critical patent/JPH0361609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無機質微粉末の製造方法さらに詳し
くはジルコニウム及びチタンを主成分とする無機
質微粉末の製法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing fine inorganic powder, and more particularly to an improvement in a method for producing fine inorganic powder containing zirconium and titanium as main components.

(従来の技術と問題点) (Zr1-xTix)O2(但し0<x<1)(以下(Zr,
Ti)O2と略記する)は強誘電材料、圧電材料な
どを製造する場合の主要な原料として重要であ
る。さらに説明するとこれらは圧電材料としてよ
く知られているPb(Zr,Ti)O3又はこれを中心
とするPb(Zr,Ti)O3−Pb(Mg,Nb)O3系組成
物などの原料として用いられている。例えば
(Zr,Ti)O2粉末と酸化鉛とを反応させてPb
(Zr,Ti)O3粉末を製造するが、(Zr,Ti)O2
粒径が均一で、分散性、組成の均一性、反応性に
優れたものが要求されている。従来から(Zr,
Ti)O2粉末の製法としてはいろいろ提案されて
いる。例えば(1)ジルコニウム塩及びチタン塩の混
合水溶液から得られた水和物沈殿を乾燥、仮焼す
る方法は得られる(Zr,Ti)O2粉末は粒径が不
均一で粒子同志の凝集のために分散性が悪い。(2)
アルコキシドの加水分解法は操作が複雑であるの
で製品は高価となる。(3)ジルコニウム塩及びチタ
ン塩の混合水溶液の加熱加水分解法は高温高圧処
理をするかあるいは長時間煮沸し続ける必要があ
り、また処理濃度も低いなどいずれも非能率的で
経済性に難点がある。
(Conventional technology and problems) (Zr 1-x Tix) O 2 (0<x<1) (hereinafter (Zr,
Ti) (abbreviated as O2 ) is important as a main raw material for manufacturing ferroelectric materials, piezoelectric materials, etc. To explain further, these are raw materials such as Pb (Zr, Ti) O 3 , which is well known as a piezoelectric material, or Pb (Zr, Ti) O 3 - Pb (Mg, Nb) O 3 based compositions based on Pb (Zr, Ti) O 3 It is used as. For example, by reacting (Zr, Ti)O 2 powder with lead oxide, Pb
(Zr, Ti) O 3 powder is manufactured, and it is required that the (Zr, Ti) O 2 has a uniform particle size, excellent dispersibility, uniform composition, and reactivity. Conventionally (Zr,
Various methods have been proposed for producing Ti) O2 powder. For example, (1) the method of drying and calcining a hydrate precipitate obtained from a mixed aqueous solution of zirconium salts and titanium salts produces (Zr, Ti)O 2 powder with non-uniform particle sizes and no agglomeration of particles. Therefore, the dispersibility is poor. (2)
The process for hydrolysis of alkoxides is complicated in operation and the products are expensive. (3) The heating hydrolysis method for a mixed aqueous solution of zirconium salts and titanium salts requires high-temperature, high-pressure treatment or continuous boiling for a long time, and the treatment concentration is low, making it inefficient and economically difficult. be.

(問題点を解決するための手段) 本発明は、ジルコニウム及びチタンの混合水和
物沈殿粒子の加熱加水分解反応を高能率化し、粒
径の均一化を図る方法である。すなわちジルコニ
ウム及びチタンを主成分とする無機質微粉末を製
造するにあたり、ジルコニウム塩及びチタン塩の
混合水溶液から得られた水和物の沈殿を脱水して
ケーキ状物とし、次いでこれにジルコニウムとチ
タンの金属原子濃度をその合計量で0.2〜5モ
ル/、酸濃度を2規定以下となるようにジルコ
ニウム塩及び/又はチタン塩の水溶液を添加して
スラリーとした後、これを温度60〜300℃で加熱
することを特徴とする無機質微粉末の製造方法で
ある。以下さらに本発明を詳しく説明する。本発
明において用いるジルコニウム塩及びチタン塩は
特に限定されないが塩化ジルコニル、硝酸ジルコ
ニル、四塩化チタン、塩酸、硝酸などの強−塩基
酸の塩や酸が望ましい。通常のジルコニウム塩中
には一般にハフニウムを含有しており、本発明で
いうジルコニウム塩及びチタン塩の混合水溶液
は、その他の少量の不純物や添加物を含有するも
のも含むものである。本発明の水和物沈殿の生成
方法としては、ジルコニウム塩及びチタン塩の混
合水溶液とアンモニア等の塩基を反応させるかも
しくはイオン交換樹脂等で処理して該混合水溶液
のPHを高めることなどが挙げられるがこれらの方
法に特に限定されるものではない。
(Means for Solving the Problems) The present invention is a method for increasing the efficiency of the heating hydrolysis reaction of mixed hydrate precipitated particles of zirconium and titanium, and for uniformizing the particle size. That is, in producing inorganic fine powder containing zirconium and titanium as main components, a hydrate precipitate obtained from a mixed aqueous solution of zirconium salt and titanium salt is dehydrated to form a cake-like product, and then zirconium and titanium are added to this. After making a slurry by adding an aqueous solution of zirconium salt and/or titanium salt so that the metal atom concentration is 0.2 to 5 mol/in total and the acid concentration is 2N or less, this is heated at a temperature of 60 to 300℃. This is a method for producing inorganic fine powder, which is characterized by heating. The present invention will be further explained in detail below. The zirconium salt and titanium salt used in the present invention are not particularly limited, but salts and acids of strong basic acids such as zirconyl chloride, zirconyl nitrate, titanium tetrachloride, hydrochloric acid, and nitric acid are preferable. Ordinary zirconium salts generally contain hafnium, and the mixed aqueous solution of zirconium salt and titanium salt referred to in the present invention also contains small amounts of other impurities and additives. Examples of the method for producing the hydrate precipitate of the present invention include reacting a mixed aqueous solution of a zirconium salt and a titanium salt with a base such as ammonia, or treating the mixed aqueous solution with an ion exchange resin to increase the pH of the mixed aqueous solution. However, the method is not particularly limited to these methods.

本発明でいうケーキ状物とは、一般のろ過等の
方法で沈殿物を脱水して得られるケーキ状沈殿物
であり、ケーキ状物に含まれるジルコニウム及び
チタンの含有量はスラリーにした際に、この2種
の金属原子濃度が0.2〜5.0モル/以上になるも
のであり、またその含水量は該ケーキ状物にジル
コニウム塩及びチタン塩の水溶液を添加してスラ
リーを得る際に均一なスラリーとなる量が好まし
い。
The cake-like material as used in the present invention is a cake-like precipitate obtained by dehydrating the precipitate by a general method such as filtration, and the content of zirconium and titanium contained in the cake-like material is the same as when it is made into a slurry. , the concentration of these two types of metal atoms is 0.2 to 5.0 mol/or more, and the water content is such that when an aqueous solution of zirconium salt and titanium salt is added to the cake to obtain a slurry, a uniform slurry is obtained. The amount is preferable.

なおジルコニウム塩とチタン塩の水溶液は混合
水溶液を用いた方が得られる(Zr,Ti)O2の品
質がすぐれたものが得られる利点がある。
Note that using a mixed aqueous solution of a zirconium salt and a titanium salt has the advantage of yielding (Zr, Ti)O 2 of superior quality.

含水量が低いとケーキ状物が分散しにくいため
に均一なスラリーとすることが難かしく、一方、
含水量が多過ぎると金属原子濃度が0.2モル/
未満となり、処理能率が低くケーキ状物にジルコ
ニウム塩及びチタン塩の混合水溶液を添加した際
にケーキ状物中の水和物沈殿の溶解が起こりやす
いので好ましくない。逆に金属原子濃度を高めれ
ば処理能率が向上するが5モル/をこえるとケ
ーキ状物の含水量を極端に低くする必要があり、
前記のように均一なスラリーを得にくいことにな
る。したがつて本発明のスラリー中の金属原子濃
度は0.2〜5モル/が好ましく、さらに好まし
くは0.8〜3モル/である。
If the water content is low, it is difficult to disperse the cake-like material, making it difficult to form a uniform slurry;
If the water content is too high, the metal atom concentration will decrease to 0.2 mol/
This is not preferable because the treatment efficiency is low and when a mixed aqueous solution of zirconium salt and titanium salt is added to a cake-like product, hydrate precipitates in the cake-like product are likely to dissolve. On the other hand, if the metal atom concentration is increased, the processing efficiency will be improved, but if it exceeds 5 mol/min, the water content of the cake-like material must be extremely low.
As mentioned above, it becomes difficult to obtain a uniform slurry. Therefore, the metal atom concentration in the slurry of the present invention is preferably 0.2 to 5 mol/, more preferably 0.8 to 3 mol/.

また、本発明においてスラリー中の酸の濃度は
2規定以下が好ましく2規定をこえるとスラリー
中の水和物沈殿が再溶解を起こして加熱反応中に
粒径が不均一となるので好ましくない。本発明に
おいて反応圧力としては常圧又は加圧して行うこ
とができる。
Further, in the present invention, the acid concentration in the slurry is preferably 2N or less, and if it exceeds 2N, the hydrate precipitate in the slurry will be redissolved and the particle size will become non-uniform during the heating reaction, which is not preferable. In the present invention, the reaction pressure can be normal pressure or increased pressure.

又加熱温度が60℃未満では、反応速度が小さ
く、反応効率が悪くなるため大量生産に適さず実
際的でない。
If the heating temperature is lower than 60°C, the reaction rate will be low and the reaction efficiency will be poor, making it unsuitable and impractical for mass production.

また300℃をこえると1次粒子が大きくなり、
得られる粉末の反応性が低下し、また装置面及び
エネルギーコスト面でも高価であり実用的でな
い。したがつて本発明において加熱温度は60〜
300℃さらに好ましくは90〜150℃である。
Moreover, when the temperature exceeds 300℃, the primary particles become larger.
The reactivity of the obtained powder decreases, and it is also expensive in terms of equipment and energy costs, making it impractical. Therefore, in the present invention, the heating temperature is 60~
The temperature is 300°C, more preferably 90 to 150°C.

また加熱し反応を促進するために必要に応じて
過酸化水素水もしくは過酸化水素を生成する化合
物を共存させることもできる。その方法として
は、過酸化水素水もしくは過酸化水素を生成する
化合物を添加する方法などがある。
Further, in order to promote the reaction by heating, a hydrogen peroxide solution or a compound that generates hydrogen peroxide may be coexisting as necessary. Examples of this method include adding a hydrogen peroxide solution or a compound that generates hydrogen peroxide.

本発明によつて得られるものはそのまま所望の
微粉末となるが、場合によつては水酸化物となる
のでこれを仮焼すればよい。
The product obtained by the present invention becomes a desired fine powder as it is, but in some cases it becomes a hydroxide, which may be calcined.

実施例 1 塩化ジルコニル水溶液(濃度1モル/)と四
塩化チタン水溶液(濃度2モル/)をZr:Ti
=1:1となるように混合して、金属イオン濃度
約1.3モル/の混合水溶液を200ml調整した。次
いでこれをPH10に保持したアンモニア水溶液中に
撹拌しながら滴下して沈殿を生成した。得られた
沈殿を蒸留水を用いて洗浄、ろ過してケーキ状物
とし、これに前記の混合水溶液60mlを撹拌混合し
ながら加えて、金属原子濃度約1.0モル/、酸
の濃度約0.7規定のスラリーを350ml調整し、温度
95℃で30時間加熱反応させ、得られたスラリーを
3規定のアンモニア水を用いて洗浄、ろ過し、さ
らにアセトンで洗浄、乾燥した。その乾燥物は容
易に解砕できた。解砕後温度900℃で1時間仮焼
した粉末のX線回折結果はZrTiO4のみであり、
また、走査型電子顕微鏡観察の結果は粒子径0.10
〜0.14μm(平均粒子径0.12μm)の均一な粒径のも
のから構成されており、またその個々の粒子は独
立し分散性の高い超微粉であつた。
Example 1 Zirconyl chloride aqueous solution (concentration 1 mol/) and titanium tetrachloride aqueous solution (concentration 2 mol/) were mixed into Zr:Ti
= 1:1 to prepare 200 ml of a mixed aqueous solution having a metal ion concentration of about 1.3 mol/1. Next, this was added dropwise to an ammonia aqueous solution maintained at pH 10 while stirring to form a precipitate. The obtained precipitate was washed with distilled water and filtered to obtain a cake-like product. To this, 60 ml of the above mixed aqueous solution was added with stirring to give a metal atom concentration of about 1.0 mol/mole/acid and an acid concentration of about 0.7N. Adjust 350ml of slurry and
The reaction was carried out by heating at 95° C. for 30 hours, and the resulting slurry was washed with 3N aqueous ammonia, filtered, further washed with acetone, and dried. The dried material could be easily crushed. The X-ray diffraction results of the powder calcined at 900℃ for 1 hour after crushing showed only ZrTiO 4 .
In addition, the results of scanning electron microscopy showed that the particle size was 0.10.
It was composed of particles with a uniform particle size of ~0.14 μm (average particle size 0.12 μm), and the individual particles were independent and highly dispersible ultrafine powder.

実施例 2 塩化ジルコニル水溶液(濃度1モル/)と四
塩化チタン水溶液(濃度2モル/)をZr:Ti
=1:1となるように混合して金属イオン濃度約
1.3モル/の混合水溶液250mlを調製しこれに蒸
留水250mlを加え希釈した。この溶液に約8規定
のアンモニア水500mlを撹拌しながら加え沈殿を
生成した。得られた沈殿を蒸留水を用いて洗浄、
ろ過してケーキ状物とし、これに前記の混合水溶
液(金属イオン濃度約1.3モル/)を70ml加え、
全量400mlのスラリーとした。このスラリーは金
属原子濃度約1.2モル/、酸の濃度約0.7規定で
あつた。このスラリーを温度95℃で10時間加熱反
応させ、得られたスラリーを1規定アンモニア水
を用いて洗浄、ろ過し、さらにエタノールで洗浄
し乾燥した。乾燥物は容易に解砕できた。解砕
後、温度900℃1時間仮焼した粉末のX線回折結
果はZrTiO4のみであり、走査型電子顕微鏡観察
の結果、粒子径0.16〜0.18μm(平均粒子径
0.17μm)の非常に粒径のそろつた粒子から構成
されており、また個々の粒子は独立しており分散
性の高い超微粉末であつた。
Example 2 Zr:Ti aqueous solution of zirconyl chloride (concentration 1 mol/) and titanium tetrachloride aqueous solution (concentration 2 mol/)
= 1:1, and the metal ion concentration is approx.
250 ml of a mixed aqueous solution of 1.3 mol/mole was prepared and diluted by adding 250 ml of distilled water. To this solution, 500 ml of about 8N ammonia water was added with stirring to form a precipitate. Wash the obtained precipitate with distilled water,
Filter to obtain a cake-like product, and add 70 ml of the above mixed aqueous solution (metal ion concentration approximately 1.3 mol/) to this.
The total volume of slurry was 400ml. This slurry had a metal atom concentration of about 1.2 mol/N and an acid concentration of about 0.7N. This slurry was reacted by heating at a temperature of 95° C. for 10 hours, and the resulting slurry was washed with 1N ammonia water, filtered, further washed with ethanol, and dried. The dried material could be easily crushed. After crushing, the X-ray diffraction result of the powder calcined at 900℃ for 1 hour revealed only ZrTiO4 , and as a result of scanning electron microscopy observation, the particle size was 0.16 to 0.18μm (average particle size
It was composed of particles of extremely uniform particle size (0.17 μm), and each particle was independent, making it an ultrafine powder with high dispersibility.

(発明の効果) 本発明の方法によれば組成の均一性、反応性、
分散性、粒径の均一性に優れた(Zr,Ti)O2
粒子が製造できる。さらに、金属原子濃度を高く
できるために簡単に大量処理が可能となる特徴が
あり、極めて効率的で生産性の高い方法である。
(Effect of the invention) According to the method of the invention, uniformity of composition, reactivity,
(Zr, Ti) O 2 fine particles with excellent dispersibility and particle size uniformity can be produced. Furthermore, since the metal atom concentration can be increased, large-scale processing is easily possible, making it an extremely efficient and highly productive method.

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニウム及びチタンを主成分とする無機
質微粉末を製造するにあたり、ジルコニウム塩及
びチタン塩の混合水溶液から得られた水和物の沈
殿を脱水してケーキ状物とし、次いでこれにジル
コニウムとチタンの金属原子濃度をその合計量で
0.2〜5モル/、酸濃度を2規定以下となるよ
うにジルコニウム塩及び/又はチタン塩の水溶液
を添加してスラリーとした後、これを温度60〜
300℃で加熱することを特徴とする無機質微粉末
の製造方法。
1. In producing inorganic fine powder containing zirconium and titanium as main components, a hydrate precipitate obtained from a mixed aqueous solution of zirconium salt and titanium salt is dehydrated to form a cake-like product, and then zirconium and titanium are added to this. Metal atomic concentration as its total amount
After making a slurry by adding an aqueous solution of zirconium salt and/or titanium salt so that the acid concentration is 0.2 to 5 mol/2N or less, this is heated at a temperature of 60 to
A method for producing inorganic fine powder, characterized by heating at 300°C.
JP10319184A 1984-05-22 1984-05-22 Production of inorganic fine particles Granted JPS60246221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319184A JPS60246221A (en) 1984-05-22 1984-05-22 Production of inorganic fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319184A JPS60246221A (en) 1984-05-22 1984-05-22 Production of inorganic fine particles

Publications (2)

Publication Number Publication Date
JPS60246221A JPS60246221A (en) 1985-12-05
JPH0361609B2 true JPH0361609B2 (en) 1991-09-20

Family

ID=14347626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319184A Granted JPS60246221A (en) 1984-05-22 1984-05-22 Production of inorganic fine particles

Country Status (1)

Country Link
JP (1) JPS60246221A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833253B1 (en) * 2001-12-12 2004-10-08 Rhodia Elect & Catalysis PROCESS FOR THE PREPARATION OF AN OXIDE BASED ON ZIRCONIUM AND TITANIUM, OXIDES THUS OBTAINED AND USE OF SUCH OXIDES AS CATALYSTS
JP5700862B2 (en) * 2013-05-08 2015-04-15 堺化学工業株式会社 Zirconium titanate particle manufacturing method, zirconium titanate and toner external additive

Also Published As

Publication number Publication date
JPS60246221A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
JP2008522946A (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
JPS61146710A (en) Production of fine barium titanate particle of high purity
JPS59111922A (en) Production of fine powder of zirconium oxide
JPH0251847B2 (en)
JPH0246531B2 (en)
JPH0361609B2 (en)
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JPH04280815A (en) Fine particulate alkali titanate and its production
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPS61251516A (en) Production of perovskite type oxide
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH0321487B2 (en)
JPS61174116A (en) Production of perovskite type oxide
WO2001010781A1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
JPH0524861B2 (en)
JPH0471848B2 (en)
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPS61251517A (en) Production of perovskite type oxide
EP0200176B1 (en) Method for producing fine particles of lead zirconate
KR20060102928A (en) Manufacturing method of barium titanate powder
KR20040038443A (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JPH0341409B2 (en)
JPH072598A (en) Production of acicular titanium oxide