JPH04274341A - Section machining observation method - Google Patents

Section machining observation method

Info

Publication number
JPH04274341A
JPH04274341A JP3061285A JP6128591A JPH04274341A JP H04274341 A JPH04274341 A JP H04274341A JP 3061285 A JP3061285 A JP 3061285A JP 6128591 A JP6128591 A JP 6128591A JP H04274341 A JPH04274341 A JP H04274341A
Authority
JP
Japan
Prior art keywords
scanning
ion beam
section
sample
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3061285A
Other languages
Japanese (ja)
Other versions
JP2824340B2 (en
Inventor
Haruo Kasahara
春生 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP3061285A priority Critical patent/JP2824340B2/en
Publication of JPH04274341A publication Critical patent/JPH04274341A/en
Application granted granted Critical
Publication of JP2824340B2 publication Critical patent/JP2824340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable a section to be observed in a short time. CONSTITUTION:An amount of total ion beam dose, a specific position, a vertical dimensions of a surface to be etched viewed from a direction of ion beam light axis, dimensions in horizontal direction, and the number of divisions of the surface are input to a scanning control device 20. The scanning control device determines the amount of dose of each section and further a scanning time of each section. A scanning signal creation circuit 19 creates a scanning signal for performing raster scanning of each divided region S1, S2,... SN in each specified scanning time in this order. An ion beam from an ion gun 1 performs rasterscanning of a specified machining region on a sample 13. This scanning allows a surface OC to be observed to be exposed and a sample to be etched in a right angle triangular column shape so that a machining surface crossing a focusing ion beam FIB light axis is nearly in parallel with an electron beam EB light axis. When this specified etching is completed, an electron beam from the electron gun 7 scans this observation surface. An image of the observation surface of the sample is displayed on the cathode rays tube screen.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は、集束イオンビーム
で加工した被加工物の断面を電子ビームで走査し、該断
面像を作成する様にした断面加工観察方法に関する
[Field of Industrial Application] The present invention relates to a cross-sectional processing and observation method in which a cross-section of a workpiece processed with a focused ion beam is scanned with an electron beam and an image of the cross-section is created.

【0
002】。
0
002].

【従来の技術】  LSI素子や超LSI素子等の半導
体素子作成過程において、これらの素子の作成評価を行
う必要がある。例えば、この様な評価は、この様な素子
の特定箇所の断面を観察する事によって行われている。
2. Description of the Related Art In the process of manufacturing semiconductor devices such as LSI devices and VLSI devices, it is necessary to evaluate the fabrication of these devices. For example, such evaluation is performed by observing a cross section of a specific location of such an element.

【0003】これまでは、この様な素子の如き試料を機
械的に切断するか、又は光学顕微鏡で観察しながら試料
を研磨して特定箇所の断面を表出させ、該断面を走査電
子顕微鏡で観察していたが、前者の機械的切断では特定
箇所を表出させる事は極めて難しい。又、後者の研磨と
光学顕微鏡の併用では、その作業が極めて厄介で、特定
箇所を表出させる事は簡単ではない。しかも、この様に
して特定箇所の断面を表出させてから、該試料を走査電
子顕微鏡にセットするので観察までに極めて多くの時間
が取られる。
[0003] Up until now, samples such as these elements have been mechanically cut, or the sample has been polished while being observed with an optical microscope to expose a cross section at a specific location, and the cross section has been examined with a scanning electron microscope. As I have observed, it is extremely difficult to reveal specific areas with the former method of mechanical cutting. Furthermore, in the latter case, when polishing is used in combination with an optical microscope, the work is extremely troublesome, and it is not easy to expose a specific location. Moreover, since the sample is set in a scanning electron microscope after exposing the cross section of a specific location in this manner, it takes an extremely long time to observe it.

【0004】そこで、最近、集束イオンビームで試料を
加工し、該集束イオンビーム軸方向より傾いた軸方向か
ら電子ビームによって該加工部分を走査し、該走査によ
って該加工部分から放出された電子(例えば、二次電子
)に基づいて断面加工像を作成する方法が提案されてい
る。この様な方法においては、図7に示す様に、集束イ
オンビームFIBで試料の表面を紙面に垂直な方向に走
査しながら該イオンビーを観察すべき面OCに向かって
移動させて直方体状の穴Hを加工している。そして、電
子EBで該観察すべき面OCを走査し、該走査により該
面から発生した電子に基づいて断面加工像を作成してい
る。
Therefore, recently, a sample is processed with a focused ion beam, and the processed part is scanned with an electron beam from an axial direction tilted from the focused ion beam axis direction, and the electrons ( For example, a method of creating a cross-sectional processed image based on secondary electrons has been proposed. In this method, as shown in FIG. 7, a focused ion beam FIB is scanned over the surface of the sample in a direction perpendicular to the plane of the paper, and the ion beam is moved toward the surface OC to be observed to form a rectangular parallelepiped hole. Processing H. Then, the surface OC to be observed is scanned with the electron EB, and a cross-sectional processed image is created based on the electrons generated from the surface by the scanning.

【0005】[0005]

【発明が解決しようとする課題】  しかし乍ら、この
様な方法においては、観察すべき面の表出に極めて多く
の時間が掛る事から、断面観察までに多くの時間を要す
る。
[Problems to be Solved by the Invention] However, in such a method, it takes a very long time to expose the surface to be observed, and therefore it takes a lot of time to observe the cross section.

【0006】本発明は、この様な問題を解決し、短時間
に断面観察が出来る様にした新規な断面加工観察方法を
提供する事を目的としたものである。
The object of the present invention is to solve these problems and provide a new cross-sectional processing and observation method that enables cross-sectional observation in a short time.

【0007】さて、本発明者は、前記提案された方法に
おいて、観察すべき面の断面加工像が作成される為には
、試料を最低どの程度の加工が行われねばならないかを
考察した。その結果、電子ビーム光軸に平行な方向から
観察面の大略全面を見込める様に、加工されれば良いこ
とが分かった。この様に加工されれれば、観察面の断面
加工像を得るのに最も最短の加工時間で済む事になる。
Now, in the proposed method, the present inventor considered the minimum degree to which a sample must be processed in order to create a cross-sectional processed image of the surface to be observed. As a result, it was found that processing should be performed so that almost the entire surface of the observation surface can be viewed from a direction parallel to the optical axis of the electron beam. If processed in this way, it will take the shortest processing time to obtain a cross-sectional processed image of the observation surface.

【0008】[0008]

【課題を解決するための手段】  本発明はこの様な原
理に基づいたもので、集束イオンビームにより被加工物
を加工する事により該イオンビーム光軸に平行な加工面
を表出させ、該集束イオンビーム光軸に対し傾いた光軸
を有する電子ビームにより、少なくとも前記集束イオン
ビーム光軸に平行な加工面を走査し、該走査により該加
工面から放出された電子に基づいて該加工面像を作成す
る様にした断面加工観察方法において、前記加工面を表
出させるために前記被加工物に形成される穴の底面が前
記電子ビーム光軸と大略平行になる様に被加工物を加工
した。
[Means for Solving the Problems] The present invention is based on such a principle, and by processing a workpiece with a focused ion beam, a processed surface parallel to the optical axis of the ion beam is exposed. At least a processed surface parallel to the focused ion beam optical axis is scanned by an electron beam having an optical axis tilted with respect to the focused ion beam optical axis, and the processed surface is determined based on electrons emitted from the processed surface by the scanning. In a cross-sectional processing observation method that creates an image, the workpiece is placed so that the bottom surface of a hole formed in the workpiece to expose the processed surface is approximately parallel to the electron beam optical axis. processed.

【0009】[0009]

【実施例】  図1は本発明の一実施例を示したもので
ある。
Embodiment FIG. 1 shows an embodiment of the present invention.

【0010】図中1はイオン銃、2はコンデンサレンズ
、3はブランキング電極、4はブランキング絞り、5は
対物レンズ、6X,6YはX,Y偏向電極、7は電子銃
、8はブランキング電極、9はブランキング絞り、10
はコンデンサレンズ、11は対物レンズ、12X,12
YはX,Y偏向レンズ、13は試料、14は二次電子検
出器、15はアンプ、16は陰極線管、17は走査信号
発生回路、18は走査領域指定装置、19は走査信号作
成回路、20は走査制御装置である。
In the figure, 1 is an ion gun, 2 is a condenser lens, 3 is a blanking electrode, 4 is a blanking aperture, 5 is an objective lens, 6X and 6Y are X and Y deflection electrodes, 7 is an electron gun, and 8 is a blank. Ranking electrode, 9 is blanking aperture, 10
is a condenser lens, 11 is an objective lens, 12X, 12
Y is an X and Y deflection lens, 13 is a sample, 14 is a secondary electron detector, 15 is an amplifier, 16 is a cathode ray tube, 17 is a scanning signal generation circuit, 18 is a scanning area specifying device, 19 is a scanning signal generation circuit, 20 is a scanning control device.

【0011】さて、半導体素子の如き試料の観察すべき
特定箇所は予め分かっており、該観察すべき面の加工深
さ(図2のDE)及び観察すべき面の幅寸法Yが決まれ
ば、電子銃7からの電子ビーム光軸EBOの試料表面に
対する角度が決まっているので、加工される横方向の寸
法X及び加工すべき(エッチングすべき)量が決まる。 このエッチング量とイオンビームのドーズ量とは大略比
例するので、トータルイオンビームドーズ量DTが決定
する。
Now, the specific point to be observed on a sample such as a semiconductor element is known in advance, and once the processing depth (DE in FIG. 2) of the surface to be observed and the width dimension Y of the surface to be observed are determined, Since the angle of the electron beam optical axis EBO from the electron gun 7 with respect to the sample surface is determined, the lateral dimension X to be processed and the amount to be processed (etched) are determined. Since this etching amount and the ion beam dose are approximately proportional, the total ion beam dose DT is determined.

【0012】又、加工すべき部分をイオンビーム光軸方
向から見た場合(図3)、該加工面を観察面OCに平行
にN分割し、各々の区画S1,S2,S3,……,SK
,……SN−1,SNの内、SNが該観察面に最も近い
区画とする。この様に分割する事によって、各区画への
イオンビームドーズ量を決定する。今、区画S1のドー
ズ量をD1とすれば、区画SKのドーズ量DKが、DK
=D1・K        (1)となり、且つ、 DT=D1+D1・2+D1・3+……+D1・K+…
…+D1・N    (2) となる様に各区画へのイオンビームドーズ量を決定する
。尚、電子ビーム光軸EBOの試料面に対する角度に対
応してD1の値が決定される。
When the part to be processed is viewed from the ion beam optical axis direction (FIG. 3), the processing surface is divided into N sections parallel to the observation plane OC, and each section is divided into N sections S1, S2, S3, . . . S.K.
,...SN-1, SN is the section closest to the observation surface. By dividing in this way, the ion beam dose to each section is determined. Now, if the dose amount of section S1 is D1, then the dose amount DK of section SK is DK
=D1・K (1), and DT=D1+D1・2+D1・3+...+D1・K+...
...+D1·N (2) The ion beam dose to each section is determined so that it becomes...+D1·N (2). Note that the value of D1 is determined in accordance with the angle of the electron beam optical axis EBO with respect to the sample surface.

【0013】この様にして決定されたイオンビームドー
ズ量で各区画をエッチングする場合、エッチングした際
に発生した粒子が観察面に再付着しない様に、区画1か
らNへとラスタースキャンでエッチングする。この際、
各ドーズ量は各区画の走査時間でコントロールする。即
ち、今、K区画の走査時間をTK、ビーム電流をIとす
ると、 DK=I・TK/e・S    (3)と表わす事が出
来る。該式で、S=X・Y/N、eは電気素量である。 該式から、走査時間TKは、TK=DK・e・X・Y/
I・N    (4)である。
When etching each section with the ion beam dose determined in this way, the etching is performed from section 1 to section N using a raster scan so that the particles generated during etching do not re-adhere to the observation surface. . On this occasion,
Each dose is controlled by the scanning time of each section. That is, now, if the scanning time of K section is TK and the beam current is I, it can be expressed as DK=I.TK/e.S (3). In this formula, S=X·Y/N, and e is an elementary charge. From this formula, the scanning time TK is TK=DK・e・X・Y/
I・N (4).

【0014】そこで、キーボードの如き入力装置(図示
せず)から、トータルイオンビームドーズ量と、観察す
べき特定位置、イオンビーム光軸方向から見たエッチン
グすべき面の縦方向の寸法Y、横方向の寸法X、及び、
該エッチングすべき面の分割数を走査制御装置20に入
力する。該走査制御装置では、前記(1)式及び(2)
式に従って各区画のイオンビームドーズ量を決定し、更
に、前記(4)式に従って各区画の走査時間を決定する
。そして、走査信号作成回路19は、該走査制御装置の
指令に従って、第3図に示す如き範囲の各分割領域S1
,S2,S3,……,SK,……SN−1,SNをこの
順序で各指定された走査時間でラスター走査する様な走
査信号を作成する。図4,図5は夫々、該走査信号作成
回路で作成されたX方向走査信号の波形例、Y方向走査
信号の波形例である。
Therefore, from an input device such as a keyboard (not shown), the total ion beam dose, the specific position to be observed, the vertical dimension Y of the surface to be etched as seen from the ion beam optical axis direction, and the horizontal direction are input. directional dimension X, and
The number of divisions of the surface to be etched is input into the scan control device 20. In the scanning control device, the above formula (1) and (2) are satisfied.
The ion beam dose for each section is determined according to the formula, and the scanning time for each section is further determined according to the formula (4). Then, the scanning signal generating circuit 19 generates each divided area S1 in the range as shown in FIG.
, S2, S3, . . . , SK, . FIGS. 4 and 5 show an example of the waveform of an X-direction scanning signal and a waveform of a Y-direction scanning signal, respectively, created by the scanning signal creation circuit.

【0015】この様なX方向走査信号、Y方向走査信号
が夫々X,Y偏向電極6X,6Yに送られると、イオン
銃1からのイオンビームはコンデンサレンズ2と対物レ
ンズ5で試料上で集束されると共に、該各偏向電極によ
り試料13上の所定加工領域をラスター走査する。尚、
この時、ブランキング電極3はオフの状態にあり、イオ
ンビームが試料上へ照射されるのを妨げないが、ブラン
キング電極8はオンの状態にあり、電子銃7からの電子
ビームはブランキング絞り9により試料上への照射が妨
げられる。この様にして、試料上の所定領域がイオンビ
ームでエッチングされると、図6に示す様に、観察すべ
き面OCが表出し、集束イオンビームFIB光軸と交差
する加工面が電子ビームEB光軸と大略平行になる様に
試料が直角三角柱状にエッチングされる。
When such an X direction scanning signal and a Y direction scanning signal are sent to the X and Y deflection electrodes 6X and 6Y, respectively, the ion beam from the ion gun 1 is focused on the sample by the condenser lens 2 and the objective lens 5. At the same time, a predetermined processing area on the sample 13 is raster scanned by each deflection electrode. still,
At this time, the blanking electrode 3 is in an off state and does not prevent the ion beam from being irradiated onto the sample, but the blanking electrode 8 is in an on state and the electron beam from the electron gun 7 is blanked. The aperture 9 prevents irradiation onto the sample. When a predetermined area on the sample is etched by the ion beam in this way, the surface OC to be observed is exposed, as shown in FIG. 6, and the processed surface intersecting the optical axis of the focused ion beam FIB is The sample is etched into a right triangular prism shape approximately parallel to the optical axis.

【0016】該所定のエッチングが終わると、ブランキ
ング電極3,8は夫々オン,オフの状態になり、イオン
ビームは試料上に達しないが、電子ビームは試料上に達
する。この時、走査領域指定装置18は電子ビームが前
記観察すべき面OCを走査する指令を走査信号作成回路
17に送る。該走査信号作成回路で作成されたX,Y走
査信号は夫々X,Y偏向レンズ12X,12Yに送られ
るので、電子銃7からの電子ビームはコンデンサレンズ
10と対物レンズ11で試料上で集束されると共に、該
各偏向レンズにより試料13上の観察面OCを走査する
。該走査により該観察面から放出された二次電子は二次
電子検出器14に検出される。該検出された二次電子に
基づく信号はアンプ15を介して陰極線管16に送られ
る。該陰極線管の偏向系には前記走査信号作成回路17
からのX,Y走査信号が同期して送られているので、該
陰極線管画面上には試料の観察面の像が表示される。
When the predetermined etching is completed, the blanking electrodes 3 and 8 are turned on and off, respectively, and the ion beam does not reach the sample, but the electron beam does reach the sample. At this time, the scanning area specifying device 18 sends a command to the scanning signal generating circuit 17 for the electron beam to scan the surface OC to be observed. The X and Y scanning signals created by the scanning signal creation circuit are sent to the X and Y deflection lenses 12X and 12Y, respectively, so that the electron beam from the electron gun 7 is focused on the sample by the condenser lens 10 and the objective lens 11. At the same time, the observation plane OC on the sample 13 is scanned by each of the deflecting lenses. Secondary electrons emitted from the observation surface by the scanning are detected by the secondary electron detector 14. A signal based on the detected secondary electrons is sent to a cathode ray tube 16 via an amplifier 15. The deflection system of the cathode ray tube includes the scanning signal generating circuit 17.
Since the X and Y scanning signals are sent synchronously, an image of the observation surface of the sample is displayed on the cathode ray tube screen.

【0017】尚、前記実施例では各区画の各ドーズ量を
直接走査時間でコントロールしたが、各区画の走査時間
は全て同一にして、各区画の走査回数を各区画毎にリニ
アに変化させてコントロールしても良い。
[0017] In the above embodiment, each dose amount of each section was directly controlled by the scanning time, but the scanning time of each section was made the same, and the number of scans of each section was varied linearly for each section. You can control it.

【0018】又、観察面の像は、観察面からの反射電子
に基づいて作成しても良い。
Furthermore, the image of the observation surface may be created based on reflected electrons from the observation surface.

【0019】[0019]

【発明の効果】  本発明では、集束イオンビーム光軸
と交差する加工底面が電子ビーム光軸と大略平行になる
様に被加工物を加工したので、観察面の断面加工像を得
るのに最短の加工時間で済む。
Effects of the Invention In the present invention, the workpiece is processed so that the processed bottom surface that intersects with the focused ion beam optical axis is approximately parallel to the electron beam optical axis. processing time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例を示したものである。FIG. 1 shows an embodiment of the present invention.

【図2】  本発明の動作の説明を補足する為に用いた
ものである。
FIG. 2 is used to supplement the explanation of the operation of the present invention.

【図3】  本発明の動作の説明を補足する為に用いた
ものである。
FIG. 3 is used to supplement the explanation of the operation of the present invention.

【図4】  本発明の動作の説明を補足する為に用いた
ものである。
FIG. 4 is used to supplement the explanation of the operation of the present invention.

【図5】  本発明の動作の説明を補足する為に用いた
ものである。
FIG. 5 is used to supplement the explanation of the operation of the present invention.

【図6】  本発明の動作の説明を補足する為に用いた
ものである。
FIG. 6 is used to supplement the explanation of the operation of the present invention.

【図7】  従来の方法による加工された穴の断面を示
したものである。
FIG. 7 shows a cross section of a hole machined by a conventional method.

【符号の説明】[Explanation of symbols]

1:イオン銃    2:コンデンサレンズ    3
:ブランキング電極    4:ブランキング絞り  
  5:対物レンズ    6X,6Y:X,Y偏向電
極    7:電子銃    8:ブランキング電極 
   9:ブランキング絞り    10:コンデンサ
レンズ    11:対物レンズ    12X,12
Y:X,Y偏向レンズ    13:試料    14
:二次電子検出器    15:アンプ    16:
陰極線管    17:走査信号発生回路    18
:走査領域指定装置    19:走査信号作成回路 
   20:走査制御装置
1: Ion gun 2: Condenser lens 3
:Blanking electrode 4:Blanking aperture
5: Objective lens 6X, 6Y: X, Y deflection electrode 7: Electron gun 8: Blanking electrode
9: Blanking aperture 10: Condenser lens 11: Objective lens 12X, 12
Y: X, Y deflection lens 13: Sample 14
: Secondary electron detector 15: Amplifier 16:
Cathode ray tube 17: Scanning signal generation circuit 18
:Scanning area specifying device 19:Scanning signal generation circuit
20: Scanning control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  集束イオンビームにより被加工物を加
工する事により該イオンビーム光軸に平行な加工面を表
出させ、該集束イオンビーム光軸に対し傾いた光軸を有
する電子ビームにより、少なくとも前記集束イオンビー
ム光軸に平行な加工面を走査し、該走査により該加工面
から放出された電子に基づいて該加工面像を作成する様
にした断面加工観察方法において、前記加工面を表出さ
せるために前記被加工物に形成される穴の底面が前記電
子ビーム光軸と大略平行になる様に被加工物を加工した
断面加工観察方法。
1. Processing a workpiece with a focused ion beam to expose a processed surface parallel to the optical axis of the ion beam, and using an electron beam having an optical axis tilted with respect to the optical axis of the focused ion beam, In a cross-sectional processing observation method, the processing surface is scanned at least parallel to the optical axis of the focused ion beam, and an image of the processing surface is created based on electrons emitted from the processing surface by the scanning. A cross-sectional processing and observation method in which a workpiece is processed so that the bottom surface of a hole formed in the workpiece for exposure is approximately parallel to the optical axis of the electron beam.
JP3061285A 1991-03-01 1991-03-01 Section processing observation method Expired - Fee Related JP2824340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061285A JP2824340B2 (en) 1991-03-01 1991-03-01 Section processing observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061285A JP2824340B2 (en) 1991-03-01 1991-03-01 Section processing observation method

Publications (2)

Publication Number Publication Date
JPH04274341A true JPH04274341A (en) 1992-09-30
JP2824340B2 JP2824340B2 (en) 1998-11-11

Family

ID=13166779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061285A Expired - Fee Related JP2824340B2 (en) 1991-03-01 1991-03-01 Section processing observation method

Country Status (1)

Country Link
JP (1) JP2824340B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220344A (en) * 2006-02-14 2007-08-30 Sii Nanotechnology Inc Focused ion beam device and method of processing and observing test piece
US7952083B2 (en) * 2004-09-29 2011-05-31 Hitachi High-Technologies Corporation Ion beam system and machining method
EP2743026A3 (en) * 2012-11-12 2017-10-11 Carl Zeiss Microscopy GmbH Method of processing a material-specimen
WO2023150026A1 (en) * 2022-02-02 2023-08-10 Kla Corporation Combining focused ion beam milling and scanning electron microscope imaging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952083B2 (en) * 2004-09-29 2011-05-31 Hitachi High-Technologies Corporation Ion beam system and machining method
JP2007220344A (en) * 2006-02-14 2007-08-30 Sii Nanotechnology Inc Focused ion beam device and method of processing and observing test piece
EP2743026A3 (en) * 2012-11-12 2017-10-11 Carl Zeiss Microscopy GmbH Method of processing a material-specimen
WO2023150026A1 (en) * 2022-02-02 2023-08-10 Kla Corporation Combining focused ion beam milling and scanning electron microscope imaging

Also Published As

Publication number Publication date
JP2824340B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
TWI650550B (en) Multi-beam device for high throughput ebi
US5035787A (en) Method for repairing semiconductor masks and reticles
US7888640B2 (en) Scanning electron microscope and method of imaging an object by using the scanning electron microscope
US8796651B2 (en) Method and apparatus for specimen fabrication
EP0298495B1 (en) Method and apparatus for correcting defects of x-ray mask
US6838668B2 (en) System for imaging a cross-section of a substrate
KR20020061641A (en) Method and system for the examination of specimen using a charged particle beam
US5165954A (en) Method for repairing semiconductor masks & reticles
US4438336A (en) Corpuscular radiation device for producing an irradiation pattern on a workpiece
US4392058A (en) Electron beam lithography
JPH04274341A (en) Section machining observation method
EP0035556B1 (en) Electron beam system
JPH10162769A (en) Ion beam work device
US6881956B1 (en) Method and apparatus for scanning semiconductor wafers using a scanning electron microscope
JP3060613B2 (en) Focused ion beam apparatus and cross-section processing method using focused ion beam
JP3027072B2 (en) Ion beam processing method
JPH0528950A (en) Method and device for machining cross section
TW472298B (en) Electron beam exposure apparatus, adjusting method, and block mask for adjustment
JP3968144B2 (en) Focused ion beam processing method and processing apparatus
WO2023032075A1 (en) Charged particle beam device
JPH0414490B2 (en)
US10662059B2 (en) Micro-electro-mechanical-systems processing method, and micro-electro-mechanical-systems processing apparatus
JP3354846B2 (en) Magnification controlled charged particle beam irradiation system
JP2024080618A (en) Method, device and program for adjusting electron beam device
TW202201458A (en) Focused ion beam processing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees