JP2824340B2 - Section processing observation method - Google Patents

Section processing observation method

Info

Publication number
JP2824340B2
JP2824340B2 JP3061285A JP6128591A JP2824340B2 JP 2824340 B2 JP2824340 B2 JP 2824340B2 JP 3061285 A JP3061285 A JP 3061285A JP 6128591 A JP6128591 A JP 6128591A JP 2824340 B2 JP2824340 B2 JP 2824340B2
Authority
JP
Japan
Prior art keywords
ion beam
scanning
section
optical axis
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3061285A
Other languages
Japanese (ja)
Other versions
JPH04274341A (en
Inventor
春生 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP3061285A priority Critical patent/JP2824340B2/en
Publication of JPH04274341A publication Critical patent/JPH04274341A/en
Application granted granted Critical
Publication of JP2824340B2 publication Critical patent/JP2824340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、集束イオンビームで
加工した被加工物の断面を電子ビームで走査し、該断面
像を作成する様にした断面加工観察方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-section processing observation method in which a cross-section of a workpiece processed with a focused ion beam is scanned with an electron beam to form the cross-sectional image.

【0002】。[0002]

【従来の技術】 LSI素子や超LSI素子等の半導体
素子作成過程において、これらの素子の作成評価を行う
必要がある。例えば、この様な評価は、この様な素子の
特定箇所の断面を観察する事によって行われている。
2. Description of the Related Art In the process of producing semiconductor devices such as LSI devices and super LSI devices, it is necessary to evaluate the production of these devices. For example, such an evaluation is performed by observing a cross section of a specific portion of such an element.

【0003】これまでは、この様な素子の如き試料を機
械的に切断するか、又は光学顕微鏡で観察しながら試料
を研磨して特定箇所の断面を表出させ、該断面を走査電
子顕微鏡で観察していたが、前者の機械的切断では特定
箇所を表出させる事は極めて難しい。又、後者の研磨と
光学顕微鏡の併用では、その作業が極めて厄介で、特定
箇所を表出させる事は簡単ではない。しかも、この様に
して特定箇所の断面を表出させてから、該試料を走査電
子顕微鏡にセットするので観察までに極めて多くの時間
が取られる。
Heretofore, a sample such as such an element has been mechanically cut or polished while observing it with an optical microscope to reveal a cross section of a specific portion, and the cross section is scanned with a scanning electron microscope. As we have observed, it is extremely difficult to reveal a specific location with the former mechanical cutting. In addition, when the latter is used in combination with polishing and an optical microscope, the operation is extremely troublesome, and it is not easy to expose a specific portion. Moreover, since the sample is set on the scanning electron microscope after the cross section of the specific portion is exposed in this way, an extremely long time is required until observation.

【0004】そこで、最近、集束イオンビームで試料を
加工し、該集束イオンビーム軸方向より傾いた軸方向か
ら電子ビームによって該加工部分を走査し、該走査によ
って該加工部分から放出された電子(例えば、二次電
子)に基づいて断面加工像を作成する方法が提案されて
いる。この様な方法においては、図7に示す様に、集束
イオンビームFIBで試料の表面を紙面に垂直な方向に
走査しながら該イオンビーを観察すべき面OCに向かっ
て移動させて直方体状の穴Hを加工している。そして、
電子EBで該観察すべき面OCを走査し、該走査により
該面から発生した電子に基づいて断面加工像を作成して
いる。
Therefore, recently, a sample is processed with a focused ion beam, the processed portion is scanned with an electron beam from an axial direction inclined from the axial direction of the focused ion beam, and electrons emitted from the processed portion by the scanning ( For example, a method of creating a cross-section processed image based on secondary electrons) has been proposed. In such a method, as shown in FIG. 7, the focused ion beam FIB scans the surface of the sample in a direction perpendicular to the plane of the paper, and moves the ion beam toward the surface OC to be observed to form a rectangular parallelepiped hole. H is processed. And
The surface OC to be observed is scanned by the electrons EB, and a cross-section processed image is created based on electrons generated from the surface by the scanning.

【0005】[0005]

【発明が解決しようとする課題】 しかし乍ら、この様
な方法においては、観察すべき面の表出に極めて多くの
時間が掛る事から、断面観察までに多くの時間を要す
る。
However, in such a method, a very long time is required to expose a surface to be observed, so that much time is required until cross-section observation.

【0006】本発明は、この様な問題を解決し、短時間
に断面観察が出来る様にした新規な断面加工観察方法を
提供する事を目的としたものである。
An object of the present invention is to solve such a problem and to provide a novel cross-section processing observation method capable of observing a cross-section in a short time.

【0007】さて、本発明者は、前記提案された方法に
おいて、観察すべき面の断面加工像が作成される為に
は、試料を最低どの程度の加工が行われねばならないか
を考察した。その結果、電子ビーム光軸に平行な方向か
ら観察面の大略全面を見込める様に、加工されれば良い
ことが分かった。この様に加工されれれば、観察面の断
面加工像を得るのに最も最短の加工時間で済む事にな
る。
[0007] The inventor of the present invention considered at least how much processing must be performed on a sample in order to form a cross-section processed image of a surface to be observed in the proposed method. As a result, it was found that processing should be performed so that substantially the entire observation surface can be viewed from a direction parallel to the electron beam optical axis. With such processing, the shortest processing time is required to obtain a cross-sectional processed image of the observation surface.

【0008】[0008]

【課題を解決するための手段】 本発明はこの様な原理
に基づいたもので、集束イオンビームにより被加工物を
加工する事により該イオンビーム光軸に平行な加工面を
表出させ、該集束イオンビーム光軸に対し傾いた光軸を
有する電子ビームにより、少なくとも前記集束イオンビ
ーム光軸に平行な加工面を走査し、該走査により該加工
面から放出された電子に基づいて該加工面像を作成する
様にした断面加工観察方法において、前記加工面を表出
させるために前記被加工物に形成される穴の底面が前記
電子ビーム光軸と大略平行になる様に被加工物を加工し
た。
Means for Solving the Problems The present invention is based on such a principle. By processing a workpiece with a focused ion beam, a processing surface parallel to the ion beam optical axis is exposed. At least a processing surface parallel to the focused ion beam optical axis is scanned by an electron beam having an optical axis inclined with respect to the focused ion beam optical axis, and the processed surface is scanned based on electrons emitted from the processed surface by the scanning. In the cross-section processing observation method for forming an image, the workpiece is formed such that the bottom surface of a hole formed in the workpiece is substantially parallel to the electron beam optical axis in order to expose the processing surface. processed.

【0009】[0009]

【実施例】 図1は本発明の一実施例を示したものであ
る。
FIG. 1 shows an embodiment of the present invention.

【0010】図中1はイオン銃、2はコンデンサレン
ズ、3はブランキング電極、4はブランキング絞り、5
は対物レンズ、6X,6YはX,Y偏向電極、7は電子
銃、8はブランキング電極、9はブランキング絞り、1
0はコンデンサレンズ、11は対物レンズ、12X,1
2YはX,Y偏向レンズ、13は試料、14は二次電子
検出器、15はアンプ、16は陰極線管、17は走査信
号発生回路、18は走査領域指定装置、19は走査信号
作成回路、20は走査制御装置である。
In the figure, 1 is an ion gun, 2 is a condenser lens, 3 is a blanking electrode, 4 is a blanking aperture, 5
Is an objective lens, 6X and 6Y are X and Y deflection electrodes, 7 is an electron gun, 8 is a blanking electrode, 9 is a blanking stop, 1
0 is a condenser lens, 11 is an objective lens, 12X, 1
2Y is an X and Y deflection lens, 13 is a sample, 14 is a secondary electron detector, 15 is an amplifier, 16 is a cathode ray tube, 17 is a scanning signal generation circuit, 18 is a scanning area designating device, 19 is a scanning signal generation circuit, Reference numeral 20 denotes a scanning control device.

【0011】さて、半導体素子の如き試料の観察すべき
特定箇所は予め分かっており、該観察すべき面の加工深
さ(図2のDE)及び観察すべき面の幅寸法Yが決まれ
ば、電子銃7からの電子ビーム光軸EBOの試料表面に
対する角度が決まっているので、加工される横方向の寸
法X及び加工すべき(エッチングすべき)量が決まる。
このエッチング量とイオンビームのドーズ量とは大略比
例するので、トータルイオンビームドーズ量Dが決定
する。
Now, a specific portion to be observed of a sample such as a semiconductor element is known in advance, and if the processing depth of the surface to be observed (DE in FIG. 2) and the width dimension Y of the surface to be observed are determined, Since the angle of the optical axis EBO of the electron beam from the electron gun 7 with respect to the sample surface is determined, the lateral dimension X to be processed and the amount to be processed (etched) are determined.
Since the amount of etching and the dose of the ion beam are substantially proportional, the total ion beam dose DT is determined.

【0012】又、加工すべき部分をイオンビーム光軸方
向から見た場合(図3)、該加工面を観察面OCに平行
にN分割し、各々の区画S,S,S,……,
,……SN−1,Sの内、Sが該観察面に最も
近い区画とする。この様に分割する事によって、各区画
へのイオンビームドーズ量を決定する。今、区画S
ドーズ量をDとすれば、区画Sのドーズ量Dが、 D=D・K (1) となり、且つ、 D=D+D・2+D・3+……+D・K+…
…+D・N (2) となる様に各区画へのイオンビームドーズ量を決定す
る。尚、電子ビーム光軸EBOの試料面に対する角度に
対応してDの値が決定される。
When the portion to be processed is viewed from the direction of the optical axis of the ion beam (FIG. 3), the processed surface is divided into N parallel to the observation surface OC, and each of the sections S 1 , S 2 , S 3 , ……,
Of the SK ,... S N−1 , S N , S N is the section closest to the observation surface. By dividing in this manner, the ion beam dose to each section is determined. Now, if the dose compartment S 1 and D 1, the dose D K compartments S K is, D K = D 1 · K (1) becomes and, D T = D 1 + D 1 · 2 + D 1 · 3 + ...... + D 1 · K + ...
.. + D 1 · N (2) The ion beam dose to each section is determined. The value of D 1 is determined in accordance with the angle to the sample surface of the electron beam optical axis EBO.

【0013】この様にして決定されたイオンビームドー
ズ量で各区画をエッチングする場合、エッチングした際
に発生した粒子が観察面に再付着しない様に、区画1か
らNへとラスタースキャンでエッチングする。この際、
各ドーズ量は各区画の走査時間でコントロールする。即
ち、今、K区画の走査時間をT、ビーム電流をIとす
ると、 D=I・T/e・S (3) と表わす事が出来る。該式で、S=X・Y/N、eは電
気素量である。該式から、走査時間Tは、 T=D・e・X・Y/I・N (4) である。
When each section is etched with the ion beam dose determined in this manner, the sections 1 to N are etched by raster scan so that particles generated during the etching do not adhere to the observation surface. . On this occasion,
Each dose amount is controlled by the scanning time of each section. That is, assuming that the scanning time of the K section is T K and the beam current is I, D K = I · T K / e · S (3). In this equation, S = X · Y / N, e is the elementary charge. From this equation, the scanning time T K is as follows: T K = D K e e XY / IN (4)

【0014】そこで、キーボードの如き入力装置(図示
せず)から、トータルイオンビームドーズ量と、観察す
べき特定位置、イオンビーム光軸方向から見たエッチン
グすべき面の縦方向の寸法Y、横方向の寸法X、及び、
該エッチングすべき面の分割数を走査制御装置20に入
力する。該走査制御装置では、前記(1)式及び(2)
式に従って各区画のイオンビームドーズ量を決定し、更
に、前記(4)式に従って各区画の走査時間を決定す
る。そして、走査信号作成回路19は、該走査制御装置
の指令に従って、第3図に示す如き範囲の各分割領域S
,S,S,……,S,……SN−1,Sをこ
の順序で各指定された走査時間でラスター走査する様な
走査信号を作成する。図4,図5は夫々、該走査信号作
成回路で作成されたX方向走査信号の波形例、Y方向走
査信号の波形例である。
Therefore, an input device (not shown) such as a keyboard is used to input a total ion beam dose, a specific position to be observed, a vertical dimension Y and a horizontal dimension of a surface to be etched as viewed from the ion beam optical axis direction. Direction dimension X, and
The number of divisions of the surface to be etched is input to the scanning control device 20. In the scanning control device, the above equation (1) and (2)
The ion beam dose of each section is determined according to the equation, and the scanning time of each section is determined according to the equation (4). Then, the scanning signal creation circuit 19, according to the command of the scanning control device, sets each divided area S in the range as shown in FIG.
1 , S 2 , S 3 ,..., S K ,..., S N−1 , S N are generated in this order in such a manner that the scanning signals are raster-scanned at the designated scanning times. FIGS. 4 and 5 are waveform examples of the X-direction scanning signal and the Y-direction scanning signal generated by the scanning signal generation circuit, respectively.

【0015】この様なX方向走査信号、Y方向走査信号
が夫々X,Y偏向電極6X,6Yに送られると、イオン
銃1からのイオンビームはコンデンサレンズ2と対物レ
ンズ5で試料上で集束されると共に、該各偏向電極によ
り試料13上の所定加工領域をラスター走査する。尚、
この時、ブランキング電極3はオフの状態にあり、イオ
ンビームが試料上へ照射されるのを妨げないが、ブラン
キング電極8はオンの状態にあり、電子銃7からの電子
ビームはブランキング絞り9により試料上への照射が妨
げられる。この様にして、試料上の所定領域がイオンビ
ームでエッチングされると、図6に示す様に、観察すべ
き面OCが表出し、集束イオンビームFIB光軸と交差
する加工面が電子ビームEB光軸と大略平行になる様に
試料が直角三角柱状にエッチングされる。
When such X-direction scanning signal and Y-direction scanning signal are sent to the X and Y deflection electrodes 6X and 6Y, respectively, the ion beam from the ion gun 1 is focused on the sample by the condenser lens 2 and the objective lens 5. At the same time, a predetermined processing area on the sample 13 is raster-scanned by the respective deflection electrodes. still,
At this time, the blanking electrode 3 is off and does not prevent the ion beam from being irradiated onto the sample, but the blanking electrode 8 is on and the electron beam from the electron gun 7 is blanked. The aperture 9 prevents irradiation on the sample. When a predetermined region on the sample is etched by the ion beam in this manner, as shown in FIG. 6, a surface OC to be observed is exposed, and a processing surface that intersects the optical axis of the focused ion beam FIB is an electron beam EB. The sample is etched into a right triangular prism so as to be substantially parallel to the optical axis.

【0016】該所定のエッチングが終わると、ブランキ
ング電極3,8は夫々オン,オフの状態になり、イオン
ビームは試料上に達しないが、電子ビームは試料上に達
する。この時、走査領域指定装置18は電子ビームが前
記観察すべき面OCを走査する指令を走査信号作成回路
17に送る。該走査信号作成回路で作成されたX,Y走
査信号は夫々X,Y偏向レンズ12X,12Yに送られ
るので、電子銃7からの電子ビームはコンデンサレンズ
10と対物レンズ11で試料上で集束されると共に、該
各偏向レンズにより試料13上の観察面OCを走査す
る。該走査により該観察面から放出された二次電子は二
次電子検出器14に検出される。該検出された二次電子
に基づく信号はアンプ15を介して陰極線管16に送ら
れる。該陰極線管の偏向系には前記走査信号作成回路1
7からのX,Y走査信号が同期して送られているので、
該陰極線管画面上には試料の観察面の像が表示される。
When the predetermined etching is completed, the blanking electrodes 3 and 8 are turned on and off, respectively, and the ion beam does not reach the sample, but the electron beam reaches the sample. At this time, the scanning area designating device 18 sends a command for scanning the surface OC to be observed by the electron beam to the scanning signal generating circuit 17. The X and Y scanning signals created by the scanning signal creation circuit are sent to the X and Y deflection lenses 12X and 12Y, respectively, so that the electron beam from the electron gun 7 is focused on the sample by the condenser lens 10 and the objective lens 11. At the same time, the observation surface OC on the sample 13 is scanned by the respective deflection lenses. Secondary electrons emitted from the observation surface by the scanning are detected by the secondary electron detector 14. A signal based on the detected secondary electrons is sent to a cathode ray tube 16 via an amplifier 15. The scanning signal generating circuit 1 is provided in the deflection system of the cathode ray tube.
Since the X and Y scanning signals from 7 are sent synchronously,
An image of the observation surface of the sample is displayed on the cathode ray tube screen.

【0017】尚、前記実施例では各区画の各ドーズ量を
直接走査時間でコントロールしたが、各区画の走査時間
は全て同一にして、各区画の走査回数を各区画毎にリニ
アに変化させてコントロールしても良い。
In the above embodiment, each dose amount of each section is directly controlled by the scanning time. However, the scanning time of each section is all the same, and the number of scans of each section is changed linearly for each section. You may control.

【0018】又、観察面の像は、観察面からの反射電子
に基づいて作成しても良い。
The image of the observation surface may be created based on the reflected electrons from the observation surface.

【0019】[0019]

【発明の効果】 本発明では、集束イオンビーム光軸と
交差する加工底面が電子ビーム光軸と大略平行になる様
に被加工物を加工したので、観察面の断面加工像を得る
のに最短の加工時間で済む。
According to the present invention, since the workpiece is processed so that the processing bottom surface that intersects the focused ion beam optical axis is substantially parallel to the electron beam optical axis, the shortest time is required to obtain a cross-sectional processed image of the observation surface. Processing time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示したものである。FIG. 1 shows an embodiment of the present invention.

【図2】 本発明の動作の説明を補足する為に用いたも
のである。
FIG. 2 is used to supplement the description of the operation of the present invention.

【図3】 本発明の動作の説明を補足する為に用いたも
のである。
FIG. 3 is used to supplement the description of the operation of the present invention.

【図4】 本発明の動作の説明を補足する為に用いたも
のである。
FIG. 4 is used to supplement the description of the operation of the present invention.

【図5】 本発明の動作の説明を補足する為に用いたも
のである。
FIG. 5 is used to supplement the description of the operation of the present invention.

【図6】 本発明の動作の説明を補足する為に用いたも
のである。
FIG. 6 is used to supplement the description of the operation of the present invention.

【図7】 従来の方法による加工された穴の断面を示し
たものである。
FIG. 7 shows a cross section of a hole machined by a conventional method.

【符号の説明】[Explanation of symbols]

1:イオン銃 2:コンデンサレンズ 3:ブラン
キング電極 4:ブランキング絞り 5:対物レン
ズ 6X,6Y:X,Y偏向電極 7:電子銃
8:ブランキング電極 9:ブランキング絞り 1
0:コンデンサレンズ 11:対物レンズ 12
X,12Y:X,Y偏向レンズ 13:試料 1
4:二次電子検出器 15:アンプ 16:陰極線
管 17:走査信号発生回路 18:走査領域指定
装置 19:走査信号作成回路 20:走査制御装
1: ion gun 2: condenser lens 3: blanking electrode 4: blanking diaphragm 5: objective lens 6X, 6Y: X, Y deflection electrode 7: electron gun
8: Blanking electrode 9: Blanking aperture 1
0: Condenser lens 11: Objective lens 12
X, 12Y: X, Y deflection lens 13: Sample 1
4: Secondary electron detector 15: Amplifier 16: Cathode ray tube 17: Scanning signal generation circuit 18: Scanning area designating device 19: Scanning signal generation circuit 20: Scanning control device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3065 H01L 21/265 D ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/3065 H01L 21/265 D

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集束イオンビームにより被加工物を加工
する事により該イオンビーム光軸に平行な加工面を表出
させ、該集束イオンビーム光軸に対し傾いた光軸を有す
る電子ビームにより、少なくとも前記集束イオンビーム
光軸に平行な加工面を走査し、該走査により該加工面か
ら放出された電子に基づいて該加工面像を作成する様に
した断面加工観察方法において、前記加工面を表出させ
るために前記被加工物に形成される穴の底面が前記電子
ビーム光軸と大略平行になる様に被加工物を加工した断
面加工観察方法。
An object to be machined is processed by a focused ion beam so that a processing surface parallel to the optical axis of the ion beam is exposed, and an electron beam having an optical axis tilted with respect to the optical axis of the focused ion beam is used. In a cross-section processing observation method in which at least a processing surface parallel to the focused ion beam optical axis is scanned and the processing surface image is created based on electrons emitted from the processing surface by the scanning, the processing surface is A cross-section processing observation method in which a workpiece is processed such that a bottom surface of a hole formed in the workpiece to be exposed is substantially parallel to an optical axis of the electron beam.
JP3061285A 1991-03-01 1991-03-01 Section processing observation method Expired - Fee Related JP2824340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061285A JP2824340B2 (en) 1991-03-01 1991-03-01 Section processing observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061285A JP2824340B2 (en) 1991-03-01 1991-03-01 Section processing observation method

Publications (2)

Publication Number Publication Date
JPH04274341A JPH04274341A (en) 1992-09-30
JP2824340B2 true JP2824340B2 (en) 1998-11-11

Family

ID=13166779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061285A Expired - Fee Related JP2824340B2 (en) 1991-03-01 1991-03-01 Section processing observation method

Country Status (1)

Country Link
JP (1) JP2824340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033314B2 (en) * 2004-09-29 2012-09-26 株式会社日立ハイテクノロジーズ Ion beam processing apparatus and processing method
JP5099291B2 (en) * 2006-02-14 2012-12-19 エスアイアイ・ナノテクノロジー株式会社 Focused ion beam apparatus and sample cross-section processing and observation method
DE102012022168A1 (en) * 2012-11-12 2014-05-28 Carl Zeiss Microscopy Gmbh METHOD FOR PROCESSING A MATERIAL PIECE
US20230245933A1 (en) * 2022-02-02 2023-08-03 Kla Corporation Combining focused ion beam milling and scanning electron microscope imaging

Also Published As

Publication number Publication date
JPH04274341A (en) 1992-09-30

Similar Documents

Publication Publication Date Title
TWI650550B (en) Multi-beam device for high throughput ebi
US5493116A (en) Detection system for precision measurements and high resolution inspection of high aspect ratio structures using particle beam devices
US6452175B1 (en) Column for charged particle beam device
EP0298495B1 (en) Method and apparatus for correcting defects of x-ray mask
JP2001273861A (en) Charged beam apparatus and pattern incline observation method
JPH11132975A (en) Inspection method and device using electron beam
KR20090094375A (en) Scanning electron microscope having length measuring function and sample dimension length measuring method
CN108666196B (en) Charged particle beam device and sample processing method
US4438336A (en) Corpuscular radiation device for producing an irradiation pattern on a workpiece
JPH087121B2 (en) Focused charged beam processing method
JP3101114B2 (en) Scanning electron microscope
US4392058A (en) Electron beam lithography
JPH0737538A (en) Compound charged particle beam device
JP2824340B2 (en) Section processing observation method
US20230078510A1 (en) Method for focusing and operating a particle beam microscope
JP3060613B2 (en) Focused ion beam apparatus and cross-section processing method using focused ion beam
JPH0528950A (en) Method and device for machining cross section
JP3266718B2 (en) Complex charged particle beam device
JPS6182428A (en) Lens adjusting method of charged beam optical barrel
JP2017199453A (en) Charged particle beam apparatus
JPH10221046A (en) Charged particle microscope of scan type
US11742177B2 (en) Charged particle beam apparatus and control method thereof
JP3968144B2 (en) Focused ion beam processing method and processing apparatus
JP2001006605A (en) Focusing ion beam processing device and processing method for specimen using focusing ion beam
JPH0135340B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees