JPH0423723B2 - - Google Patents

Info

Publication number
JPH0423723B2
JPH0423723B2 JP60090910A JP9091085A JPH0423723B2 JP H0423723 B2 JPH0423723 B2 JP H0423723B2 JP 60090910 A JP60090910 A JP 60090910A JP 9091085 A JP9091085 A JP 9091085A JP H0423723 B2 JPH0423723 B2 JP H0423723B2
Authority
JP
Japan
Prior art keywords
measured
inner diameter
air supply
outer diameter
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60090910A
Other languages
Japanese (ja)
Other versions
JPS61250507A (en
Inventor
Ryohei Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9091085A priority Critical patent/JPS61250507A/en
Publication of JPS61250507A publication Critical patent/JPS61250507A/en
Publication of JPH0423723B2 publication Critical patent/JPH0423723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/08Measuring arrangements characterised by the use of fluids for measuring diameters
    • G01B13/10Measuring arrangements characterised by the use of fluids for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/18Measuring arrangements characterised by the use of fluids for measuring angles or tapers; for testing the alignment of axes
    • G01B13/19Measuring arrangements characterised by the use of fluids for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、内径又は外径の測定装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an inner diameter or outer diameter measuring device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、第4図に示すように、円筒状の被測定物
Wの中空部Aの内径測定法の一つとして、円柱状
の測定ヘツドBを中空部Aに遊挿し、測定ヘツド
Bの先端円周方向に沿つて等配して穿設されてい
る複数のエアノズルC…から圧縮空気を噴出さ
せ、このときのエアノズルC…の背圧変化に基づ
いて、中空部Aの内径を測定するやり方がある。
そして、測定ヘツドBの先端部には、テーパDが
付されていて、中空部Aに遊挿しやすくなつてい
る。
Conventionally, as shown in FIG. 4, as one method for measuring the inner diameter of a hollow part A of a cylindrical object to be measured W, a cylindrical measuring head B is loosely inserted into the hollow part A, and a tip circle of the measuring head B is measured. There is a method of ejecting compressed air from a plurality of air nozzles C that are equally spaced along the circumferential direction, and measuring the inner diameter of the hollow part A based on the change in back pressure of the air nozzles C at this time. be.
The tip of the measuring head B is tapered D to facilitate loose insertion into the hollow part A.

しかしながら、中空部Aと測定ヘツドBとが同
軸でない場合、つまり中空部Aと測定ヘツドBと
の軸心がずれている場合には、測定ヘツドBが中
空部Aの開口縁部Eに接触し、種々の支障を惹起
する。たとえば、被測定物Wが支持台Fに固定さ
れている場合、支持台Fとの摩擦係数が大きい場
合、あるいは被測定物Wの重量が測定ヘツドBに
比し過大である場合には、測定ヘツドBが中空部
Aに無理に押し込まれることになる。その結果、
被測定物Wあるいは測定ヘツドBが損傷する不具
合を生じる。とくに、被測定物の材質が、アウミ
ニウム(Al)、銅(Cu)等の軟質材である場合に
は、傷も大きく、品質管理上、重大な問題となつ
ている。
However, if the hollow part A and the measuring head B are not coaxial, that is, if the axes of the hollow part A and the measuring head B are misaligned, the measuring head B may come into contact with the opening edge E of the hollow part A. , causing various problems. For example, if the object to be measured W is fixed to the support stand F, if the coefficient of friction with the support stand F is large, or if the weight of the object to be measured W is excessive compared to the measurement head B, the measurement The head B will be forced into the hollow part A. the result,
This may cause damage to the object to be measured W or the measurement head B. Particularly, when the material of the object to be measured is a soft material such as aluminum (Al) or copper (Cu), the scratches are large, which poses a serious problem in terms of quality control.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に着目してなされたもの
で、被測定物と内径測定用の測定ヘツドとの調芯
を自動的に行うことにより、被測定物の損傷の発
生を防止することのできる測定装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and can prevent damage to the object by automatically aligning the object to be measured and a measuring head for measuring the inner diameter. The purpose is to provide a measuring device.

〔発明の概要〕[Summary of the invention]

内径又は外径が測定される被測定物を載置面に
沿つて移動自在に静圧支持するとともに、被測定
物に遊嵌する測定ヘツドの先端部に円周方向に沿
つて、少なくとも3個の圧縮気体を噴出する給気
孔が穿設されたテーパ部を形成したものである。
The object to be measured whose inner diameter or outer diameter is to be measured is supported by static pressure so as to be movable along the mounting surface, and at least three measuring heads are installed along the circumference at the tip of the measurement head that loosely fits into the object to be measured. A tapered portion is formed with an air supply hole that blows out compressed gas.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照して詳述
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、この実施例の測定装置を示してい
る。この測定装置は、円筒状の被測定物Wを載置
するための載置台1と、被測定物Wの円柱状の中
空部Wに遊挿されるとともに軸線方向に昇降自在
に配設された円柱状の測定ヘツド2と、この測定
ヘツド2を昇降させる昇降機構(図示せず)と、
載置台1の被測定物W載置面3に圧縮空気を供給
する第1の給気機構4と、後述する調芯を目的と
して測定ヘツド2外周面から外方に圧縮空気を供
給する第2の給気機構5と、内径測定のための内
径測定機構6とから構成されている。しかして、
載置台1は、中空部Vとほぼ等径の円孔1aが穿
設された台状の本体部7と、この本体部7上にて
被測定物Wを遊嵌するように円孔1aと同軸に穿
設された円環状の規制壁部8とからなつている。
つまり、規制壁部8により円柱状の中空部9が形
成され、この中空部9に被測定物Wが、この被測
定物Wと規制壁部8とのギヤツプにより決定され
る一定の範囲内で載置面3上を移動自在に保持さ
れるようになつている。そして、載置面3には、
第2図に示すように、複数の給気孔10…(最低
3個)が等配して穿設されている。これら給気孔
10…は、図示せぬ第1の圧縮空気源に接続し、
第1の給気機構4を構成している。すなわち、載
置面3は、給気孔10…から圧縮空気が供給され
ることにより静圧摺動面となり、わずかの力で被
測定物Wを移動させることができるようになつて
いる。一方、測定ヘツド2は、一端部が昇降機構
に連結された円柱をなし且つ外径が中空部9の内
径より小さい軸部11と、この軸部11の他端部
に先細となるように形成されたテーパ部12とか
らなつている。そして、このテーパ部12外周面
には、円周方向に沿つて等配して穿設された給気
孔13…(最低3個)が、軸方向に多段に開口し
ている。これら給気孔13…は、図示せぬ第2の
圧縮空気源に接続され、前記第2の給気機構5を
構成している。さらに、軸部11のテーパ部12
に近接した部位外周面には、円周方向に沿つて等
配して穿設された給気孔14…(最低3個)が開
口している。これら給気孔14…は、各別に図示
せぬ第3の圧縮空気源に接続されているととも
に、それらの流体管路途上には、各給気孔14…
から噴出される圧縮空気の背圧を検出する複数の
空電変換器(図示せず)が設置されている。ま
た、各空電交換器は、これら空電変換器から出力
された背圧検出信号に基づいて中空部Vの内径を
算出する演算装置(図示せず)に接続されてい
る。これら演算装置、空電変換器、第3の圧縮空
気源及び吸気孔14…は、前記内径測定機構6を
構成している。他方、昇降機構は、測定ヘツド2
を、規制壁部8及び円孔1aと同軸に保持し、か
つ軸方向である矢印15a,15b方向に昇降さ
せるようになつている。
FIG. 1 shows the measuring device of this embodiment. This measuring device consists of a mounting table 1 on which a cylindrical object to be measured W is placed, and a circular plate that is loosely inserted into a cylindrical hollow part W of the object to be measured and is movable up and down in the axial direction. A columnar measuring head 2, a lifting mechanism (not shown) for raising and lowering the measuring head 2,
A first air supply mechanism 4 supplies compressed air to the measurement target W mounting surface 3 of the mounting table 1, and a second air supply mechanism 4 supplies compressed air outward from the outer peripheral surface of the measuring head 2 for the purpose of centering, which will be described later. It consists of an air supply mechanism 5, and an inner diameter measuring mechanism 6 for measuring the inner diameter. However,
The mounting table 1 includes a table-shaped main body part 7 in which a circular hole 1a having approximately the same diameter as the hollow part V is bored, and a circular hole 1a such that the object W to be measured is loosely fitted onto the main body part 7. It consists of an annular regulation wall part 8 coaxially bored.
In other words, a cylindrical hollow part 9 is formed by the regulating wall part 8, and the object W to be measured is placed in this hollow part 9 within a certain range determined by the gap between the object W to be measured and the regulating wall part 8. It is designed to be held movably on the mounting surface 3. And on the mounting surface 3,
As shown in FIG. 2, a plurality of air supply holes 10 (at least three) are equally spaced. These air supply holes 10 are connected to a first compressed air source (not shown),
It constitutes a first air supply mechanism 4. That is, the mounting surface 3 becomes a static pressure sliding surface by being supplied with compressed air from the air supply holes 10, and the object W to be measured can be moved with a slight force. On the other hand, the measuring head 2 has a cylindrical shaft part 11 connected to an elevating mechanism at one end and having an outer diameter smaller than the inner diameter of the hollow part 9, and the other end of this shaft part 11 is formed to be tapered. It consists of a tapered part 12. Air supply holes 13 (at least three) are opened in the outer circumferential surface of the tapered portion 12 in multiple stages in the axial direction, and are equally spaced along the circumferential direction. These air supply holes 13 are connected to a second compressed air source (not shown) and constitute the second air supply mechanism 5. Furthermore, the tapered portion 12 of the shaft portion 11
Air supply holes 14 (at least three) are opened in the outer circumferential surface of a portion adjacent to the air supply holes 14, which are equally spaced along the circumferential direction. These air supply holes 14... are each connected to a third compressed air source (not shown), and each of the air supply holes 14...
A plurality of pneumatic transducers (not shown) are installed to detect the back pressure of the compressed air ejected from the air. Further, each pneumatic exchanger is connected to an arithmetic device (not shown) that calculates the inner diameter of the hollow portion V based on the back pressure detection signals output from these pneumatic converters. These arithmetic device, pneumatic converter, third compressed air source, and intake hole 14 constitute the inner diameter measuring mechanism 6. On the other hand, the lifting mechanism
is held coaxially with the regulating wall portion 8 and the circular hole 1a, and is raised and lowered in the axial direction of arrows 15a and 15b.

しかして、上記構成の測定装置において、ま
ず、測定ヘツド2を矢印15b方向に上昇させて
おく。そして、給気孔10…,13…,14…か
ら圧縮空気を噴出させる。ついで、被測定物Wを
載置面3上に載置する。このとき、測定ヘツド2
の軸心に対して、中空部Vの軸心がずれていたと
する。そのため、測定ヘツド2を矢印15a方向
に下降させると、第1図想像線で示すように、テ
ーパ部12の先端が中空部Vの周縁部に接触す
る。そして、最下段位置にある給気孔13…から
噴出された圧縮空気により、被測定物Wには、測
定ヘツド2と同軸となる方向の力が作用する。こ
のとき、被測定物Wは、給気孔10…からの圧縮
空気の静圧により非接触的に支持されているの
で、被測定物Wは、給気孔13…からの圧縮空気
により容易に調芯移動を行うことができる。た
だ、このとき測定ヘツド2と被測定物Wとのギヤ
ツプが大きいので、調芯精度は悪い。しかし、測
定ヘツド2が、矢印15a方向に、中空部Vの奥
深く徐々に挿入されるにつれ、徐々に上記ギヤツ
プが狭まり、これに従つて、次第に被測定物Wが
測定ヘツド2と同軸位置に位置決めされる。かく
て、給気孔14…が、中空部Vの内壁面に対向す
る位置まで測定ヘツド2が下降した段階において
は、被測定物Wは、完全に調芯されている。しか
して、このときの給気孔14…から噴出された圧
縮空気の背圧を示す前記空電変換器から出力され
た検出信号に基づいて前記演算装置にて、被測定
物Wの内径が算出される。
In the measuring apparatus having the above configuration, first, the measuring head 2 is raised in the direction of the arrow 15b. Then, compressed air is blown out from the air supply holes 10..., 13..., 14.... Then, the object W to be measured is placed on the placement surface 3. At this time, measurement head 2
Suppose that the axial center of the hollow part V is shifted from the axial center of the hollow part V. Therefore, when the measuring head 2 is lowered in the direction of the arrow 15a, the tip of the tapered part 12 comes into contact with the peripheral edge of the hollow part V, as shown by the imaginary line in FIG. Compressed air blown out from the air supply holes 13 at the lowest position applies a force to the object W in a direction coaxial with the measurement head 2. At this time, since the object W to be measured is supported in a non-contact manner by the static pressure of the compressed air from the air supply holes 10..., the object W to be measured is easily aligned by the compressed air from the air supply holes 13... You can move. However, since the gap between the measuring head 2 and the object to be measured W is large at this time, the alignment accuracy is poor. However, as the measuring head 2 is gradually inserted deeper into the hollow part V in the direction of the arrow 15a, the gap gradually narrows, and accordingly, the object W to be measured is gradually positioned coaxially with the measuring head 2. be done. Thus, at the stage when the measuring head 2 has descended to the position where the air supply holes 14 face the inner wall surface of the hollow portion V, the object W to be measured is completely aligned. Then, the inner diameter of the object W to be measured is calculated by the calculation device based on the detection signal output from the pneumatic converter indicating the back pressure of the compressed air blown out from the air supply holes 14 at this time. Ru.

このように、この実施例の内径測定装置におい
ては、測定ヘツド2に対して被測定物Wを自動的
に調芯することができるので、測定ヘツド2の衝
突により被測定物Wに損傷を与えることがなくな
るとともに、測定能率が向上する。また、被測定
物Wの内径測定精度も向上する。
In this way, the inner diameter measuring device of this embodiment can automatically align the object W to be measured with respect to the measurement head 2, so that damage to the object W due to a collision of the measurement head 2 can be avoided. This also improves measurement efficiency. Moreover, the accuracy of measuring the inner diameter of the object W to be measured is also improved.

なお、上記実施例は、内径測定装置について例
示しているが、第3図に示すように、外径測定装
置についても適用できる。この場合の測定ヘツド
21は、円筒状であり、外径測定対象となる円柱
状の被測定物22が遊挿する中空部23を有して
いる。この測定ヘツド21の先端部内壁面には、
開口側が大径となるテーパ部24が形成されてい
る。このテーパ部24内周面には、円周方向に沿
つて等配して穿設された給気孔25…(最低3
個)が開口している。また、テーパ部24に近接
した部位には、外径測定用の給気孔26…(最低
3個)が円周方向に沿つて等配して穿設されてい
る。この場合も、被測定物22を静圧支持させる
ことにより、上記実施例と同様にして自動調芯を
行うことができる。
Note that, although the above embodiment is exemplified with respect to an inner diameter measuring device, it can also be applied to an outer diameter measuring device as shown in FIG. The measuring head 21 in this case is cylindrical and has a hollow portion 23 into which a cylindrical object 22 to be measured is loosely inserted. On the inner wall surface of the tip of this measuring head 21,
A tapered portion 24 is formed having a larger diameter on the opening side. Air supply holes 25 (at least 3
) are open. In addition, air supply holes 26 for measuring the outer diameter (at least three) are bored in a portion close to the tapered portion 24 and are equally spaced along the circumferential direction. In this case as well, by supporting the object 22 under static pressure, automatic alignment can be performed in the same manner as in the above embodiment.

さらに、径測定方法は、エア・マイクロメータ
方式に限ることなく、例えば電気マイクロメータ
等、いずれの方法を採用してもよい。さらに、調
芯用の円周方向に沿つた給気孔は、複数段でな
く、一段でもよい。さらに、測定ヘツド側を固定
し、載置台側を昇降させるようにしてもよい。
Further, the method for measuring the diameter is not limited to the air micrometer method, and any method such as an electric micrometer may be used. Furthermore, the air supply holes for centering along the circumferential direction may be provided in one stage instead of in multiple stages. Furthermore, the measuring head side may be fixed and the mounting table side may be moved up and down.

〔発明の効果〕〔Effect of the invention〕

本発明の測定装置は、測定ヘツドに対して被測
定物を同軸となるように自動的に調芯することが
できるので、被測定物の内径又は外径を、損傷を
与えることなく、高精度かつ高能率で測定するこ
とができる。とくに、測定ヘツドを被測定物に対
して位置決めする過程中、テーパ部に設けられた
給気孔により調芯を完了し、被測定物に対する測
定ヘツドの位置決めが完了したときには、ただち
に測定を行うことができる態勢がととのつている
ので、測定能率が飛躍的に向上する。
The measuring device of the present invention can automatically align the object to be measured so that it is coaxial with the measurement head, so the inner diameter or outer diameter of the object to be measured can be adjusted with high precision without causing damage. And it can be measured with high efficiency. In particular, during the process of positioning the measuring head relative to the object to be measured, alignment is completed using the air supply hole provided in the tapered part, and once the positioning of the measuring head relative to the object is completed, measurement can be performed immediately. Since the system is fully prepared, measurement efficiency is dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の測定装置の構成を
示す図、第2図は同じく載置台の平面図、第3図
は本発明の他の実施例の測定装置の説明図、第4
図は従来の径測定の欠点の説明図である。 1:載置台、2,21:測定ヘツド、3:載置
面、12,24:テーパ部、13,25:給気孔
(第1の給気孔)、14,26:給気孔(第2の給
気孔)、W:被測定物。
FIG. 1 is a diagram showing the configuration of a measuring device according to an embodiment of the present invention, FIG. 2 is a plan view of a mounting table, FIG. 3 is an explanatory diagram of a measuring device according to another embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the drawbacks of conventional diameter measurement. 1: Placement table, 2, 21: Measurement head, 3: Placement surface, 12, 24: Tapered part, 13, 25: Air supply hole (first air supply hole), 14, 26: Air supply hole (second air supply hole). pores), W: object to be measured.

Claims (1)

【特許請求の範囲】 1 下記構成を具備し、一定径の外径部又は内径
部を有する被測定物の上記外径部又は内径部の径
を測定することを特徴とする測定装置。 (イ) 上記被測定物が載置される載置面を有し、こ
の載置面に沿つて移動自在に上記被測定物を静
圧支持する載置台。 (ロ) 上記被測定物の外径部又は内径部に遊嵌され
るとき上記被測定物との間〓が徐々に減少する
テーパ面が形成されこのテーパ面の円周方向に
圧縮気体を噴出する第1の給気孔が等配して少
くとも3個穿設されたテーパ部と、このテーパ
部に同軸に連設され上記被測定物の外径部又は
内径部に上記テーパ部が遊嵌した後に続いて上
記被測定物の外径部又は内径部に平行に対向し
て遊嵌する対向部とを有し、上記第1の給気孔
から噴出された圧縮気体により、上記載置面上
に非接触支持された上記被測定物の上記対向部
に対する調芯を行う測定ヘツド。 (ハ) 上記測定ヘツドの対向部の円周方向に等配し
て少くとも3個穿設され圧縮気体を上記被測定
物の外径部又は内径部に向かつて噴出する第2
の給気孔を有し、上記第2の給気孔から噴出さ
れた圧縮空気の背圧に基づいて上記被測定物の
外径部又は内径部の径を検出する径検出機構。 (ニ) 上記測定ヘツドを上記載置台上に支持されて
いる被測定物に対してほぼ同軸に支持するとと
もに、上記被測定物に対して軸方向に相対的に
進退させる昇降機構。 2 測定ヘツドは円柱状に形成され、内径測定さ
れる被測定物に遊嵌されることを特徴とする特許
請求の範囲第1項記載の測定装置。 3 測定ヘツドは円筒状に形成され、外径測定さ
れる円柱状の被測定物に遊嵌されることを特徴と
する特許請求の範囲第1項記載の測定装置。
[Scope of Claims] 1. A measuring device having the following configuration and measuring the diameter of an outer diameter portion or an inner diameter portion of a measured object having an outer diameter portion or an inner diameter portion having a constant diameter. (a) A mounting table having a mounting surface on which the object to be measured is placed, and supporting the object to be measured under static pressure so as to be movable along the mounting surface. (b) When loosely fitted to the outer diameter or inner diameter of the object to be measured, a tapered surface is formed in which the distance between the object and the object to be measured gradually decreases, and compressed gas is ejected in the circumferential direction of this tapered surface. a tapered part in which at least three first air supply holes are equally spaced, and the tapered part is coaxially connected to the tapered part, and the tapered part loosely fits into the outer diameter part or the inner diameter part of the object to be measured. and an opposing part that is loosely fitted in parallel with the outer diameter part or the inner diameter part of the object to be measured, and the compressed gas ejected from the first air supply hole causes the above-mentioned mounting surface to be a measuring head for aligning the object to be measured, which is supported in a non-contact manner, with respect to the opposing portion; (c) At least three second holes are provided equally spaced in the circumferential direction of the opposing part of the measuring head and eject compressed gas toward the outer diameter or inner diameter of the object to be measured.
A diameter detection mechanism having an air supply hole and detecting a diameter of an outer diameter portion or an inner diameter portion of the object to be measured based on the back pressure of the compressed air ejected from the second air supply hole. (d) An elevating mechanism that supports the measurement head substantially coaxially with respect to the object to be measured supported on the mounting table and moves it forward and backward relative to the object to be measured in the axial direction. 2. The measuring device according to claim 1, wherein the measuring head is formed in a cylindrical shape and is loosely fitted into the object to be measured to have its inner diameter measured. 3. The measuring device according to claim 1, wherein the measuring head is formed in a cylindrical shape and is loosely fitted into a cylindrical object to be measured in outer diameter.
JP9091085A 1985-04-30 1985-04-30 Measuring apparatus Granted JPS61250507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9091085A JPS61250507A (en) 1985-04-30 1985-04-30 Measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9091085A JPS61250507A (en) 1985-04-30 1985-04-30 Measuring apparatus

Publications (2)

Publication Number Publication Date
JPS61250507A JPS61250507A (en) 1986-11-07
JPH0423723B2 true JPH0423723B2 (en) 1992-04-23

Family

ID=14011562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9091085A Granted JPS61250507A (en) 1985-04-30 1985-04-30 Measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61250507A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713197B2 (en) * 2005-03-31 2011-06-29 アイシン・エィ・ダブリュ株式会社 Positioning device and air micro measurement device
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected
JP5171243B2 (en) * 2007-12-25 2013-03-27 株式会社ブリヂストン Mounting hole inspection tool and inspection method
JP5010487B2 (en) 2008-01-21 2012-08-29 三菱重工業株式会社 Air micrometer measuring head
CN104048627B (en) * 2014-06-27 2017-03-08 贵州红林机械有限公司 Multiinjector pneumatic linearity metering pin and its calibration ring and calibration steps and measuring method
CN105004288B (en) * 2015-07-22 2019-04-16 郑州中量测控科技有限公司 A kind of pneumatic inner diameter measuring device
CN106546198B (en) * 2016-09-27 2019-12-06 重庆西电普华智能机器人技术有限公司 Hole position degree rapid detection device
CN111238423B (en) * 2020-03-05 2020-10-30 屈静清 Detection apparatus for bearing inner race axiality

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128564U (en) * 1975-04-14 1976-10-18

Also Published As

Publication number Publication date
JPS61250507A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
CN210741291U (en) Radial circle of axle type part detection device that beats
JPH0423723B2 (en)
JP3494315B2 (en) Air micrometer device
CN114543721B (en) Brake disc size detection device
CN104165604A (en) Single-laser single-PSD storage-type deep hole straightness detection device
US5696653A (en) Tooling for holding a head gimbal assembly
CN203981133U (en) A kind of single laser list PSD storage type Deep Hole Straightness Test Device
CN111097711B (en) Accurate measurement device and method for size of cylindrical ring of compressor
JP2014169971A (en) Tire tester
US4235019A (en) Selfcentered automatic coordinate measuring machine
JPH0768402A (en) Workpiece fitting device for lathe
CN113245904B (en) Coaxiality adjusting tool and method for automatic quick-change fixture tail end tool
JP3414362B2 (en) Outer diameter measuring method and device
JPS6332580B2 (en)
KR0184857B1 (en) Rotor bore inspection system
JPH02213701A (en) Method and device for inspecting inside diameter of disk
JP3324309B2 (en) Machining hole diameter measurement method with honing head and mastering
CN216115783U (en) Inner diameter size measuring device
JPS6149060B2 (en)
JPH0542427A (en) Shaft press-fitting mehtod and its device
JPH07210842A (en) Centering method for rotary drum and centering device for rotary drum
CN217588896U (en) Ejection mechanism and crystal discharging machine
JP3218775B2 (en) Eccentricity measuring device and eccentricity measuring method.
JPH0232208A (en) Bore measuring instrument
CN117059508A (en) Automatic detection method for flatness of retaining ring backboard