JPH04236269A - Electrically conductive coating material - Google Patents

Electrically conductive coating material

Info

Publication number
JPH04236269A
JPH04236269A JP3018465A JP1846591A JPH04236269A JP H04236269 A JPH04236269 A JP H04236269A JP 3018465 A JP3018465 A JP 3018465A JP 1846591 A JP1846591 A JP 1846591A JP H04236269 A JPH04236269 A JP H04236269A
Authority
JP
Japan
Prior art keywords
powder
weight
average particle
electrically conductive
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3018465A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Takasumi Shimizu
孝純 清水
Makoto Matsuyama
誠 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP3018465A priority Critical patent/JPH04236269A/en
Publication of JPH04236269A publication Critical patent/JPH04236269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrically conductive coating material having excellent printability and giving a baked film having high electrical conductivity. CONSTITUTION:Ni powder is used as electrically conductive powder in the objective material. The Ni powder is a mixture of coarse powder having an average particle diameter of >=3mum and fine powder having an average particle diameter of <=2mum at a weight ratio of 30:70 to 80:20 to prevent the deterioration of printability and to get excellent electrical conductivity by increasing the packing density. The Ni powder is further incorporated with B powder to prevent the oxidation of the Ni powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子回路用電極や配線導
体の形成に用いられる導電性ペーストや導電性塗料磁気
シールド塗料等に用いられる導電性コーティング材料に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive coating materials used in conductive pastes, conductive paints, magnetic shield paints, etc. used in the formation of electronic circuit electrodes and wiring conductors.

【0002】0002

【従来の技術】例えばプラズマディスプレーにあっては
ガラス製のバックプレート側に電極(陰極)をプリント
形成し、カバープレート側に透明電極(陽極)を該陰極
と対向して形成し、両電極間に電圧を印加して放電・発
色させるものである。
[Prior Art] For example, in a plasma display, an electrode (cathode) is printed on the glass back plate side, a transparent electrode (anode) is formed on the cover plate side facing the cathode, and a space between the two electrodes is formed. A voltage is applied to the battery to cause it to discharge and develop color.

【0003】上記電極をバックプレート側に形成するに
は金属粉末を合成樹脂溶液であるビヒクルに分散した導
電性ペーストを該バックプレート表面にスクリーン印刷
等により厚膜印刷層を形成し、乾燥した後大気中で焼成
して導電性の焼成膜とする方法が採用されている。
[0003] In order to form the above-mentioned electrode on the back plate side, a thick film printing layer is formed on the surface of the back plate by screen printing or the like with a conductive paste in which metal powder is dispersed in a vehicle which is a synthetic resin solution, and after drying. A method of firing in the atmosphere to form a conductive fired film has been adopted.

【0004】従来から上記導電性ペーストにはNi 粉
末が用いられていたが、上記のように大気中で焼成する
際にNi が酸化し、該焼成膜の導電性が失われると云
う問題があり、これを防止するためにNi 粉末にB粉
末を添加した導電性ペーストが提供されている(特公昭
60−16041号)。
Conventionally, Ni powder has been used in the conductive paste, but as mentioned above, there is a problem in that the Ni oxidizes during firing in the atmosphere and the fired film loses its conductivity. In order to prevent this, a conductive paste in which B powder is added to Ni powder has been provided (Japanese Patent Publication No. 16041/1986).

【0005】上記導電性ペーストによる厚膜印刷層にあ
っては大気中での焼成によりB粉末が選択的に酸化され
てB2O3となり、その結果Ni 粉末の酸化が防止さ
れるのである。
[0005] In the thick film printed layer made of the conductive paste, the B powder is selectively oxidized to B2O3 by firing in the atmosphere, and as a result, oxidation of the Ni powder is prevented.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の導電性ペーストにあってはNi 粉末の粒径が大きい
と厚膜印刷層を印刷する時の印刷性が悪化するし、焼成
膜内のNi 粒子の充填密度が小さく導電性が低下する
。一方Ni 粉末の粒径が小さいと焼成膜内のNi 粒
子の充填密度は大きくなるが、Ni 粒子の総表面積が
大きくなる結果B粉末が存在するにも関わらず焼成中に
Ni 粒子が酸化され易くなる。
[Problems to be Solved by the Invention] However, in the conventional conductive paste described above, if the particle size of the Ni powder is large, the printability when printing a thick film printing layer deteriorates, and the Ni particles in the fired film deteriorate. The packing density is small and the conductivity is reduced. On the other hand, when the particle size of the Ni powder is small, the packing density of the Ni particles in the fired film increases, but as a result of the increased total surface area of the Ni particles, the Ni particles are easily oxidized during firing despite the presence of the B powder. Become.

【0007】[0007]

【課題を解決するための手段】本発明は上記従来の課題
を解決するための手段として、Ni 粉末、B粉末、ガ
ラスフリット、およびビヒクルからなり、該Ni 粉末
は平均粒径3μm以上の粗粉末と平均粒径2μm以下の
微粉末との重量比率が30:70から80:20である
混合物であり、該B粉末はNi粉末とB粉末との合計を
100重量部とした場合2.0から10重量部の範囲で
含まれる導電性コーティング材料を提供するものである
[Means for Solving the Problems] As a means for solving the above conventional problems, the present invention consists of Ni powder, B powder, glass frit, and a vehicle, and the Ni powder is a coarse powder with an average particle size of 3 μm or more. and a fine powder with an average particle size of 2 μm or less in a weight ratio of 30:70 to 80:20. Conductive coating materials in the range of 10 parts by weight are provided.

【0008】本発明を以下に詳細に説明する。本発明に
用いられるNi 粉末は平均粒径3μm以上の粗粉末と
平均粒径2μm以下の微粉末との混合物であり、該混合
物中の粗粉末と微粉末との混合比率は30:70から8
0:20とされている。またB粉末はNi 粉末とB粉
末との合計を100重量部とした場合2.0から10重
量部の範囲で含まれる。
The present invention will be explained in detail below. The Ni powder used in the present invention is a mixture of coarse powder with an average particle size of 3 μm or more and fine powder with an average particle size of 2 μm or less, and the mixing ratio of the coarse powder and fine powder in the mixture is 30:70 to 8.
It is said to be 0:20. Further, the B powder is contained in an amount of 2.0 to 10 parts by weight when the total of Ni powder and B powder is 100 parts by weight.

【0009】即ちNi 粉末中に該粗粉末が30重量%
以下、即ち該微粉末が70重量%以上の割合で含まれて
いると、該Ni 粉末の総表面積が大きくなり、B粉末
存在下においても焼成中にNi 粉末の酸化が起こり易
く、一方Ni 粉末中に該粗粉末が80重量%以上、即
ち該微粉末が20重量%以下の割合で含まれていると、
導電性コーティング材料の印刷性が悪化し、また形成さ
れる厚膜印刷層中のNi 粉末の充填密度が小さくなり
良好な導電性が得られなくなる。
That is, the coarse powder is 30% by weight in the Ni powder.
Below, if the fine powder is contained in a proportion of 70% by weight or more, the total surface area of the Ni powder becomes large, and oxidation of the Ni powder tends to occur during firing even in the presence of the B powder; When the coarse powder is contained in the proportion of 80% by weight or more, that is, the fine powder is contained in the proportion of 20% by weight or less,
The printability of the conductive coating material deteriorates, and the packing density of the Ni powder in the thick film printing layer that is formed becomes small, making it impossible to obtain good conductivity.

【0010】またB粉末が2.0重量部以下の割合で含
まれるとB粉末によるNi 粉末の酸化防止効果が充分
でなく、一方10重量部以上含まれていると形成される
厚膜印刷層の導電性が悪化する。
Furthermore, if the B powder is contained in a proportion of 2.0 parts by weight or less, the effect of preventing the oxidation of the Ni powder by the B powder will not be sufficient, while if it is contained in a proportion of 10 parts by weight or more, a thick film printed layer will be formed. conductivity deteriorates.

【0011】本発明に用いられるガラスフリットは55
0℃以下の軟化点を有するものが望ましい。何となれば
上記B粉末が活性化される温度は550℃からであり、
したがって厚膜印刷層の焼成温度も550℃以上とされ
るので、焼成時ガラスフリットが充分軟化するためには
ガラスフリットの軟化点は550℃以下が望ましい。し
かしガラスフリットが400℃以下の軟化点を有する場
合には焼成中のガラスフリットの軟化が著しく厚膜印刷
層の変形を惹起するおそれがあるし、また厚膜印刷層の
耐熱性も低下する。該ガラスフリットは通常Ni 粉末
とB粉末との合計を100重量部とした場合に5〜15
重量部の範囲で添加される。何となればガラスフリット
はNi 粉末のバインダーとしての役目を果たすもので
、5重量部以下の添加量ではバインダー効果が小さく、
一方15重量部以上の添加量ではNi 粉末を希釈して
導電性に悪影響を与える。
The glass frit used in the present invention is 55
It is desirable to have a softening point of 0°C or lower. The reason is that the temperature at which the B powder is activated is from 550°C.
Therefore, since the firing temperature of the thick film printing layer is also set at 550°C or higher, the softening point of the glass frit is preferably 550°C or lower in order to sufficiently soften the glass frit during firing. However, if the glass frit has a softening point of 400° C. or lower, the softening of the glass frit during firing may cause significant deformation of the thick film print layer, and the heat resistance of the thick film print layer may also decrease. The glass frit usually contains 5 to 15 parts by weight when the total of Ni powder and B powder is 100 parts by weight.
It is added in a range of parts by weight. The reason is that glass frit serves as a binder for Ni powder, and if the amount added is less than 5 parts by weight, the binder effect is small.
On the other hand, if the amount added is 15 parts by weight or more, the Ni powder will be diluted and the conductivity will be adversely affected.

【0012】本発明のビヒクルは合成樹脂溶液であり、
使用される合成樹脂としてはメチルセルロース、エチル
セルロース、メトキシセルロース、エトキシセルロース
、カルボキシメチルセルロース等のセルロース誘導体、
その他アクリル樹脂、ウレタン樹脂等の焼成によりカー
ボンを厚膜印刷層中に残存させない合成樹脂を選択する
ことが望ましい。また該合成樹脂を溶解させる溶剤とし
てはエチレングリコール、プロピレングリコール、グリ
セリン、ペンタエリスリトール、テルピネオール等の水
酸基を有する還元性の高沸点有機溶剤を選択することが
望ましい。
The vehicle of the present invention is a synthetic resin solution,
Synthetic resins used include cellulose derivatives such as methylcellulose, ethylcellulose, methoxycellulose, ethoxycellulose, and carboxymethylcellulose;
In addition, it is desirable to select synthetic resins such as acrylic resins and urethane resins that do not leave carbon in the thick film printing layer when fired. As the solvent for dissolving the synthetic resin, it is desirable to select a reducing high-boiling organic solvent having a hydroxyl group such as ethylene glycol, propylene glycol, glycerin, pentaerythritol, or terpineol.

【0013】本発明の導電性コーティング材料は上記成
分を三本ロールミル、ボールミル、アトライター等の混
練機により混練することによって調製され、ガラス、セ
ラミック、プラスチック等の基板にスクリーン印刷、ス
プレー等により通常10〜30μmの膜厚に塗布され、
上記したようにB粉末の活性化する550℃以上の温度
で焼成される。しかし焼成温度が650℃以上になると
B粉末存在下でもNi 粉末の酸化が起こるおそれがあ
るので望ましい焼成温度は550℃〜650℃とする。 焼成は大気中で行なう。焼成によりビヒクルを構成する
溶剤および合成樹脂は揮散し、ガラスフリットは溶融し
てNi 粉末を分散したマトリクスを形成する。そして
B粉末はB2O3となりマトリクス中に混合される。こ
のようにして基材表面に導電性かつ磁気シールド性の焼
成膜が形成される。
The conductive coating material of the present invention is prepared by kneading the above components using a kneading machine such as a three-roll mill, a ball mill, or an attriter, and is usually applied to a substrate such as glass, ceramic, or plastic by screen printing, spraying, etc. It is applied to a film thickness of 10 to 30 μm,
As described above, the B powder is fired at a temperature of 550° C. or higher, which activates the B powder. However, if the firing temperature is 650°C or higher, oxidation of the Ni powder may occur even in the presence of the B powder, so the preferred firing temperature is 550°C to 650°C. Firing is performed in the atmosphere. By firing, the solvent and synthetic resin constituting the vehicle are volatilized, and the glass frit is melted to form a matrix in which Ni powder is dispersed. Then, the B powder becomes B2O3 and is mixed into the matrix. In this way, an electrically conductive and magnetically shielding fired film is formed on the surface of the base material.

【0014】[0014]

【作用】本発明の導電性コーティング材料は例えば導電
性ペーストとして基板上にスクリーン印刷により厚膜印
刷されるが、この際、Ni 粉末中の平均粒径3μm以
上の粗粉末は80重量%以下の混合比であるから印刷性
は悪化しない。また形成された厚膜印刷層内においては
Ni 粉末中の平均粒径が2μm以下の微粉末は70重
量%以下の混合比であるから該Ni 粉末の総表面積は
過大とならず焼成中にNi の酸化が起こりにくい。し
かし該微粉末はNi 粉末中に20重量%以上含まれて
おり、該微粉末は粗粉末相互の間隙を充填し、その結果
得られた導電性焼成膜中のNi 粉末の充填密度は高く
なり、良好な導電性が得られる。
[Operation] The conductive coating material of the present invention is thick-film printed on a substrate by screen printing, for example, as a conductive paste. At this time, the coarse powder with an average particle size of 3 μm or more in the Ni powder accounts for 80% by weight or less. Printability does not deteriorate because of the mixing ratio. In addition, in the formed thick film printing layer, since the fine powder with an average particle size of 2 μm or less in the Ni powder is mixed at a mixing ratio of 70% by weight or less, the total surface area of the Ni powder does not become excessive, and the Ni powder is removed during firing. oxidation is less likely to occur. However, the fine powder is contained in the Ni powder in an amount of 20% by weight or more, and the fine powder fills the gaps between the coarse powders, resulting in a high packing density of the Ni powder in the resulting conductive fired film. , good conductivity can be obtained.

【0015】一方Bは厚膜印刷層内中Ni 粉末とB粉
末との合計を100重量部とした場合、2.0重量部以
上含まれているので、該厚膜印刷層を大気中で焼成した
時選択的に酸化されてB2O3となりNi 粉末の酸化
を防止する。しかしB粉末は10重量部以下とされてい
るので得られる導電性焼成膜の導電性はB粉末により阻
害されない。
On the other hand, since B is contained in an amount of 2.0 parts by weight or more when the total of Ni powder and B powder in the thick film printed layer is 100 parts by weight, the thick film printed layer is baked in the atmosphere. When this happens, it is selectively oxidized to become B2O3, which prevents the oxidation of the Ni powder. However, since the amount of B powder is 10 parts by weight or less, the conductivity of the resulting conductive fired film is not inhibited by the B powder.

【0016】ガラスフリットは焼成中に溶融してNi 
粉末を被覆して空気との直接接触を阻止しNi 粉末の
酸化を防止し、また導電性焼成膜中ではNi 粉末を分
散したマトリクスを形成してNi 粉末に対するバイン
ダーとしての役目を果たす。
[0016] The glass frit melts during firing and becomes Ni.
The powder is coated to prevent direct contact with air to prevent oxidation of the Ni powder, and in the conductive fired film, a matrix in which the Ni powder is dispersed is formed to serve as a binder for the Ni powder.

【0017】[0017]

【実施例】Ni 粉末としてアトマイズ法により製造し
た平均粒径11.5μmの粗粉末と、湿式還元法で製造
した平均粒径0.8μmの微粉末との混合物を用い、B
粉末として平均粒径0.7μmのアモルファスタイプの
ものを用いた。更にガラスフリットとしては軟化点44
0℃のものを用い、ビヒクルとしてはエチルセルロース
のテルピネオール溶液を用いた。
[Example] Using a Ni powder, a mixture of a coarse powder with an average particle size of 11.5 μm produced by an atomization method and a fine powder with an average particle diameter of 0.8 μm produced by a wet reduction method was used.
An amorphous type powder with an average particle size of 0.7 μm was used. Furthermore, as a glass frit, the softening point is 44.
A temperature of 0° C. was used, and a terpineol solution of ethyl cellulose was used as the vehicle.

【0018】上記成分は表1に示す組成で混合され、三
本ロールミルにより混練して導電性ペーストサンプルN
o.1〜No.11を調製した。
The above components were mixed in the composition shown in Table 1 and kneaded in a three-roll mill to form conductive paste sample N.
o. 1~No. 11 was prepared.

【表1】[Table 1]

【0019】上記サンプルNo.1〜No.11はガラ
ス基板表面に♯200ポリエステル繊維製スクリーンを
用いて巾5mm、長さ20mmの短冊形に印刷され、2
00℃で乾燥した後610℃×10分の大気中での焼成
を3回行ない、焼成のつど該焼成膜の表面抵抗値(mΩ
/□)を4探針法(共和理研製抵抗測定器705RL)
で測定するとともに該焼成膜の表面状態を肉眼で判断し
た。なお該焼成膜の厚さは20μmであった。その結果
を表2に示す。
[0019] The above sample No. 1~No. 11 is printed in a rectangular shape with a width of 5 mm and a length of 20 mm using a #200 polyester fiber screen on the surface of the glass substrate, and 2
After drying at 00°C, baking was performed in the air at 610°C for 10 minutes three times, and the surface resistance value (mΩ) of the baked film was
/□) using the 4-probe method (Kyowa Riken resistance measuring device 705RL)
At the same time, the surface condition of the fired film was judged with the naked eye. Note that the thickness of the fired film was 20 μm. The results are shown in Table 2.

【表2】[Table 2]

【0020】表2によれば、本発明のサンプルNo.1
〜No.7は焼成回数によらず安定して低い抵抗値を示
すが、微粉末を70重量%以上含むNo.8ではNi 
粉末の酸化が進む結果高抵抗値を示し、しかも焼成回数
により抵抗値が大きく変化し、粗粉末を80重量%以上
含むNo.9では同様に焼成回数により不安定な高抵抗
値を示し、またB粉末を2重量部以下で含むNo.10
ではNi 粉末は殆ど酸化されて非導電性となり、B粉
末を10重量部以上でで含むNo.11は焼成回数によ
り不安定な高抵抗値を示す。
According to Table 2, sample No. of the present invention. 1
~No. No. 7 shows a stable low resistance value regardless of the number of firings, but No. 7, which contains 70% by weight or more of fine powder, shows a stable low resistance value regardless of the number of firings. In 8, Ni
As a result of the oxidation of the powder, it shows a high resistance value, and the resistance value changes greatly depending on the number of firings. Similarly, No. 9 showed an unstable high resistance value depending on the number of firing times, and No. 9 contained B powder in an amount of 2 parts by weight or less. 10
In No. 2, most of the Ni powder is oxidized and becomes non-conductive, and in No. 1 containing 10 parts by weight or more of B powder. No. 11 shows an unstable high resistance value depending on the number of firings.

【0021】[0021]

【考案の効果】したがって本発明の導電性コーティング
材料による塗膜は焼成によってもNi 粉末の酸化が防
止され、良好な導電性を示す焼成膜が得られる。また繰
り返し焼成によっても導電性の変化が少なく安定であり
、このような特徴は特に繰り返し焼成の行なわれるプラ
ズマディスプレーの電極形成材料として有用である。
[Effects of the Invention] Therefore, in the coating film made of the conductive coating material of the present invention, oxidation of the Ni powder is prevented even when fired, and a fired film exhibiting good conductivity can be obtained. In addition, it is stable with little change in conductivity even after repeated firing, and these characteristics make it particularly useful as an electrode-forming material for plasma displays that undergo repeated firing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Ni 粉末、B粉末、ガラスフリット、お
よびビヒクルからなり、該Ni 粉末は平均粒径3μm
以上の粗粉末と平均粒径2μm以下の微粉末との重量比
率が30:70から80:20である混合物であり、該
B粉末はNi 粉末とB粉末との合計を100重量部と
した場合2.0から10重量部の範囲で含まれることを
特徴とする導電性コーティング材料
Claim 1: Consisting of Ni powder, B powder, glass frit, and vehicle, the Ni powder has an average particle size of 3 μm.
It is a mixture of the above coarse powder and fine powder with an average particle size of 2 μm or less in a weight ratio of 30:70 to 80:20, and the B powder is a mixture where the total of Ni powder and B powder is 100 parts by weight. 2.0 to 10 parts by weight of a conductive coating material
JP3018465A 1991-01-17 1991-01-17 Electrically conductive coating material Pending JPH04236269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018465A JPH04236269A (en) 1991-01-17 1991-01-17 Electrically conductive coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018465A JPH04236269A (en) 1991-01-17 1991-01-17 Electrically conductive coating material

Publications (1)

Publication Number Publication Date
JPH04236269A true JPH04236269A (en) 1992-08-25

Family

ID=11972388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018465A Pending JPH04236269A (en) 1991-01-17 1991-01-17 Electrically conductive coating material

Country Status (1)

Country Link
JP (1) JPH04236269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018884A (en) * 2005-07-07 2007-01-25 Noritake Co Ltd Conductive paste
JP2015011979A (en) * 2013-07-02 2015-01-19 大研化学工業株式会社 Conductive paste for atmospheric firing, and method for manufacturing the same
WO2016075743A1 (en) * 2014-11-10 2016-05-19 大研化学工業株式会社 Conductive paste for atmospheric firing and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138898A (en) * 1975-04-21 1976-11-30 Engelhard Min & Chem Base metal conductor which can be calcinated in atmosphere

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138898A (en) * 1975-04-21 1976-11-30 Engelhard Min & Chem Base metal conductor which can be calcinated in atmosphere

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018884A (en) * 2005-07-07 2007-01-25 Noritake Co Ltd Conductive paste
JP2015011979A (en) * 2013-07-02 2015-01-19 大研化学工業株式会社 Conductive paste for atmospheric firing, and method for manufacturing the same
WO2016075743A1 (en) * 2014-11-10 2016-05-19 大研化学工業株式会社 Conductive paste for atmospheric firing and method for producing same
KR20170043595A (en) * 2014-11-10 2017-04-21 다이켄카가쿠 코교 가부시키가이샤 Conductive paste for atmospheric firing and method for producing same

Similar Documents

Publication Publication Date Title
CA1043465A (en) Air firable base metal conductors
US10403421B2 (en) Thick film resistor and production method for same
JP3541070B2 (en) Automotive glass thick film conductor paste
US20110006271A1 (en) Dielectric composition with reduced resistance
US10446290B2 (en) Resistive composition
JPH04236269A (en) Electrically conductive coating material
JPH04236270A (en) Electrically conductive coating material
JP4006814B2 (en) Thick film resistor paste and manufacturing method thereof
US3413240A (en) Compositions
JP4005772B2 (en) Conductive paste
KR20110066431A (en) Composition for preparing bus-electrode and plasma display panel comprising electrode prepared terefrom
JPH05128910A (en) Conductor paste
JPH03176905A (en) Conductive paste
JPH1166956A (en) Conductive paste
JPH11292569A (en) Conductive paste and glass plate with conductor
JP2841586B2 (en) Conductive paste
JP2684718B2 (en) Conductive paste
US20240096518A1 (en) Conductive paste and glass article
KR800001624B1 (en) Air firable base metal condoctors
JPH113802A (en) Resistance paste for low-temperature baking
CN101542673A (en) Plasma display panel, method for manufacturing the plasma display panel, and paste for display electrode for the plasma display panel
JP2001273816A (en) Conductive paste
JPH03203965A (en) Paste for screen printing
JPH04230002A (en) Thin film conductor composition
JPS61203504A (en) Conductive paste

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991102