JPH04231466A - Coated ticn-base cermet - Google Patents

Coated ticn-base cermet

Info

Publication number
JPH04231466A
JPH04231466A JP2416051A JP41605190A JPH04231466A JP H04231466 A JPH04231466 A JP H04231466A JP 2416051 A JP2416051 A JP 2416051A JP 41605190 A JP41605190 A JP 41605190A JP H04231466 A JPH04231466 A JP H04231466A
Authority
JP
Japan
Prior art keywords
cermet
hard
ticn
iron group
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2416051A
Other languages
Japanese (ja)
Other versions
JP2771336B2 (en
Inventor
Hirohisa Konishi
小西 裕久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2416051A priority Critical patent/JP2771336B2/en
Publication of JPH04231466A publication Critical patent/JPH04231466A/en
Application granted granted Critical
Publication of JP2771336B2 publication Critical patent/JP2771336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain a TiCN-base cermet material capable of high speed machining by coating the surface of a cermet constituted of a hard layer essentially consisting of TiCN and contg. NbCN and WCN and a bonding phase constituted of iron group metals with a Ti-contg. hard film. CONSTITUTION:A sintered body by a cermet having a hard phase constituted of the carbon nitride of Ti, W and Nb as a base metal and a bonding phase constituted of iron group metals such as Fe, Ni and Co and excellent in hardness, wear resistance and toughness is manufactured. The compsn. of the cermet is expressed by a formula 1, and, if required, <=0.5wt.%. Mo is furthermore incorporated therein. In this hard sintered body, a compositional gradient in which the ratio of Ti/(Ti+W) from the inside to the surface is reduced is formed, and a Ti-contg. hard film in which a modified part having hardness and toughness higher than those of the inside is present at a surface layer part from the surface to 500mum and the content of Ti on the surface is furthermore higher than that in the cermet, having <=0.4mum average grain size and having a compsn. of <=100ppm content of iron group metals is coated by a plasma CVD method.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、耐摩耗性、靱性に優れ
た被覆TiCN基サーメットに関し、特に切削工具とし
て被削材仕上面が良好な被覆TiCN基サーメットに関
する。 【0002】 【従来技術】近年、切削用焼結体として、周期律表第4
a、5a、6a族元素の複炭窒化物からなる硬質相と、
鉄族金属からなる結合相によって構成されるサーメット
が用いられるようになった。 【0003】かかるサーメットとしては、これまでTi
Cを主成分とするTiC基サーメットが主流であったが
、古くから工具材料として用いられていた超硬合金に比
較して耐欠損性が劣るために、この系に窒化物を添加す
ることにより靱性を改善したいわゆるTiCN基サーメ
ットが提案された。 【0004】このTiCN基サーメットの代表例として
特公昭56−51201号が挙げられ、ここでは、(T
i,W,Ta,Mo)CNからなる硬質相と、Ni,C
oからなる結合相とから構成されるサーメットが開示さ
れ、硬質相がTiや窒素に富む芯部と、W、Ta、Mo
および炭素に富む周辺部とから構成された有芯構造を呈
することが述べられている。また、この先行技術によれ
ば、硬質相形成成分としてMoやMo2 Cは、有芯構
造の周辺部に存在して硬質相の結合相との濡れ性を改善
することから硬質相における必須成分とされている。ま
た、TaCはサーメットの耐酸化性を改善するとともに
切削工具としてのクレータ摩耗の進行を抑制する効果を
有することから実用性の点から必須の成分とされている
。 【0005】また、硬質相を形成する炭素(C)および
窒素(N)はサーメットの靱性および硬度を決定する大
きな要因であり、最近では窒素を多量に含有させること
によりサーメットの靱性を高めようとする試みもなされ
ている。 【0006】ところが最近に至り、上記のTiCN基サ
ーメットに対してその表面部の組織を換えることにより
耐摩耗性や靱性をさらに高めようといった改良がなされ
ている。例えば特公昭59−14534号では、焼成時
に液相出現温度以下で窒素を炉内に導入することによっ
て焼結体表面に靱性に富む軟化層を形成することが、ま
た特公昭59−17176号では焼成をCOを含む還元
雰囲気内で行うことにより内部より高硬度の層を形成す
ることが提案されている。 【0007】しかしながら、これらの先行技術は、いず
れも硬度あるいは靱性のどちらかのみ検討するにとどま
り、且つ被削材の切削加工後の仕上面の高品質が要求さ
れる工具用材料としては切削性能上不十分であった。 【0008】そこで、本出願人は特開平2−15139
号において焼結時に窒素の導入の時期を制御することに
よって焼結体表面に高硬度、高靱性の改質層を形成した
TiCN基サーメットを提案した。 【0009】 【発明が解決しようとする問題点】しかしながら、特開
平2−15139号のサーメットは、切削速度が100
〜200m/minの中速の切削においては優れた耐摩
耗性、耐欠損性を示すが、切削速度が200m/min
を越える高速切削に際しては、耐摩耗性、耐欠損性が大
きく劣化すること、さらに切削後の被削材の仕上面の品
質において、サーメットを構成する化合物と被削材を構
成する金属とが反応することにより被削材の表面に荒れ
が生じることが明らかになった。 【0010】 【問題点を解決するための手段】本発明者等は、上記の
問題点に対して検討を行った結果、サーメット中の硬質
相を形成する金属成分としてTi、Wを用いるとともに
、これまで必須成分として添加したMoに代わり、Nb
を用いることによって硬質層の耐熱性を大きく改善する
ことができ、しかも内部から表面にかけて(Ti/Ti
+W)比が小さくなるように組成勾配を形成することに
よって表面部に内部より高硬度、高靱性で、高速切削時
においても優れた耐摩耗性、耐欠損性を有するサーメッ
トが得られること、さらに、サーメット表面近傍におい
て比率的に少ないTi成分を該サーメット中のTi量よ
り富むTi含有硬質膜を該サーメット表面に被覆するこ
とにより、母材における優れた特性を維持しつつ被削材
との反応を抑制し、被削材仕上面の向上が得られること
を知見し、本発明に至った。 【0011】即ち、本発明の被覆TiCN基サーメット
は、母材として、少なくともTi、WおよびNbを含有
する硬質相と、鉄族金属からなる結合相とから構成され
、全体組成から前記鉄族金属を除いた他の成分組成式が
下記数1 【0012】 【数1】           (Ti a  Nb b  W 
c)(Cu Nv )z   式中、0.50≦a≦0
.95、0.05≦b+c≦0.5、        
0.04≦b/b+c≦0.95、a+b+c=1  
      0.40≦v≦0.60、u+v=1  
      0.80≦z≦1.0  【0013】を
満足し、且つc/a+cで表される比率がサーメット内
部から表面にかけて大きくなる組成勾配を有し、しかも
表面から500μm までの表層部に内部より高靱性、
高硬度の改質部が形成されたTiCN基サーメットの表
面に、該母材中のTi量よりも多量のTiを含有し、且
つ鉄族金属の含有量が100ppm以下に制御された、
平均粒径0.4μm以下の結晶からなるTi含有硬質膜
を被覆してなることを特徴とするものである。 【0014】本発明の被覆TiCN基サーメットは、基
本的に硬質相並びに結合相からなる母材と、その母材表
面に形成された硬質被覆層から構成されるものである。 【0015】サーメット母材において、硬質相を形成す
る主成分であるTiは、焼結体内におよそTiCNとし
て存在し、その量はサーメットの強度や硬度を決定する
大きな要因であり、このTi量(a)が前記数1におい
て0.5より少ないとサーメット工具の特徴である耐摩
耗性、金属に対する親和性が不十分となり、0.95を
越えると耐欠損性が低下する。なお、Ti量(a)は0
.70≦a≦0.9であることが特に望ましい。 【0016】また、Tiと同様に必須の成分とされるW
は、WCとして硬質相の結合相との濡れ性を改善すると
ともに粒成長を抑え、サーメットの強度、靱性を高める
作用をなすが、硬質相が(Ti,W)CNのみからなる
場合には、耐摩耗性、耐酸化性、耐欠損性等が実用的レ
ベルに達していない。そこで、硬質相を強化し諸特性を
向上することを目的としてこれまでMoやTa等の炭化
物が必須の成分として添加されたが、後述する実施例か
ら明らかなようにMo2 C自体、硬質相主成分である
TiCあるいはTiCNに比較して特性が劣るために逆
にサーメットの特性向上には大きく寄与せず、場合によ
っては特性を劣化させてしまうという傾向にあることが
わかった。特に、この傾向は高速切削時に顕著であった
。 【0017】そこで、Mo2 Cに代わる成分について
検討したところ、Nbの炭化物はMo2 Cに比較して
それ自体が優れた特性を有することからこれを添加する
ことによりサーメットの特性、特に耐熱性を大きく改善
でき、高速切削時の耐摩耗性、耐欠損性を向上できるこ
とがわかった。よって、本発明によれば、硬質相形成成
分としてWおよびNbを必須成分とするもので、前記数
1においてNbとWとの合量(b+c)が0.05より
少ないと耐欠損性が不十分となり、0.5より大きいと
耐摩耗性が劣るとともに被削材との反応性が高くなる傾
向にある。なお、(b+c)値は0.10≦b+c≦0
.30であることが特に望ましい。また、数1において
W、Nbの合量(b+c)に対するNb量(b)の割合
(b/b+c)が0.4より小さいと耐摩耗性、耐酸化
性に劣り、逆に0.95より大きいと耐欠損性が低下す
る。 【0018】なお、本発明におけるサーメットによれば
、サーメット母材へのMoおよびMo化合物の添加は上
述した理由から避けるべきで、その量はサーメット母材
中0.5重量%以下に制御することが望ましい。また、
サーメットの焼結性は系中の結合相の量に大きく左右さ
れるが結合相量が少量である場合、TaCの添加により
焼結性が低下するために高温焼成が必要となり、これに
より結晶の粒径が大きくなるためにサーメットの耐摩耗
性が劣化する。よって、TaもMoと同様にその含有量
を0.5重量%以下にすることが望ましい。 【0019】一方、窒素および炭素の量はサーメットの
硬度および靱性を決定する要因として非常に重要であり
、特に窒素の量が増加するに従い、靱性が向上する傾向
にあるが、窒素の量が過多になると焼成時の窒化物の分
解によるガスがボイド中に焼結体中に残留するという問
題が生じる。よって前記数1において炭素に対する窒素
の比率(v)が0.4より小さいと、靱性が低下し耐欠
損性が不十分となり、0.6を越えると焼結体内にボイ
ドが発生し信頼性に欠けるようになる。 【0020】また、窒素および炭素量のTi、W、Nb
の合量に対する比率(z)が0.8より小さいと焼結性
が劣化しボイドが残留し、1.0より大きいと遊離炭素
が発生するために強度低下を引き起こす結果となる。望
ましくは0.85≦z≦1.0である。 【0021】本発明において結合相を形成する鉄族金属
としては、Niおよび/またはCoが挙げられ、望まし
くはNiとCoから構成され、特にCo/Ni+Coの
モル比が0.5〜0.9であることが耐摩耗性向上の点
からよい。また、この鉄族金属はサーメット中に3〜4
0重量%、特に5〜30重量%の割合で存在することが
望ましい。 【0022】また、本発明のサーメットは、図1に示す
ように表面から内部にかけて組成勾配を有することを大
きな特徴とし、具体的には、Wが内部よりも表面部に富
むという特異的な性質を有する。一方、TiはWとは逆
に表面部より内部が若干富む傾向にある。よってTi量
(a)とW量(c)との原子比(c/a+c)は内部か
ら表面にかけて大きくなる組成勾配を有する。具体的に
は、表面の内部に対する(c/a+c)値の比率が1.
1以上であることが望ましい。また、硬質相形成成分で
あるNbもWとほぼ同様な傾向にあり、結合相を形成す
る鉄族金属は内部に比較して表面近傍は乏しくなるが、
母材の極表面部分に析出し鉄族金属層を形成することも
ある。 【0023】このような組成勾配を有することにより、
特性上図2および図3に示すように表面付近、特に表面
から500μm までの表層部に内部よりも高硬度、高
靱性な改質層が形成され、これによりサーメットの耐摩
耗性、耐欠損性を飛躍的に向上することができる。かか
る特性は、このサーメットを母材として後述する硬質膜
を被覆した場合に母材の性質として重要な効果を発揮す
るものである。 【0024】さらに、本発明のTiCN基サーメットが
優れた特性を有する他の要因として、硬質相はTiおよ
び窒素に富む芯部と、該芯部の回りにWやNbおよび炭
素に富む周辺部から構成される有芯構造を呈する点があ
る。この有芯構造によれば、特に周辺部形成成分として
従来から用いられたMoやTaに代わりNbを用いるこ
とにより周辺部の特性、特に耐酸化性を改善することが
できる。 【0025】上述したサーメットによれば、表層部にお
けるTi量が低いことに起因して、例えば構造用合金鋼
SCM435を被削材として切削を行うと、サーメット
中のW等が被削材と反応し、仕上げ面が荒れる場合があ
る。そこで、本発明によれば、かかるTiCN基サーメ
ットの表面にTiを含有する硬質膜を被覆する。 【0026】この硬質膜は、サーメット母材と被削材と
の反応性を抑制させるために、硬質膜のTi量を母材の
Ti量、特に表層部のTi量よりも富んだ膜にすること
により前述したサーメットの被削材との反応性を抑制す
ることができる。また、サーメット表面に硬質膜を形成
する際に、サーメット表面において富む鉄族金属が硬質
膜中に拡散し、これが硬質膜の硬度、被削材との非反応
性等の被膜本来の特性を劣化させてしまう。よって、こ
の硬質膜は、その膜中に含有される鉄族金属量を100
ppm以下、特に70ppm以下に制御することが必要
である。 【0027】さらに、硬質膜を構成する結晶の粒径は、
膜の硬度、強度を左右する要因となり、その結晶粒径が
小さいほど硬質且つ高強度、高靱性な被膜となる。よっ
て本発明によれば、この硬質膜の結晶粒径を0.4μm
 以下、特に0.3μm 以下に制御することにより硬
質膜としての本来の機能を発揮するとともに、膜中破壊
に起因する粒脱落、しいては膜剥離を防止することがで
きる。 【0028】なお、Ti量がサーメット中のTi量より
も富むTi含有硬質膜としては、TiC、TiN、Ti
CN等が好適であり、これらの膜中には場合により酸素
が含まれることもある。 【0029】この硬質膜は、サーメット表面に1〜10
μm の厚みで被覆するのが望ましく、膜厚が1μm 
より小さいと、被削材との反応性抑制効果が小さく、被
削材の表面に荒れが生じ、10μm より厚いと母材と
被覆層との熱膨張差により使用時に剥離し易くなる。 【0030】次に、上記被覆TiCN基サーメットを製
造する方法について説明すると、まず、原料粉末として
Ti、W、Nbの炭化物、窒化物、炭窒化物の粉末およ
び鉄族金属粉末を最終焼結体が前述した割合に成るよう
に秤量混合する。 【0031】次に、上記混合粉末をプレス成形、押し出
し成形、射出成形等の周知の成形手段で成形後、焼成す
る。 【0032】焼成では、前述したような組成の勾配およ
び有芯構造が形成されるように焼成条件を調整すること
が必要である。具体的には、これを真空中、窒素中の雰
囲気あるいは還元性雰囲気中で1400〜1600℃の
温度で焼成するが、まず、昇温過程において、添加され
た鉄族金属による液相が出現する温度までを10−1t
orr程度の真空雰囲気とし、液相出現温度以上におい
て圧力を10−3torr以下の高真空雰囲気に急激に
変更する。 【0033】このように真空度を変化することによって
成形体の表面に存在する窒化物を急激に分解することに
より表面付近には炭素に富む相が形成される。それによ
り硬質相形成成分のうち炭素と結合し易いW等が表面部
に移動する。また、表面付近の金属成分は内部に移行す
るかまたは焼結体表面部に滲みだし、場合により揮散す
る。 【0034】このような成分の移動は通常の焼成におい
ても生じるが、本発明によれば、上記のような操作によ
って通常の条件では得られない特異的な組織構造を形成
することができるのである。 【0035】また、本発明によれば、上記製造方法にお
いて用いるTi化合物系原料粉末としては、TiC、T
iCN、TiN等が挙げられるが、TiN粉末を多量に
用いると最終焼結体中にTiN相として残存することが
ある。このTiN相は、それ自体金属との濡れ性が非常
に悪いことからTiN相と結合相との界面が破壊の起点
となり易くなるためサーメットの機械的特性および信頼
性を低下させてしまう。よって、原料として多量のTi
Nを用いる代わりにTiCやTiCN粉末を用いてTi
N相が形成されないように考慮すべきである。 【0036】また、各原料粉末を成形焼成する前に固溶
体処理を行うことも可能であるが、固溶体処理を行うと
前述した有芯構造が形成されにくくなるために望ましく
は、行わない方がよい。 【0037】本発明によれば、上記(Ti,W,Nb)
(C,N)で表される成分と、鉄族金属からなる系に対
して特性を改善する目的でさらにZr、Hf、Crおよ
びV等の炭化物、窒化物、炭窒化物等を添加し、Tiあ
るいはNbの一部を置換することにより特性の改善を図
ることができ、特にNbの一部をVで置換することによ
りNbの作用効果をさらに助長し、特にサーメットの高
速切削性を大きく向上することができる。この時のNb
/Vの原子比は1〜5、特に2〜4であることが望まし
い。 【0038】次に、上記のようにして得られたサーメッ
トの表面にTiを含有する硬質膜を形成する。具体的に
は、熱CVD、プラズマCVD、レーザCVD等の化学
気相成長法(CVD法)、スパッタリング、イオンプレ
ーティング等の物理的蒸着法(PDV法)、あるいは気
相含浸法等が採用されるが、本発明に基づき硬質膜の粒
径を0.4μm 以下に制御するにはイオンプレーティ
ング、プラズマCVD法、スパッタリングが望ましい。 【0039】また、鉄族金属の硬質膜中への混入量を1
00ppm以下に制限するとともに膜付着強度を考慮し
た場合、イオンプレーティング、プラズマCVD法が等
が望ましく、特にイオンプレーティング法によれば、成
膜温度が低いことに起因して膜の結晶粒の成長速度が小
さく、しかも母材からの鉄族金属の拡散が抑制されるた
めに膜中への混入を防止することができる。また、成膜
にあたっては、反応炉内の設備等において鉄族金属製の
部品を極力排除するように考慮することも必要である。 【0040】 【実施例】原料粉末としてTiC、TiCN、WC、N
bC、VC、Ni、Coの各粉末を用いて最終焼結体の
組成が第1表の割合に成るように秤量混合した後、1.
5ton/cm2 の圧力でTNGA160408用の
チップ形状にプレス成形し、1400〜1600℃の温
度で真空雰囲気で1時間焼成した。このとき、試料につ
いては液相出現温度(1350℃)まで10−1tor
rの圧力とし、液相出現温度以上では10−3torr
の圧力に保持し焼成した。また比較例として試料No,
13については圧力を10−1torrから50tor
rに変更し、試料は、圧力を10−1torrに維持し
焼成した。 【0041】各試料についてXMA分析により内部と表
面部のTiとWの濃度(ピーク強度)を求め、焼結体の
中心部および表面部の(c/a+c)をそれぞれI1 
、I2 ─し、I2 /I1 の比率を求めた。なお、
試料番号2についてはTi,W,Nbの焼結体の深さに
対する組成分布を調べ、図1に示した。 【0042】また、得られた各サーメットの内部と表面
部に対してビッカース硬度並びにビッカース硬度用ダイ
ヤモンド圧子を用いて荷重20Kgで圧痕法により破壊
靱性を測定し、本発明の試料番号2,6,10および範
囲外の試料番号15については硬度と靱性値の焼結体の
深さに対する変化を調べ、図2および図3に示した。 【0043】硬質膜は、イオンプレーティング法により
母材温度を300〜700℃に設定して3μm の膜厚
になるようにTiN、TiCN、TiCNO膜を形成し
た。また、被膜における結晶の平均粒径をSEMにより
、膜中の鉄族金属の含有量をICP分析により測定した
。 【0044】次に、上記のようにして得られた各試料を
用いて下記に示す切削条件で摩耗試験を行い、切削後の
フランク摩耗量を、また欠損試験を行い、非欠損コーナ
ー数を調べた。測定結果は表2に示した。 【0045】(摩耗試験) 被削材      SCM435 切削速度    300m/min 切り込み    2mm 送り        0.3mm/rev切削時間  
  10min 【0046】(欠損試験) 被削材      SCM435(4本溝入)切削速度
    100m/min 切り込み    2mm 送り        0.3mm/rev切削時間  
  1min 【0047】また、仕上面の評価として表面粗さ計を用
いて、被削材仕上げ面状態をRmaxにて表現する手法
にて行い、この値が10s以上のものを×、10s未満
のものを○として評価した。 【0048】 【表1】 【0049】 【表2】 【0050】表1および表2によれば、Nbを含まず、
TaあるいはMoを含有するサーメットを母材として用
いた試料No,19、20では高速の摩耗試験において
摩耗量が0.4mm以上と大きい。また、Nbを添加し
た系においてもその量が多すぎる試料No,17では耐
欠損性、耐摩耗性とも悪く、Nb量が(Nb/Nb+W
)比で0.4を下回る試料No,18では、硬度および
靱性が内部より高い相が形成されたが、高速切削性とし
て実用的な特性は得られなかった。さらに、組成が本発
明の範囲を満足しても焼成時、圧力を一定にした試料N
o,16ではWの濃度勾配は形成されず、特性上でも不
十分であり、焼成時の圧力を増加した試料番号15でも
同様に濃度勾配は形成されなった。 【0051】これらの比較例に対して、本発明の試料番
号1〜14における母材は、いずれの試料も図1に示す
ように表面部と内部間に濃度勾配が形成され、Wの濃度
比(I2 /I1 )が1.1以上を示し、且つ硬度お
よび靱性においては図2、図3に示すように表面部に高
硬度、高靱性の改質部が形成された。なお改質部の硬度
は内部の硬度の5%以上、靱性は内部の靱性の20%以
上を示した。また、かかる母材のみで被膜を形成しなか
った試料No,25は被削材の表面に荒れが認められた
が、本発明に基づき平均粒径が小さく、鉄族金属を実質
上含有しない膜を形成した試料は切削試験において、高
速切削試験で、摩耗量0.2mm以下と優れ、耐欠損試
験も良好であり、また仕上げ加工面の荒れもほとんどな
く良好な結果を得た。 【0052】 【発明の効果】以上詳述した通り、本発明の被覆TiC
N基サーメットは、母材の硬質相成分としてMoに代わ
りNbを必須として添加するとともに、W量が表面にお
いて富む濃度勾配を形成し、表面部に硬度、靱性に優れ
た改質部を形成したサーメットを用い、この表面にTi
含有硬質膜を形成することにより、高速切削性および耐
欠損性に優れるとともに被削材との反応性が小さく、被
削材の仕上げ表面が良好な工具を提供するとができる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a coated TiCN-based cermet with excellent wear resistance and toughness, and in particular to a coated TiCN-based cermet that can be used as a cutting tool and has a good workpiece surface finish. Regarding cermet. [Prior Art] In recent years, as cutting sintered bodies, the fourth
a hard phase consisting of a double carbonitride of group a, 5a, and 6a elements;
Cermets composed of a binder phase made of iron group metals have come into use. [0003] Such cermets have so far been made of Ti.
TiC-based cermets, whose main component is C, have been the mainstream, but since they have inferior fracture resistance compared to cemented carbide, which has long been used as tool materials, by adding nitrides to this system, So-called TiCN-based cermets with improved toughness have been proposed. [0004] As a representative example of this TiCN-based cermet, Japanese Patent Publication No. 56-51201 is listed, and here, (T
i, W, Ta, Mo) A hard phase consisting of CN and Ni, C
A cermet is disclosed in which the hard phase is composed of a core rich in Ti and nitrogen, and a binder phase consisting of W, Ta, Mo.
It is said that it exhibits a cored structure composed of a carbon-rich periphery and a carbon-rich peripheral region. Furthermore, according to this prior art, Mo and Mo2C as hard phase forming components exist in the peripheral part of the cored structure and improve the wettability of the hard phase with the binder phase, so they are considered essential components in the hard phase. has been done. Furthermore, TaC improves the oxidation resistance of cermet and has the effect of suppressing the progress of crater wear as a cutting tool, so it is considered an essential component from the point of view of practicality. [0005] Carbon (C) and nitrogen (N), which form the hard phase, are major factors that determine the toughness and hardness of cermets, and recently attempts have been made to increase the toughness of cermets by incorporating a large amount of nitrogen. There have also been attempts to do so. Recently, however, improvements have been made to the above-mentioned TiCN-based cermet in order to further increase its wear resistance and toughness by changing the structure of its surface portion. For example, in Japanese Patent Publication No. 59-14534, a softened layer with high toughness is formed on the surface of the sintered body by introducing nitrogen into the furnace at a temperature below the liquid phase appearance temperature during firing, and in Japanese Patent Publication No. 59-17176, It has been proposed to form a layer with higher hardness from the inside by performing firing in a reducing atmosphere containing CO. [0007] However, all of these prior art techniques only consider either hardness or toughness, and cutting performance is insufficient for tool materials that require a high quality finished surface after cutting the workpiece. It was not good enough. [0008] Therefore, the applicant of the present invention
In this issue, we proposed a TiCN-based cermet in which a modified layer with high hardness and high toughness was formed on the surface of the sintered body by controlling the timing of nitrogen introduction during sintering. [Problems to be Solved by the Invention] However, the cermet of JP-A No. 2-15139 has a cutting speed of 100
It shows excellent wear resistance and chipping resistance at medium speed cutting of ~200 m/min, but when the cutting speed is 200 m/min
When cutting at high speeds exceeding It has become clear that this causes roughness on the surface of the workpiece. [Means for Solving the Problems] As a result of research into the above-mentioned problems, the present inventors used Ti and W as the metal components forming the hard phase in the cermet, and Instead of Mo, which has been added as an essential component, Nb
By using Ti/Ti, the heat resistance of the hard layer can be greatly improved, and from the inside to the surface (Ti/Ti
By forming a composition gradient so that the +W) ratio is smaller, a cermet can be obtained that has higher hardness and toughness on the surface than the inside, and has excellent wear resistance and fracture resistance even during high-speed cutting. By coating the cermet surface with a Ti-containing hard film in which the Ti content is relatively small in the vicinity of the cermet surface and is richer than the amount of Ti in the cermet, the reaction with the work material can be achieved while maintaining the excellent properties of the base material. It was discovered that the surface finish of the workpiece could be improved by suppressing the above, and this led to the present invention. That is, the coated TiCN-based cermet of the present invention is composed of a hard phase containing at least Ti, W and Nb as a base material, and a binder phase consisting of an iron group metal, and the overall composition is based on the iron group metal. The other component composition formulas except for are shown below:
c) (Cu Nv )z where 0.50≦a≦0
.. 95, 0.05≦b+c≦0.5,
0.04≦b/b+c≦0.95, a+b+c=1
0.40≦v≦0.60, u+v=1
0.80≦z≦1.0 0.80≦z≦1.0 0.80≦z≦1.0 0.80≦z≦1.0 0.80≦z≦1.0 0.80 High toughness,
The surface of the TiCN-based cermet on which a highly hard modified part is formed contains a larger amount of Ti than the amount of Ti in the base material, and the content of iron group metals is controlled to 100 ppm or less.
It is characterized by being coated with a Ti-containing hard film made of crystals with an average grain size of 0.4 μm or less. The coated TiCN-based cermet of the present invention basically consists of a base material consisting of a hard phase and a binder phase, and a hard coating layer formed on the surface of the base material. In the cermet base material, Ti, which is the main component forming the hard phase, exists in the sintered body as approximately TiCN, and its amount is a major factor determining the strength and hardness of the cermet. If a) in Equation 1 is less than 0.5, the wear resistance and affinity for metals, which are characteristics of cermet tools, will be insufficient, and if it exceeds 0.95, the fracture resistance will decrease. Note that the Ti amount (a) is 0
.. It is particularly desirable that 70≦a≦0.9. [0016] Also, like Ti, W is an essential component.
acts as WC to improve the wettability of the hard phase with the binder phase, suppress grain growth, and increase the strength and toughness of the cermet, but when the hard phase consists only of (Ti, W)CN, Abrasion resistance, oxidation resistance, chipping resistance, etc. have not reached practical levels. Therefore, carbides such as Mo and Ta have been added as essential components for the purpose of strengthening the hard phase and improving various properties, but as is clear from the examples described later, Mo2C itself is the main component of the hard phase. It has been found that because the properties are inferior to those of TiC or TiCN, which are the components, it does not significantly contribute to improving the properties of the cermet, and in some cases tends to deteriorate the properties. This tendency was particularly noticeable during high-speed cutting. [0017] Therefore, we investigated a component to replace Mo2C, and found that Nb carbide itself has superior properties compared to Mo2C, and by adding it, the properties of the cermet, especially the heat resistance, can be greatly improved. It was found that it was possible to improve the wear resistance and chipping resistance during high-speed cutting. Therefore, according to the present invention, W and Nb are essential components as hard phase forming components, and if the total amount of Nb and W (b+c) in the above equation 1 is less than 0.05, the fracture resistance will be poor. If it is larger than 0.5, the wear resistance tends to be poor and the reactivity with the work material tends to be high. In addition, the (b+c) value is 0.10≦b+c≦0
.. A value of 30 is particularly desirable. In addition, in Equation 1, if the ratio (b/b+c) of the amount of Nb to the total amount of W and Nb (b+c) is less than 0.4, the wear resistance and oxidation resistance will be poor; If it is large, fracture resistance will decrease. According to the cermet of the present invention, the addition of Mo and Mo compounds to the cermet base material should be avoided for the reasons mentioned above, and the amount should be controlled to 0.5% by weight or less in the cermet base material. is desirable. Also,
The sinterability of cermets is greatly influenced by the amount of binder phase in the system, but if the amount of binder phase is small, the addition of TaC will reduce the sinterability and require high temperature firing, which will cause the formation of crystals. The wear resistance of the cermet deteriorates due to the increased particle size. Therefore, like Mo, it is desirable that the content of Ta is 0.5% by weight or less. On the other hand, the amount of nitrogen and carbon is a very important factor in determining the hardness and toughness of cermet, and especially as the amount of nitrogen increases, the toughness tends to improve. When this happens, a problem arises in that gas from decomposition of nitrides during firing remains in the sintered body in the voids. Therefore, if the ratio (v) of nitrogen to carbon in Equation 1 is less than 0.4, the toughness will decrease and fracture resistance will be insufficient, and if it exceeds 0.6, voids will occur in the sintered body and reliability will deteriorate. It becomes chipped. [0020] Furthermore, the amount of nitrogen and carbon is Ti, W, Nb
If the ratio (z) to the total amount is less than 0.8, the sinterability will deteriorate and voids will remain, and if it is larger than 1.0, free carbon will be generated, resulting in a decrease in strength. Desirably, 0.85≦z≦1.0. [0021] In the present invention, the iron group metal forming the binder phase includes Ni and/or Co, preferably composed of Ni and Co, particularly when the molar ratio of Co/Ni+Co is 0.5 to 0.9. It is preferable from the viewpoint of improving wear resistance. In addition, this iron group metal is present in the cermet with 3 to 4
Preferably it is present in a proportion of 0% by weight, especially 5-30% by weight. The cermet of the present invention is also characterized by having a composition gradient from the surface to the inside as shown in FIG. has. On the other hand, contrary to W, Ti tends to be slightly richer inside than on the surface. Therefore, the atomic ratio (c/a+c) between the amount of Ti (a) and the amount of W (c) has a composition gradient that increases from the inside to the surface. Specifically, the ratio of the (c/a+c) value to the inside of the surface is 1.
It is desirable that it is 1 or more. In addition, Nb, which is a hard phase-forming component, has almost the same tendency as W, and iron group metals that form the binder phase are scarce near the surface compared to inside.
It may also precipitate to form an iron group metal layer on the extreme surface of the base material. By having such a composition gradient,
As shown in Figures 2 and 3, a modified layer with higher hardness and toughness is formed near the surface, especially in the surface layer up to 500 μm from the surface, which improves the wear resistance and fracture resistance of the cermet. can be dramatically improved. These characteristics exhibit important effects as properties of the base material when this cermet is used as a base material and is coated with a hard film to be described later. Furthermore, another reason for the excellent properties of the TiCN-based cermet of the present invention is that the hard phase consists of a core rich in Ti and nitrogen, and a peripheral region rich in W, Nb, and carbon surrounding the core. There is a point that exhibits a cored structure consisting of: According to this cored structure, the characteristics of the peripheral part, especially the oxidation resistance, can be improved by using Nb instead of Mo or Ta, which has been conventionally used as a component for forming the peripheral part. According to the above-mentioned cermet, due to the low Ti content in the surface layer, when cutting is performed using structural alloy steel SCM435 as a work material, for example, W etc. in the cermet react with the work material. However, the finished surface may become rough. Therefore, according to the present invention, the surface of such a TiCN-based cermet is coated with a hard film containing Ti. In order to suppress the reactivity between the cermet base material and the workpiece material, this hard film has a Ti content richer than that of the base material, especially the Ti content in the surface layer. This makes it possible to suppress the reactivity of the cermet with the work material described above. In addition, when forming a hard film on the cermet surface, iron group metals that are abundant on the cermet surface diffuse into the hard film, which deteriorates the original properties of the hard film, such as hardness and non-reactivity with the workpiece material. I'll let you. Therefore, this hard film has an iron group metal content of 100%.
It is necessary to control it to below ppm, especially below 70 ppm. Furthermore, the grain size of the crystals constituting the hard film is
It is a factor that influences the hardness and strength of the film, and the smaller the crystal grain size, the harder, higher strength, and higher toughness the film becomes. Therefore, according to the present invention, the crystal grain size of this hard film is set to 0.4 μm.
In particular, by controlling the thickness to 0.3 μm or less, it is possible to exhibit its original function as a hard film, and to prevent particle drop-off due to breakage in the film, and thus film peeling. [0028] The Ti-containing hard film in which the Ti content is higher than the Ti content in the cermet includes TiC, TiN, Ti
CN or the like is suitable, and these films may contain oxygen depending on the case. [0029] This hard film has a thickness of 1 to 10 on the cermet surface.
It is desirable to coat with a thickness of 1 μm.
If it is smaller, the effect of suppressing the reactivity with the work material will be small, and the surface of the work material will become rough, and if it is thicker than 10 μm, it will be easy to peel off during use due to the difference in thermal expansion between the base material and the coating layer. Next, the method for manufacturing the above-mentioned coated TiCN-based cermet will be explained. First, powders of carbides, nitrides, and carbonitrides of Ti, W, and Nb and powders of iron group metals are used as raw material powders to form a final sintered body. Weigh and mix so that they are in the proportions mentioned above. Next, the mixed powder is molded by a known molding means such as press molding, extrusion molding, injection molding, etc., and then fired. [0032] In firing, it is necessary to adjust the firing conditions so that the composition gradient and cored structure as described above are formed. Specifically, this is fired at a temperature of 1,400 to 1,600°C in a vacuum, nitrogen atmosphere, or reducing atmosphere. First, during the temperature raising process, a liquid phase due to the added iron group metal appears. temperature up to 10-1t
A vacuum atmosphere of about 10-3 torr is created, and the pressure is suddenly changed to a high vacuum atmosphere of 10 -3 torr or less at a temperature higher than the liquid phase appearance temperature. By changing the degree of vacuum in this way, the nitride present on the surface of the compact is rapidly decomposed, and a carbon-rich phase is formed near the surface. As a result, among the hard phase-forming components, W and the like that easily bond with carbon move to the surface portion. Furthermore, the metal components near the surface migrate into the interior or ooze out onto the surface of the sintered body, and in some cases are volatilized. [0034] Such movement of components also occurs during normal firing, but according to the present invention, the above operation makes it possible to form a specific structure that cannot be obtained under normal conditions. . According to the present invention, TiC, T
Examples include iCN and TiN, but if a large amount of TiN powder is used, it may remain as a TiN phase in the final sintered body. Since this TiN phase itself has very poor wettability with metal, the interface between the TiN phase and the binder phase tends to become a starting point of fracture, thereby reducing the mechanical properties and reliability of the cermet. Therefore, a large amount of Ti is used as a raw material.
Using TiC or TiCN powder instead of N
Consideration should be given to avoid the formation of N-phase. It is also possible to perform solid solution treatment before shaping and firing each raw material powder, but it is preferable not to perform solid solution treatment because it becomes difficult to form the above-mentioned cored structure. . According to the present invention, the above (Ti, W, Nb)
For the purpose of improving the characteristics of the system consisting of the components represented by (C, N) and iron group metals, carbides, nitrides, carbonitrides, etc. such as Zr, Hf, Cr and V are further added, Characteristics can be improved by replacing a portion of Ti or Nb, and in particular, replacing a portion of Nb with V further enhances the effects of Nb, greatly improving the high-speed machinability of cermets in particular. can do. Nb at this time
The atomic ratio of /V is preferably 1 to 5, particularly 2 to 4. Next, a hard film containing Ti is formed on the surface of the cermet obtained as described above. Specifically, chemical vapor deposition methods (CVD methods) such as thermal CVD, plasma CVD, and laser CVD, physical vapor deposition methods (PDV methods) such as sputtering and ion plating, or vapor phase impregnation methods are employed. However, in order to control the particle size of the hard film to 0.4 μm or less based on the present invention, ion plating, plasma CVD, and sputtering are preferable. [0039] Also, the amount of iron group metal mixed into the hard film was reduced to 1
When limiting the amount to 00 ppm or less and considering the film adhesion strength, ion plating, plasma CVD, etc. are preferable.In particular, the ion plating method reduces the formation of crystal grains in the film due to the low film forming temperature. Since the growth rate is low and diffusion of iron group metals from the base material is suppressed, mixing into the film can be prevented. In addition, during film formation, it is also necessary to consider eliminating parts made of iron group metals as much as possible in the equipment in the reactor. [Example] TiC, TiCN, WC, N as raw material powder
bC, VC, Ni, and Co powders were weighed and mixed so that the composition of the final sintered body would be in the proportions shown in Table 1, and then 1.
It was press-molded into a chip shape for TNGA160408 at a pressure of 5 ton/cm 2 and fired in a vacuum atmosphere at a temperature of 1400 to 1600° C. for 1 hour. At this time, the sample was heated at 10-1 torr until the liquid phase appearance temperature (1350℃).
r pressure, and 10-3 torr above the liquid phase appearance temperature.
It was held at a pressure of . In addition, as a comparative example, sample No.
For 13, increase the pressure from 10-1 torr to 50 torr.
The sample was fired while maintaining the pressure at 10 −1 torr. [0041] For each sample, the concentrations (peak intensities) of Ti and W in the interior and surface areas were determined by XMA analysis, and (c/a+c) in the center and surface areas of the sintered body were determined by I1, respectively.
, I2 - and the ratio of I2 /I1 was determined. In addition,
Regarding sample number 2, the composition distribution of Ti, W, and Nb with respect to the depth of the sintered body was investigated and is shown in FIG. Furthermore, the fracture toughness of the inner and surface parts of each of the obtained cermets was measured by the indentation method using a Vickers hardness and a diamond indenter for Vickers hardness under a load of 20 kg. For Sample No. 10 and Sample No. 15 outside the range, changes in hardness and toughness values with respect to the depth of the sintered body were investigated and shown in FIGS. 2 and 3. [0043] For the hard film, TiN, TiCN, and TiCNO films were formed to a thickness of 3 μm using the ion plating method with the base material temperature set at 300 to 700°C. Further, the average grain size of crystals in the film was measured by SEM, and the content of iron group metals in the film was measured by ICP analysis. Next, using each sample obtained as described above, a wear test was conducted under the cutting conditions shown below to determine the amount of flank wear after cutting, and a defect test was conducted to determine the number of non-defective corners. Ta. The measurement results are shown in Table 2. (Wear test) Work material SCM435 Cutting speed 300m/min Depth of cut 2mm Feed 0.3mm/rev Cutting time
10min 0046 (Defect test) Work material SCM435 (4 grooves) Cutting speed 100m/min Depth of cut 2mm Feed 0.3mm/rev Cutting time
1 min [0047] Also, to evaluate the finished surface, a surface roughness meter is used to express the condition of the finished surface of the workpiece material as Rmax. was evaluated as ○. [Table 1] [Table 2] [Table 2] According to Tables 1 and 2, Nb-free,
Samples Nos. 19 and 20 using cermet containing Ta or Mo as the base material showed a large amount of wear of 0.4 mm or more in the high-speed wear test. In addition, even in the system where Nb was added, sample No. 17, which had too much Nb, had poor fracture resistance and wear resistance, and the Nb amount was (Nb/Nb+W
) ratio of less than 0.4, a phase with higher hardness and toughness than the inner part was formed, but no practical characteristics as high-speed machinability were obtained. Furthermore, even if the composition satisfies the range of the present invention, sample N
No concentration gradient of W was formed in Sample No. 16, which was insufficient in terms of characteristics, and sample No. 15, in which the pressure during firing was increased, also did not form a concentration gradient. In contrast to these comparative examples, in the base materials of sample numbers 1 to 14 of the present invention, a concentration gradient is formed between the surface portion and the interior as shown in FIG. 1, and the concentration ratio of W is (I2 /I1) was 1.1 or more, and in terms of hardness and toughness, a modified portion with high hardness and high toughness was formed on the surface portion as shown in FIGS. 2 and 3. The hardness of the modified part was 5% or more of the internal hardness, and the toughness was 20% or more of the internal toughness. In addition, sample No. 25, in which no film was formed using only the base material, had roughness on the surface of the workpiece material, but based on the present invention, the film was coated with a small average grain size and does not substantially contain iron group metals. In the cutting tests, the samples formed with the above showed excellent results with a wear amount of 0.2 mm or less in the high-speed cutting tests, good results in the chipping resistance test, and almost no roughness on the finished surface. Effects of the Invention As detailed above, the coated TiC of the present invention
In the N-based cermet, Nb is added as an essential component in place of Mo as a hard phase component of the base material, and a concentration gradient is formed in which the amount of W is enriched at the surface, forming a modified part with excellent hardness and toughness on the surface. Using cermet, this surface is coated with Ti.
By forming the containing hard film, it is possible to provide a tool that has excellent high-speed machinability and fracture resistance, has low reactivity with the work material, and has a good finished surface of the work material.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の被覆TiCN基サーメットにおける母
材のTi、W、Nbの各元素の焼結体の深さに対する組
成分布を示す。
FIG. 1 shows the composition distribution of each element of Ti, W, and Nb in the base material with respect to the depth of the sintered body in the coated TiCN-based cermet of the present invention.

【図2】実施例中の試料における硬度の焼結体の深さに
対する変化を示す図である。
FIG. 2 is a diagram showing changes in hardness of samples in Examples with respect to depth of the sintered body.

【図3】実施例の試料における靱性の焼結体の深さに対
する変化を示す図である。
FIG. 3 is a diagram illustrating changes in toughness with respect to the depth of the sintered body in samples of Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  少なくともTi、WおよびNbを含有
する硬質相と、鉄族金属からなる結合相とから構成され
、全体組成から前記鉄族金属および不可避不純物を除い
た他の成分組成を〔 (Ti)a (Nb)b (W)
c〕〔(C)u (N)v〕z と表した時、a+b+
c=1、0.50≦a≦0.95、0.05≦b+c≦
0.5、0.40≦b/b+c≦0.95、0.40≦
v≦0.60、0.80≦z≦1.0、u+v=1を満
足し、且つc/a+cで表される比率が内部から表面に
かけて大きく、かつ表面から500μm までの表層部
に内部より高靱性、高硬度の改質部が存在するTiCN
基サーメットの表面に、該サーメット合金中のTi量よ
りもより富み、平均粒径が0.4μm以下、鉄族金属の
含有量が100ppm以下のTiを含有する硬質膜を被
覆してなることを特徴とする被覆TiCN基サーメット
Claim 1: Comprised of a hard phase containing at least Ti, W, and Nb, and a binder phase consisting of an iron group metal, and other component compositions excluding the iron group metal and unavoidable impurities from the overall composition. Ti)a (Nb)b (W)
c] [(C)u (N)v] When expressed as z, a+b+
c=1, 0.50≦a≦0.95, 0.05≦b+c≦
0.5, 0.40≦b/b+c≦0.95, 0.40≦
v≦0.60, 0.80≦z≦1.0, u+v=1, and the ratio expressed by c/a+c is large from the inside to the surface, and the surface layer part up to 500 μm from the surface is larger than the inside. TiCN with high toughness and high hardness modified parts
The surface of the base cermet is coated with a hard film containing Ti that is richer than the Ti content in the cermet alloy, has an average particle size of 0.4 μm or less, and has an iron group metal content of 100 ppm or less. Characteristic coated TiCN-based cermet.
【請求項2】  前記TiCN基サーメット中のMo含
有量が0.5重量%以下である請求項1記載の被覆Ti
CN基サーメット。
2. The coated Ti according to claim 1, wherein the Mo content in the TiCN-based cermet is 0.5% by weight or less.
CN-based cermet.
JP2416051A 1990-12-27 1990-12-27 Coated TiCN-based cermet Expired - Fee Related JP2771336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416051A JP2771336B2 (en) 1990-12-27 1990-12-27 Coated TiCN-based cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416051A JP2771336B2 (en) 1990-12-27 1990-12-27 Coated TiCN-based cermet

Publications (2)

Publication Number Publication Date
JPH04231466A true JPH04231466A (en) 1992-08-20
JP2771336B2 JP2771336B2 (en) 1998-07-02

Family

ID=18524304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416051A Expired - Fee Related JP2771336B2 (en) 1990-12-27 1990-12-27 Coated TiCN-based cermet

Country Status (1)

Country Link
JP (1) JP2771336B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388891B1 (en) * 2001-01-08 2003-06-25 한국야금 주식회사 Method of producing a titanium carbonitride-based cermet having no materials of tantalum-contained component
KR100663666B1 (en) * 2005-04-22 2007-01-02 한국야금 주식회사 High toughness titanium carbonitride-based cermet and a manufacturing method thereof
JP2011505261A (en) * 2007-12-06 2011-02-24 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Coated article
JP2014184521A (en) * 2013-03-25 2014-10-02 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388891B1 (en) * 2001-01-08 2003-06-25 한국야금 주식회사 Method of producing a titanium carbonitride-based cermet having no materials of tantalum-contained component
KR100663666B1 (en) * 2005-04-22 2007-01-02 한국야금 주식회사 High toughness titanium carbonitride-based cermet and a manufacturing method thereof
JP2011505261A (en) * 2007-12-06 2011-02-24 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Coated article
JP2014184521A (en) * 2013-03-25 2014-10-02 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool

Also Published As

Publication number Publication date
JP2771336B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US5310605A (en) Surface-toughened cemented carbide bodies and method of manufacture
KR920001390B1 (en) Surface-coated cemented carbide and a process therefor
EP0438916B2 (en) Coated cemented carbides and processes for the production of same
JP2985300B2 (en) Hard layer coated cermet
KR101353651B1 (en) Sintered cemented carbides using vanadium as gradient former
US5283030A (en) Coated cemented carbides and processes for the production of same
JP2578679B2 (en) TiCN-based cermet
JP2771337B2 (en) Coated TiCN-based cermet
EP0996757B1 (en) Titanium based carbonitride alloy with nitrided surface zone
JPH04231466A (en) Coated ticn-base cermet
JPH0293036A (en) Ticn-base cermet and its manufacture
JP4069749B2 (en) Cutting tool for roughing
JPH10237650A (en) Wc base cemented carbide and its production
JP2828511B2 (en) Surface coated TiCN based cermet
JPH06248385A (en) Ticn based cermet
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP2766079B2 (en) Coated TiCN-based cermet
JP2828512B2 (en) Coated TiCN-based cermet
JPH0547633B2 (en)
JPH06336634A (en) Surface-coated cermet
JP2796002B2 (en) cermet
JP3027991B2 (en) Hard layer coated tungsten carbide based cemented carbide cutting tool
JPS62278267A (en) Surface-coated ticn cermet
JPH024972A (en) Surface-coated cermet for cutting tool
JPS63103071A (en) Surface coated sintered hard alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees