JPH0423112B2 - - Google Patents

Info

Publication number
JPH0423112B2
JPH0423112B2 JP57016679A JP1667982A JPH0423112B2 JP H0423112 B2 JPH0423112 B2 JP H0423112B2 JP 57016679 A JP57016679 A JP 57016679A JP 1667982 A JP1667982 A JP 1667982A JP H0423112 B2 JPH0423112 B2 JP H0423112B2
Authority
JP
Japan
Prior art keywords
preheating
switching element
circuit
preheating plug
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57016679A
Other languages
Japanese (ja)
Other versions
JPS58135372A (en
Inventor
Hideo Kawamura
Masahiro Oosawa
Jitsuo Kasatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Isuzu Motors Ltd
Original Assignee
Fuji Electric Co Ltd
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Isuzu Motors Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1667982A priority Critical patent/JPS58135372A/en
Publication of JPS58135372A publication Critical patent/JPS58135372A/en
Publication of JPH0423112B2 publication Critical patent/JPH0423112B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/022Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷機状態にあるエンジン、特にデイ
ーゼルエンジンの始動を容易にするために用いら
れる予熱栓の予熱栓加熱制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a preheating plug heating control device for a preheating plug used to facilitate starting of a cold engine, particularly a diesel engine.

[従来の技術] 冷機状態にあるエンジンはスタータを起動する
だけでは始動しにくいので、予熱栓をエンジンに
設け、エンジンの始動時に燃焼室内で予熱栓を予
定温度に加熱した後スタータで起動をかけるける
ことが行われている。
[Conventional technology] Since it is difficult to start a cold engine just by starting the starter, a preheating plug is installed in the engine, and when the engine is started, the preheating plug is heated to a predetermined temperature in the combustion chamber, and then the starter is used to start the engine. There is a lot of work going on.

このような従来例を挙げると、実開昭55−
112027号公報には、グロープラグの予熱時間を電
源電圧の変化量により制御し電圧上昇時には通電
時間を短縮し、低下時には通電時間を延長すると
いう制御装置が記載されている。
An example of such a conventional example is the 55th Utility Model
Publication No. 112027 describes a control device that controls the preheating time of a glow plug based on the amount of change in power supply voltage, shortens the energization time when the voltage increases, and extends the energization time when the voltage decreases.

特開昭55−101771号公報には、デイーゼルエン
ジンの低温時の始動性を改善し黒煙の発生を抑え
機関停止を防ぐためにエンジン始動後も引続きグ
ロープラグ保温のため通電を行い、通電時間はコ
ンデンサへの充電時間により制御し、かつ冷却水
温度が一定値以上になれば通電を中止するととも
に、予熱は保温時より高電圧で行ない予熱時間を
短縮するという制御装置が記載されている。
Japanese Unexamined Patent Publication No. 55-101771 discloses that in order to improve the startability of diesel engines at low temperatures, suppress the generation of black smoke, and prevent the engine from stopping, the glow plug is continuously energized to keep it warm even after the engine has started, and the energization time is A control device is described that controls the capacitor by charging time, stops energization when the cooling water temperature exceeds a certain value, and performs preheating at a higher voltage than during warming to shorten the preheating time.

特公昭56−54473号公報には、グロープラグと
電源との間に開閉素子TRを接続し発振回路らの
信号により、素子の開閉を行ないプラグに断続電
流を流し、プラグ温度上昇に伴なう抵抗値の増加
により素子の開閉周期を変化させプラグ温度を設
定温度に保持するという制御装置が記載されてい
る。
Japanese Patent Publication No. 56-54473 discloses that a switching element TR is connected between a glow plug and a power source, and the element is opened and closed by signals from an oscillation circuit, causing an intermittent current to flow through the plug, and as the temperature of the plug increases. A control device is described that maintains the plug temperature at a set temperature by changing the opening/closing cycle of an element by increasing the resistance value.

実開昭56−159677号公報には、グロープラグの
抵抗値と冷却水温とからエンジン始動時の暖機状
況を寒冷、常温、高温等に分け、プラグへの通電
時間を変化させて予熱時間を最小限に短縮すると
ともに、抵抗値は一定電流を流しプラグの電圧降
下量により求めるという制御装置が記載されてい
る。
Utility Model Application Publication No. 56-159677 discloses that the warm-up condition at engine start is divided into cold, normal temperature, high temperature, etc. based on the resistance value of the glow plug and the cooling water temperature, and the preheating time is determined by changing the time when the plug is energized. A control device is described in which the resistance value is determined by the amount of voltage drop across the plug while flowing a constant current.

[発明が解決しようとする問題点] 前記従来の制御装置の予熱栓は、始動時にごく
短時間で設定予熱温度まで加熱し、その設定予熱
温度をエンジン始動が終了するまで保持し続けな
ければならない。このような予熱栓には一般に抵
抗線が用いられており、この抵抗線には予熱時間
を短縮するため正の抵抗温度係数を持つものが採
り入れられている。そして、予熱栓が設定予熱温
度以上に加熱されないよう温度制御するために、
予熱栓に電流供給後に予熱栓の抵抗値を検出し、
その抵抗値が設定予熱温度における予熱栓の抵抗
値と一致するところで予熱栓への電流供給を停止
することが行われている。
[Problems to be Solved by the Invention] The preheating plug of the conventional control device has to heat up to the set preheating temperature in a very short time at the time of starting, and must continue to maintain the set preheating temperature until the engine starts. . A resistance wire is generally used in such a preheating plug, and the resistance wire has a positive temperature coefficient of resistance in order to shorten the preheating time. Then, in order to control the temperature so that the preheating plug does not get heated above the set preheating temperature,
Detects the resistance value of the preheating plug after supplying current to the preheating plug,
Current supply to the preheating plug is stopped when the resistance value matches the resistance value of the preheating plug at the set preheating temperature.

このような始動から設定予熱温度までに至る急
速加熱に要する到達時間は、一定であることが望
ましい。
It is desirable that the time required for rapid heating from startup to the set preheating temperature be constant.

即ち、スタートスイツチを動作してからエンジ
ンが設定予熱栓温度に達し、スタータが起動さ
れ、エンジンが始動するまでの時間に長短が生じ
ると、操作者はいら立ち、再度スタートスイツチ
を動作する等の手間をかけ、またエンジンの性能
を疑う恐れもあり、エンジン始動までの時間が一
定であることが要求される。このため、予熱栓の
急速加熱動作に対しても、設定予熱温度に到るま
での到達時間が一定であることが要求されるが、
エンジンの回転により充電される電源としてのバ
ツテリーを予熱栓の加熱に利用する場合には、エ
ンジンが回転していないと電源が充電されないの
で、電圧の降下となり、予熱栓へ印加される電圧
が変動し易い。このように電圧が変動すると、予
熱栓に流れる電流も変化し、従つて単位時間当り
の加熱量が異なつて、到達時間が変わつてしまう
という問題が生じる。
In other words, if there is a long or short time between turning the start switch, the engine reaching the set preheating valve temperature, the starter being activated, and the engine starting, the operator will become frustrated and have to take the trouble of turning the start switch again. In addition, there is a risk of doubting the performance of the engine, so it is required that the time until the engine starts be constant. For this reason, even in the rapid heating operation of the preheating plug, it is required that the time taken to reach the set preheating temperature is constant.
When using a battery as a power source that is charged by the rotation of the engine to heat the preheating plug, the power source will not be charged unless the engine is rotating, resulting in a voltage drop and the voltage applied to the preheating plug will fluctuate. Easy to do. When the voltage fluctuates in this way, the current flowing through the preheating plug also changes, resulting in a problem in that the amount of heating per unit time differs and the arrival time changes.

本発明の目的は、電源電圧に応じて予熱栓に電
流を流す開閉素子TRのオン期間の時間幅を決定
して、設定予熱温度への到達時間を電源電圧の変
動にかかわらず一定にすることにより、それによ
つてエンジンの始動までの所要時間を一定にする
ことができ、また予熱栓温度検出に定電流を用い
ることにより、従来の電源電流を用いるものに比
較して正確に温度検出ができ、かつ電圧検出用抵
抗を不要とすることにより、電源電流を温度検出
のために消費せず、特に車両用エンジンのように
限られた電源しか具備しない場合に有効であり、
さらに、前記開閉素子制御回路11により前記開
閉素子TRからの予熱栓への給電と前記定電流回
路CCからの予熱栓への給電を択一的に制御せし
め、前記開閉素子TRと前記定電流回路CCの同時
給電を行わず電流の浪費を防止するとともに、前
記開閉素子TRと前記定電流回路CCとからなる予
熱栓に至るまでの給電回路部分の共通化が可能と
なり、前記開閉素子TRと前記定電流回路CCの耐
久性を向上せしめ、かつ回路構成が簡潔で信頼性
のある予熱栓加熱制御装置を提供することにあ
る。
The purpose of the present invention is to determine the duration of the on-period of the switching element TR that causes current to flow through the preheating plug according to the power supply voltage, and to make the time required to reach the set preheating temperature constant regardless of fluctuations in the power supply voltage. As a result, the time required to start the engine can be kept constant, and by using a constant current to detect the temperature of the preheating plug, temperature can be detected more accurately than with conventional systems that use power supply current. , and by eliminating the need for a voltage detection resistor, power supply current is not consumed for temperature detection, which is particularly effective when only a limited power supply is provided, such as a vehicle engine,
Further, the switching element control circuit 11 selectively controls power supply from the switching element TR to the preheating plug and power supply from the constant current circuit CC to the preheating plug, so that the switching element TR and the constant current circuit It is possible to prevent waste of current by not feeding the CC simultaneously, and to share the power supply circuit part up to the preheating plug consisting of the switching element TR and the constant current circuit CC. It is an object of the present invention to provide a preheating plug heating control device that improves the durability of a constant current circuit CC, has a simple circuit configuration, and is reliable.

[問題点を解決するための手段] 前記目的を達成するために、本発明の予熱栓加
熱制御装置は、基準電圧Vaと電源電圧Voとの比
を算出する電圧レベル判定回路12と、該判定回
路12からの電圧比により予熱栓GPが設定予熱
温度Taに到達する到達時間t1を一定にするよう
予熱栓加熱期間であるオン期間aの時間幅ta及び
オフ期間bの時間幅tbを決定する時間幅設定回路
13と、該設定回路13からの前記時間幅ta,tb
に応じて断続的に駆動信号DVとタイミングパル
スTPとを交互に出力する開閉素子制御回路11
と、該開閉素子制御回路11の駆動信号DVによ
り電源電流を予熱栓GPに給電する開閉素子TR
と、前記タイミングパルスTPによる開閉素子
TRのオフ期間bに予熱栓GPに定電流を給電す
る予熱栓温度検出用定電流回路CCと、定電流給
電時の測定電圧値etが設定電圧値es以上のとき前
記開閉素子制御回路11に駆動信号DVの出力を
禁止する禁止信号STを与える設定温度比較回路
10とからなるものである。
[Means for Solving the Problems] In order to achieve the above object, the preheating plug heating control device of the present invention includes a voltage level determination circuit 12 that calculates the ratio between the reference voltage Va and the power supply voltage Vo, and a voltage level determination circuit 12 that calculates the ratio between the reference voltage Va and the power supply voltage Vo. Based on the voltage ratio from the circuit 12, the time width ta of the on period a and the time width tb of the off period b, which are the preheating plug heating periods, are determined so that the arrival time t 1 for the preheating plug GP to reach the set preheating temperature Ta is constant. and a time width setting circuit 13 for setting the time widths ta, tb from the setting circuit 13.
A switching element control circuit 11 that alternately outputs a drive signal DV and a timing pulse TP intermittently according to the
and a switching element TR that supplies power supply current to the preheating plug GP by the drive signal DV of the switching element control circuit 11.
and the switching element by the timing pulse TP.
a constant current circuit CC for detecting the preheating plug temperature that supplies constant current to the preheating plug GP during the off period b of TR; It consists of a set temperature comparison circuit 10 that provides a prohibition signal ST that prohibits the output of the drive signal DV.

[作用] 前記構成を有する本発明の予熱栓加熱制御装置
の作用は、次の通りである。
[Function] The function of the preheating plug heating control device of the present invention having the above configuration is as follows.

スタートスイツチから起動信号が開閉素子制御
回路11に入力されると、駆動信号DVを発生
し、開閉素子TRをオン/オフ駆動、即ち断続駆
動する。一方、開閉素子制御回路11からは駆動
信号DVの立下りで発生されるタイミングパルス
TPが予熱栓温度検出用定電流回路CCへ与えられ
るので、予熱栓温度検出用定電流回路CCからは
開閉素子TRのオフ期間bに定電流が出力され
る。従つて断続の1周期においては、開閉素子
TRのオン期間aには、電源Eの電流が開閉素子
TRを介し予熱栓GPに供給され、開閉素子TRの
オフ期間bには、前記定電流回路CCの電流が予
熱栓GPに供給されることになる。電源Eからの
電流により予熱栓GPは発熱し、温度を上昇せし
めるとともに、予熱栓GPで生ずる抵抗値も増加
する。開閉素子TRのオフ期間bには、前記定電
流回路CCから供給される定電流によつて、予熱
栓GPの電圧降下による測定電圧値etが前記差動
アンプAPから出力される。測定電圧値etの変化
は抵抗値変化と比例し、従つて測定電圧値etは温
度の関数とみなされる。この測定電圧値etは設定
温度比較回路10に入力され、設定された電圧値
esと比較される。この比較によつて、es>et、即
ち予熱栓GPが設定予熱温度Taに達していないと
き検出されると、次の1周期に開閉素子TRをオ
ンする駆動信号DVと、予熱栓温度検出用定電流
回路CCから定電流を出力せしめるタイミングパ
ルスTPとを交互に出力するように開閉素子制御
回路11を制御する。反対に、予熱栓が設定予熱
温度に達すると、比較結果はet≧esとなるので、
次の1周期には開閉素子TRをオンするパルスの
出力を禁止する禁止信号STを開閉素子制御回路
11に出力する。オフ期間bの測定電圧値etは駆
動信号DVの印加による予熱栓GPの加熱により
上昇していき、設定電圧値esに達したことがオフ
期間bに検出されると、禁止信号STを発し、駆
動信号DVの点線で示すパルス出力が禁止され、
従つて前記開閉素子TRがオンにならず、予熱栓
GPには加熱のための電流は付与されない。次の
周期のオフ期間bで、予熱栓GPの温度が設定予
熱温度Ta以下となることが検知されると、即ち
比較結果としてet<esが検出されると、禁止信号
STが出力されないので、開閉素子制御回路11
は次の周期にはオン期間aを示すパルスTPを出
力する。このようにして、予熱栓GPは始動信号
の到来時点から設定予熱温度Taまで加熱制御さ
れ、しかも設定予熱温度Taに達すると、この温
度に保持制御される。
When a start signal is input from the start switch to the switching element control circuit 11, a drive signal DV is generated, and the switching element TR is driven on/off, that is, intermittently driven. On the other hand, a timing pulse generated from the switching element control circuit 11 at the falling edge of the drive signal DV
Since TP is applied to the preheating plug temperature detection constant current circuit CC, a constant current is output from the preheating plug temperature detection constant current circuit CC during the off period b of the switching element TR. Therefore, in one cycle of intermittent switching, the switching element
During the on-period a of TR, the current of the power source E flows through the switching element.
The current of the constant current circuit CC is supplied to the preheating plug GP via TR, and during the off period b of the switching element TR, the current of the constant current circuit CC is supplied to the preheating plug GP. The preheating plug GP generates heat due to the current from the power source E, raising the temperature and also increasing the resistance value generated in the preheating plug GP. During the off period b of the switching element TR, the measured voltage value et due to the voltage drop of the preheating plug GP is output from the differential amplifier AP by the constant current supplied from the constant current circuit CC. The change in the measured voltage value et is proportional to the resistance value change, and therefore the measured voltage value et can be considered as a function of temperature. This measured voltage value et is input to the set temperature comparison circuit 10, and the set voltage value
compared to es. Through this comparison, if it is detected that es>et, that is, the preheating plug GP has not reached the set preheating temperature Ta, the drive signal DV that turns on the switching element TR in the next cycle, and the drive signal DV for preheating plug temperature detection. The switching element control circuit 11 is controlled so as to alternately output timing pulses TP that cause the constant current circuit CC to output a constant current. On the other hand, when the preheating plug reaches the set preheating temperature, the comparison result becomes et≧es, so
In the next cycle, a prohibition signal ST is output to the switching element control circuit 11 to inhibit the output of the pulse that turns on the switching element TR. The measured voltage value et during the off period b increases as the preheating plug GP is heated by the application of the drive signal DV, and when it is detected during the off period b that it has reached the set voltage value es, a prohibition signal ST is issued. The pulse output shown by the dotted line of the drive signal DV is prohibited,
Therefore, the switching element TR does not turn on, and the preheating plug does not turn on.
No current is applied to the GP for heating. In the off period b of the next cycle, when it is detected that the temperature of the preheating plug GP is lower than the set preheating temperature Ta, that is, when et<es is detected as a comparison result, a prohibition signal is sent.
Since ST is not output, the switching element control circuit 11
outputs a pulse TP indicating the on period a in the next cycle. In this way, the preheating plug GP is heated and controlled up to the set preheating temperature Ta from the time the start signal arrives, and when it reaches the set preheating temperature Ta, it is maintained at this temperature.

[実施例] 以下、本発明の予熱栓加熱制御装置を図面につ
いて詳細に説明する。
[Example] Hereinafter, the preheating plug heating control device of the present invention will be described in detail with reference to the drawings.

Eは電源としての車輌のバツテリであり、TR
は開閉素子であり、パワートランジスタ等の半導
体から成る電気的スイツチや、リレー等の機械的
スイツチを用いることができ、必要とする動作速
度に応じて適宜選択できる。開閉素子TRは後述
する制御部1によつて、そのオン期間に予熱栓
GPに電源Eの電流を流し、オフ期間に電流の供
給を停止する。GPは予熱栓としてのグロープラ
グであり、エンジンのシリンダ数と同数だけ設け
られ、本実施例では、4つの予熱栓が設けられて
いる。予熱栓GPは発熱体としての金属抵抗線を
有し、抵抗線の抵抗温度特性は正の特性即ち、温
度が高くなるにつれて抵抗が高くなる特性を持つ
ている。CCは予熱栓温度検出用定電流回路で、
制御部1の開閉素子制御回路11のタイミングパ
ルスTPを受け、開閉素子TRのオフ期間に予熱
栓GPに定電流iを流すものである。APは差動ア
ンプで、予熱栓GPに電流が流れることにより生
ずる電圧降下を電圧値etとして出力するもので、
入力用バランス抵抗R1,R2を備えている。10
は設定温度比較回路で、所望の設定予熱温度、例
えば900℃における予熱栓GPの抵抗値rsによつて
定まる電圧値es(=i×rs)が設定乃至記憶され、
差動アンプAPで出力されるオフ期間の測定電圧
値etと設定電圧値esを比較し、et≧esの場合に後
述する開閉素子制御回路11に禁止信号STを与
えるものである。11は開閉素子制御回路で、図
示しないスタートスイツチからのエンジン始動信
号によつて動作し、開閉素子TRのオン、オフを
制御する第2図の駆動信号DVを発生する。駆動
信号DVの1周期は開閉素子TRをオンして予熱
栓GPを加熱する加熱期間(オン期間)aと、開
閉素子TRをオフし定電流によつて予熱栓GPの
温度を検出する検出期間(オフ期間)bとからな
り、加熱期間(オン期間)aにパルスが与えられ
れば開閉素子TRはオンする。その断続周期は、
予じめ求めた予熱栓温度−経過時間特性から求め
た温度上昇値/時間値と設定予熱温度の許容幅か
ら決定される。本実施例では、断続周期を約
15msecとしてある。また開閉素子制御回路11
はパルス発生回路を具備しており、前記駆動信号
DVを発生するとともに、予熱栓温度検出用定電
流回路CCを駆動するタイミングパスルTPを発生
する。タイミングパルスTPは第2図の如き、駆
動信号DVの加熱期間(オン期間)aの立下りに
おいて発生され、駆動信号DVの検出期間(オフ
期間)bに予熱栓温度検出用定電流回路CCから
定電流を出力せしめる。12は電圧レベル判定回
路で、予熱栓GPに印加される電源Eの電圧値vo
を受け、設定された比較電圧値vaと比較し、い
ずれの電圧レベルにあるかを判定するものであ
る。13は時間幅設定回路で、電圧レベル判定回
路12の判定出力、即ち、比較電圧値vaと電圧
値voとの電圧比を受け、加熱期間(オン期間)
aの時間幅taとオフ期間bの時間幅tbとを判定出
力の値に応じて出力し、開閉素子制御回路11か
ら出力される駆動信号DVの両期間の時間幅ta,
tbを制御するものである。
E is the battery of the vehicle as a power source, TR
is a switching element, which can be an electrical switch made of a semiconductor such as a power transistor, or a mechanical switch such as a relay, which can be selected as appropriate depending on the required operating speed. The opening/closing element TR is controlled by the control unit 1, which will be described later, to turn on the preheating valve during its ON period.
A current from power source E is passed through the GP, and the current supply is stopped during the off period. GP is a glow plug as a preheating plug, and the same number of glow plugs as the number of cylinders of the engine are provided, and in this embodiment, four preheating plugs are provided. The preheating plug GP has a metal resistance wire as a heating element, and the resistance temperature characteristic of the resistance wire is positive, that is, the resistance increases as the temperature increases. CC is a constant current circuit for preheating plug temperature detection.
In response to the timing pulse TP of the switching element control circuit 11 of the control unit 1, a constant current i is applied to the preheating plug GP during the off period of the switching element TR. AP is a differential amplifier that outputs the voltage drop caused by current flowing through the preheating plug GP as a voltage value et.
Equipped with input balance resistors R 1 and R 2 . 10
is a set temperature comparison circuit, in which a voltage value es (= i × rs) determined by the resistance value rs of the preheating plug GP at a desired set preheating temperature, for example, 900°C, is set or stored;
The measured voltage value et during the off period outputted by the differential amplifier AP is compared with the set voltage value es, and when et≧es, a prohibition signal ST is given to the switching element control circuit 11, which will be described later. Reference numeral 11 denotes a switching element control circuit which is operated in response to an engine start signal from a start switch (not shown) and generates a drive signal DV shown in FIG. 2 for controlling ON/OFF of the switching element TR. One cycle of the drive signal DV consists of a heating period (on period) a in which the switching element TR is turned on to heat the preheating plug GP, and a detection period in which the switching element TR is turned off and the temperature of the preheating plug GP is detected using a constant current. (off period) b, and if a pulse is given during the heating period (on period) a, the switching element TR is turned on. Its intermittent period is
It is determined from the temperature rise value/time value obtained from the preheating plug temperature-elapsed time characteristic obtained in advance and the allowable range of the set preheating temperature. In this example, the intermittent period is approximately
It is set as 15msec. Also, the switching element control circuit 11
is equipped with a pulse generation circuit, and the drive signal
In addition to generating DV, it also generates a timing pulse TP that drives the constant current circuit CC for preheating plug temperature detection. As shown in Fig. 2, the timing pulse TP is generated at the falling edge of the heating period (on period) a of the drive signal DV, and is generated from the constant current circuit CC for preheating plug temperature detection during the detection period (off period) b of the drive signal DV. Outputs constant current. 12 is a voltage level determination circuit, which determines the voltage value vo of the power supply E applied to the preheating plug GP.
is received and compared with a set comparison voltage value va to determine which voltage level it is at. 13 is a time width setting circuit which receives the determination output of the voltage level determination circuit 12, that is, the voltage ratio between the comparison voltage value va and the voltage value vo, and determines the heating period (on period).
The time width ta of the period a and the time width tb of the off period b are output according to the value of the judgment output, and the time width ta of both periods of the drive signal DV output from the switching element control circuit 11 is outputted.
It controls tb.

次に、本発明による予熱栓加熱制御装置の回路
動作を説明する。
Next, the circuit operation of the preheating plug heating control device according to the present invention will be explained.

図示ないしスタートスイツチから起動信号が開
閉素子制御回路11に入力されると、駆動信号
DVを発生し、開閉素子TRをオン/オフ駆動、
即ち断続駆動する。一方、開閉素子制御回路11
からは駆動信号DVの立下りで発生されるタイミ
ングパルスTPが予熱栓温度検出用定電流回路CC
へ与えられるので、予熱栓温度検出用定電流回路
CCからは開閉素子TRのオフ期間bに定電流が出
力される。従つて断続の1周期においては、開閉
素子TRのオン期間aには、電源Eの電流が開閉
素子TRを介し予熱栓GPに供給され、開閉素子
TRのオフ期間bには、予熱栓温度検出用定電流
回路CCの電流が予熱栓GPに供給されることにな
る。電流Eからの電流により予熱栓GPは発熱し、
温度を上昇せしめるとともに、予熱栓GPで生ず
る抵抗値も増加する。開閉素子TRのオフ期間に
は、予熱栓温度検出用定電流回路CCから供給さ
れる定電流によつて、予熱栓GPの電圧降下によ
る電圧値etが差動アンプAPから出力される。電
圧値etの変化は抵抗値変化と比例し、従つて電圧
値etは温度の関数とみなされる。この電圧値etは
設定温度比較回路10に入力され、設定された電
圧値esと比較される。この比較によつて、es>
et、即ち予熱栓GPが設定予熱温度に達していな
いと検出されると、次の1周期に開閉素子TRを
オンするパルスを出力するように開閉素子制御回
路11を制御する。反対に、予熱栓GPが設定予
熱温度に達すると、比較結果はet≧esとなるの
で、次の1周期には開閉素子TRをオンするパル
スの出力を禁止する禁止信号STを開閉素子制御
回路11に出力する。第2図に示すように、オフ
期間bの電圧値etは駆動信号DVの印加による予
熱栓GPの加熱により上昇していき、設定電圧値
esに達したことがオフ期間bに検出されると、禁
止信号STを発し、第2図の駆動信号DVの点線
で示すパルス出力が禁止され、従つて開閉素子
TRがオンにならず、予熱栓GPには加熱のため
の電流は付与されない。次の周期のオフ期間b
で、予熱栓GPの温度が設定予熱温度以下となる
ことが検知されると、即ち比較結果としてet<es
が検出されると、禁止信号STが出力されないの
で、開閉素子制御回路11は次の周期にはオン期
間aを示すパルスを出力する。このようにして、
予熱栓GPは始動信号の到来時点から設定予熱温
度まで加熱制御され、しかも設定予熱温度に達す
ると、この温度に保持制御される。このように本
実施例では、温度検出に定電流を用いているた
め、従来の電源Eよりの電流を用いるものに比
し、正確に温度検出が出来、しかも電圧検出用抵
抗を設けていないので、電源Eの電流を温度検出
のために消費せず、特にエンジン等の限られた電
源しか有しない場合に有効である。
When a start signal is input from a start switch (not shown) to the switching element control circuit 11, the drive signal
Generates DV and turns on/off the switching element TR,
That is, it is driven intermittently. On the other hand, the switching element control circuit 11
The timing pulse TP generated at the falling edge of the drive signal DV is the constant current circuit CC for detecting the temperature of the preheating plug.
constant current circuit for preheating plug temperature detection.
A constant current is output from CC during the off period b of the switching element TR. Therefore, in one intermittent cycle, during the ON period a of the switching element TR, the current of the power source E is supplied to the preheating plug GP via the switching element TR, and the switching element
During the off period b of TR, the current of the constant current circuit CC for detecting the preheating plug temperature is supplied to the preheating plug GP. The preheating plug GP generates heat due to the current from the current E,
As the temperature increases, the resistance value generated at the preheating plug GP also increases. During the off period of the switching element TR, the voltage value et due to the voltage drop of the preheating plug GP is output from the differential amplifier AP by the constant current supplied from the constant current circuit CC for detecting the temperature of the preheating plug GP. Changes in voltage value et are proportional to resistance value changes, and therefore voltage value et can be considered as a function of temperature. This voltage value et is input to the set temperature comparison circuit 10 and compared with the set voltage value es. By this comparison, es>
et, that is, when it is detected that the preheating plug GP has not reached the set preheating temperature, the switching element control circuit 11 is controlled to output a pulse that turns on the switching element TR in the next cycle. On the other hand, when the preheating plug GP reaches the set preheating temperature, the comparison result becomes et≧es, so in the next cycle, the switching element control circuit generates a prohibition signal ST that prohibits the output of the pulse that turns on the switching element TR. Output to 11. As shown in Fig. 2, the voltage value et during the off period b increases as the preheating plug GP is heated by the application of the drive signal DV, and the set voltage value
When it is detected during the off period b that es has been reached, a prohibition signal ST is generated, and the pulse output shown by the dotted line of the drive signal DV in Fig. 2 is prohibited, and therefore the switching element
TR is not turned on and no current is applied to the preheating plug GP for heating. Off period b of next cycle
When it is detected that the temperature of the preheating plug GP is lower than the set preheating temperature, that is, as a comparison result, et<es
When is detected, the prohibition signal ST is not output, so the switching element control circuit 11 outputs a pulse indicating the on period a in the next cycle. In this way,
The preheating plug GP is heated and controlled to a set preheating temperature from the time the start signal arrives, and when the preheating temperature reaches the set preheating temperature, it is maintained at this temperature. In this way, in this example, since a constant current is used for temperature detection, the temperature can be detected more accurately than the conventional one that uses current from the power source E, and since no voltage detection resistor is provided. , the current of the power source E is not consumed for temperature detection, and is particularly effective when there is only a limited power source, such as an engine.

さて、電源Eの電圧が常に一定ならば、設定予
熱温度Taに達する到達時間t1も常に同一である。
Now, if the voltage of the power source E is always constant, the arrival time t1 to reach the set preheating temperature Ta is also always the same.

しかし、電源Eは車輌のバツテリを利用する場
合には、この電圧は経時的に変動してしまい、到
達時間t1が変動してくる。
However, if the power source E uses the battery of the vehicle, this voltage will fluctuate over time, and the arrival time t1 will fluctuate.

ここで、最初に電源電圧をVaとして設定した
オン期間aの時間幅をta、オフ期間bの時間幅を
tbとし、予熱栓GPの抵抗値rsを簡単のため一定
とすると、 ta時間に予熱栓GPに与えられるエネルギーPa
は、 Pa=ta・Va2/rs ……(1) で表わされる。ここで電源電圧がVbであるとす
れば、同じ時間taに予熱栓GPに与えられるエネ
ルギーPbは、 Pb=ta・Vb2/rs ……(2) となり、VbがVaより大なら、Pb>Paとなり、
VbがVaより小なら、Pb<Paとなる。従つて、
第3図の予熱栓温度−経過時間特性図に示すよう
に、電源電圧をVaで設定した温度特性カーブA
に対し、Vb>Vaなら温度特性カーブはC,Vb
<Vaなら温度特性カーブはBとなり、到達時間
t′1,t″1は予定到達時間t1と相違してくる。
Here, the time width of the on period a, which is initially set as the power supply voltage Va, is ta, and the time width of the off period b is
If tb is the resistance value rs of the preheating plug GP, which is constant for simplicity, then the energy Pa given to the preheating plug GP during time ta is
is expressed as Pa=ta・Va 2 /rs...(1). Here, if the power supply voltage is Vb, the energy Pb given to the preheating plug GP during the same time ta is Pb=ta・Vb 2 /rs...(2) If Vb is greater than Va, then Pb> becomes Pa,
If Vb is smaller than Va, Pb<Pa. Therefore,
As shown in the preheating plug temperature vs. elapsed time characteristic diagram in Figure 3, the temperature characteristic curve A with the power supply voltage set at Va
On the other hand, if Vb>Va, the temperature characteristic curve is C, Vb
<Va, the temperature characteristic curve becomes B, and the arrival time
t′ 1 and t″ 1 are different from the scheduled arrival time t 1 .

この温度特性カーブB,Cを温度特性カーブA
に合致させ、到達時間を予定到達時間t1にするに
は、(2)式で示すエネルギーPbが(1)式のエネルギ
ーPaと一致させれば良い。ここで電圧値Vb、と
抵抗値rsは変化出来ないので、オン期間aを変更
する。前記(1)式、(2)式より求めるオン期間aの時
間幅をt′aとすれば、 Pa=Pb taVa2/rs=t′aVb2/rs ∴t′a=(Va/Vb)2ta ……(3) 実際には、抵抗値rsは時間tの函数であるか
ら、少し複雑な関係式となるが、一般には前記(3)
式で充分である。
These temperature characteristic curves B and C are the temperature characteristic curve A.
In order to make the arrival time match the expected arrival time t 1 , the energy Pb shown in equation (2) should match the energy Pa in equation (1). Here, since the voltage value Vb and the resistance value rs cannot be changed, the on-period a is changed. If the time width of the on-period a determined from equations (1) and (2) above is t′a, Pa=Pb taVa 2 /rs=t′aVb 2 /rs ∴t′a=(Va/Vb) 2 ta ...(3) In reality, the resistance value rs is a function of time t, so the relational expression is a little complicated, but in general, the above (3)
Equation is sufficient.

これを行うため、電圧レベル判定回路12は開
閉素子TRがオン期間に予熱栓GPに電源Eより
印加される電圧voを受け、オン期間taを定めた
基準の比較電圧値vaとの電圧比(va/vo)を演
算する。
In order to do this, the voltage level determination circuit 12 receives the voltage vo applied from the power supply E to the preheating plug GP during the ON period of the switching element TR, and receives the voltage vo applied to the preheating plug GP from the power supply E during the ON period, and the voltage ratio ( va/vo).

この電圧比は時間幅設定回路13に送られ、こ
の電圧比を基に前記(3)式の演算を実行し、電圧値
voに応じたオン期間aの時間幅t′aを出力する。
また、1周期の時間幅tは固定であるから、オフ
期間bの時間幅t′bも(t−t′a)として出力しう
る。このオン期間aの時間幅t′aは開閉素子制御
回路11に出力される。開閉素子制御回路11で
はパルス発生回路で駆動信号DVを発生するもの
であるから、パルス発生回路の出力パルス幅を時
間幅t′aとしてやれば良い。このようにパルス幅
を変更しうるパルス発生回路は周知のように、1
周期分の容量のカウンタと、時間幅がセツトされ
るレジスタと、レジスタの値とカウンタの値を比
較する比較回路と、比較回路の出力でセツト、リ
セツトされるフリツプフロツプ回路とで構成し、
カウンタでクロツクを計数し、比較回路からレジ
スタとカウンタの値の一致が出力されるとフリツ
プフロツプ回路をリセツトし、カウンタの1周期
計時のオーバーフロー出力でフリツプフロツプ回
路をセツトして、フリツプフロツプ回路の出力を
駆動信号DVとする構成であれば、レジスタにセ
ツトされる時間幅値により到達時間t1を一定にす
るオン期間aの時間幅を変更しうるものである。
This voltage ratio is sent to the time width setting circuit 13, and based on this voltage ratio, the calculation of the above equation (3) is executed, and the voltage value is
The time width t'a of the on period a corresponding to vo is output.
Furthermore, since the time width t of one cycle is fixed, the time width t'b of the off period b can also be output as (t-t'a). The time width t'a of this on-period a is output to the switching element control circuit 11. Since the switching element control circuit 11 uses a pulse generation circuit to generate the drive signal DV, the output pulse width of the pulse generation circuit may be set as the time width t'a. As is well known, the pulse generation circuit that can change the pulse width in this way is
It consists of a counter with a capacity for a period, a register in which the time width is set, a comparator circuit that compares the register value and the counter value, and a flip-flop circuit that is set and reset by the output of the comparator circuit.
The counter counts the clocks, and when the comparison circuit outputs a match between the register and counter values, the flip-flop circuit is reset, and the overflow output from the counter sets the flip-flop circuit, driving the output of the flip-flop circuit. If the signal DV is used, the time width of the on-period a that keeps the arrival time t1 constant can be changed by the time width value set in the register.

[発明の効果] 以上のように、本発明の予熱栓加熱制御装置
は、基準電圧Vaと電源電圧Voとの比を算出する
電圧レベル判定回路12と、該判定回路12から
の電圧比により予熱栓GPが設定予熱温度Taに到
達する到達時間t1を一定にするよう予熱栓加熱期
間であるオン期間aの時間幅ta及びオフ期間bの
時間幅tbを決定する時間幅設定回路13と、該設
定回路13からの前記時間幅ta,tbに応じて断続
的に駆動信号DVとタイミングパルスTPとを交
互に出力する開閉素子制御回路11と、該開閉素
子制御回路11の駆動信号DVにより電源電流を
予熱栓GPに給電する開閉素子TRと、前記タイ
ミングパルスTPにより開閉素子TRのオフ期間
bに予熱栓GPに定電流を給電する予熱栓温度検
出用定電流回路CCと、定電流給電時の測定電圧
値etが設定電圧es以上のとき前記開閉素子制御回
路11に駆動信号DVの出力を禁止する禁止信号
STを与える設定温度比較回路10とからなるの
で、電源電圧に応じて予熱栓GPに電流を流す開
閉素子TRのオン期間aの時間幅が決定されるた
め、設定予熱温度への到達時間が電源電圧の変動
にかかわらず一定となり、それによつてエンジン
の始動までの所要時間を一定にすることができ、
また予熱栓温度検出に定電流を用いるここによ
り、従来の電源電流を用いるものに比較して正確
に温度検出ができ、しかも電圧検出用抵抗を設け
ることがないため、電源電流を温度検出のために
消費せず、特に車両用エンジンのように限られた
電源しか具備しない場合に有効であり、さらに、
前記開閉素子制御回路11により前記開閉素子
TRからの予熱栓GPへの給電と前記定電流回路
CCからの予熱栓GPへの給電が択一的に制御され
るため、前記開閉素子TRと前記定電流回路CCの
同時給電が行われず電流の浪費が防止されるとと
もに、前記開閉素子TRと前記定電流回路CCとか
らなる予熱栓GPに至るまでの給電回路部分の共
通化が可能となり、前記開閉素子TRと前記定電
流回路CCの耐久性が向上し、かつ回路構成が簡
潔で信頼性のある予熱栓GP加熱制御装置を提供
できる効果がある。
[Effects of the Invention] As described above, the preheating plug heating control device of the present invention includes the voltage level determination circuit 12 that calculates the ratio between the reference voltage Va and the power supply voltage Vo, and the preheating based on the voltage ratio from the determination circuit 12. a time width setting circuit 13 that determines a time width ta of an on period a and a time width tb of an off period b, which are preheating plug heating periods, so that the arrival time t 1 for the tap GP to reach the set preheating temperature Ta is constant; A switching element control circuit 11 alternately outputs a drive signal DV and a timing pulse TP intermittently according to the time widths ta and tb from the setting circuit 13, and a power supply is provided by the drive signal DV of the switching element control circuit 11. A switching element TR that supplies current to the preheating plug GP, a constant current circuit CC for detecting the temperature of the preheating plug that supplies constant current to the preheating plug GP during the off period b of the switching element TR by the timing pulse TP, and a constant current circuit CC for detecting the temperature of the preheating plug GP during the constant current power supply. a prohibition signal for prohibiting the output of the drive signal DV to the switching element control circuit 11 when the measured voltage value et is equal to or higher than the set voltage es;
Since it consists of a set temperature comparison circuit 10 that gives ST, the time width of the on-period a of the switching element TR that causes current to flow through the preheating plug GP is determined according to the power supply voltage, so the time required to reach the set preheating temperature is determined by the power supply voltage. It remains constant regardless of voltage fluctuations, thereby making it possible to keep the time required to start the engine constant.
In addition, using a constant current to detect the temperature of the preheating plug allows for more accurate temperature detection compared to conventional systems that use power supply current, and since there is no need to provide a voltage detection resistor, the power supply current can be used to detect temperature. It is especially effective in cases where there is only a limited power source, such as a vehicle engine, and furthermore,
The switching element control circuit 11 controls the switching element.
Power supply from TR to preheating plug GP and the constant current circuit
Since the power supply from CC to the preheating plug GP is selectively controlled, power is not supplied simultaneously to the switching element TR and the constant current circuit CC, thereby preventing current wastage. It becomes possible to share the power supply circuit part up to the preheating plug GP consisting of the constant current circuit CC, and the durability of the switching element TR and the constant current circuit CC is improved, and the circuit configuration is simple and reliable. It has the effect of providing a certain preheating plug GP heating control device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の予熱栓加熱制御装置の一実施
例を示すブロツク図、第2図は同実施例における
各部の動作波形図、第3図は同実施例における予
熱栓温度と経過時間の特性図である。 E……電源、TR……開閉素子、GP……予熱
栓、CC……予熱栓温度検出用定電流回路、AP…
…差動アンプ、DV……駆動信号、1……制御
部、ST……禁止信号、10……設定温度比較回
路、11……開閉素子制御回路、12……電圧レ
ベル判定回路、13……時間幅設定回路。
Fig. 1 is a block diagram showing an embodiment of the preheating plug heating control device of the present invention, Fig. 2 is an operation waveform diagram of each part in the same embodiment, and Fig. 3 is a diagram showing the preheating plug temperature and elapsed time in the same embodiment. It is a characteristic diagram. E...power supply, TR...switching element, GP...preheating plug, CC...constant current circuit for preheating plug temperature detection, AP...
... Differential amplifier, DV ... Drive signal, 1 ... Control unit, ST ... Inhibition signal, 10 ... Set temperature comparison circuit, 11 ... Switching element control circuit, 12 ... Voltage level judgment circuit, 13 ... Time width setting circuit.

Claims (1)

【特許請求の範囲】 1 基準電圧Vaと電源電圧Voとの比を算出する
電圧レベル判定回路12と、 該判定回路12からの電圧比により予熱栓GP
が設定予熱温度Taに到達する到達時間t1を一定
にするよう予熱栓加熱期間であるオン期間aの時
間幅ta及びオフ期間bの時間幅tbを決定する時間
幅設定回路13と、 該設定回路13からの前記時間幅ta,tbに応じ
て断続的に駆動信号DVとタイミングパルスTP
とを交互に出力する開閉素子制御回路11と、 該開閉素子制御回路11の駆動信号DVにより
電源電流を予熱栓GPに給電する開閉素子TRと、 前記タイミングパルスTPにより開閉素子TR
のオフ期間bに予熱栓GPに定電流を給電する予
熱栓温度検出用定電流回路CCと、 定電流給電時の測定電圧値etが設定電圧値es以
上のとき前記開閉素子制御回路11に駆動信号
DVの出力を禁止する禁止信号STを与える設定
温度比較回路10とから予熱栓加熱制御装置。
[Claims] 1. A voltage level determination circuit 12 that calculates the ratio between the reference voltage Va and the power supply voltage Vo, and a preheating plug GP based on the voltage ratio from the determination circuit 12.
a time width setting circuit 13 that determines a time width ta of an on-period a and a time width tb of an off-period b, which are preheating plug heating periods, so as to keep constant the arrival time t1 for the preheating plug to reach the set preheating temperature Ta; The drive signal DV and timing pulse TP are intermittently supplied from the circuit 13 according to the time widths ta and tb.
a switching element control circuit 11 that alternately outputs a switching element control circuit 11, a switching element TR that supplies a power supply current to a preheating plug GP according to a drive signal DV of the switching element control circuit 11, and a switching element TR that supplies power to a preheating plug GP using the timing pulse TP.
a constant current circuit CC for detecting the preheating plug temperature that supplies constant current to the preheating plug GP during the off period b of signal
A preheating plug heating control device including a set temperature comparison circuit 10 that provides a prohibition signal ST for prohibiting the output of DV.
JP1667982A 1982-02-04 1982-02-04 Control apparatus for heating of preglow plug Granted JPS58135372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1667982A JPS58135372A (en) 1982-02-04 1982-02-04 Control apparatus for heating of preglow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1667982A JPS58135372A (en) 1982-02-04 1982-02-04 Control apparatus for heating of preglow plug

Publications (2)

Publication Number Publication Date
JPS58135372A JPS58135372A (en) 1983-08-11
JPH0423112B2 true JPH0423112B2 (en) 1992-04-21

Family

ID=11922996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1667982A Granted JPS58135372A (en) 1982-02-04 1982-02-04 Control apparatus for heating of preglow plug

Country Status (1)

Country Link
JP (1) JPS58135372A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028073C2 (en) * 2000-06-07 2003-04-10 Beru Ag Method and circuit arrangement for heating a glow plug
EP1505298B1 (en) 2002-05-14 2019-07-10 NGK Spark Plug Co., Ltd. Controller of glow plug and glow plug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101771A (en) * 1979-01-25 1980-08-04 Diesel Kiki Co Ltd Auxiliary starting device for diesel engine
JPS5654473A (en) * 1979-10-12 1981-05-14 Canon Inc Electrophotographic copier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112072U (en) * 1979-01-31 1980-08-06
JPS636465Y2 (en) * 1980-04-26 1988-02-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101771A (en) * 1979-01-25 1980-08-04 Diesel Kiki Co Ltd Auxiliary starting device for diesel engine
JPS5654473A (en) * 1979-10-12 1981-05-14 Canon Inc Electrophotographic copier

Also Published As

Publication number Publication date
JPS58135372A (en) 1983-08-11

Similar Documents

Publication Publication Date Title
US4300491A (en) Control apparatus for glow plugs provided for a diesel engine
US5325038A (en) Driving apparatus for controlling an electric load in a vehicle
JPH0423112B2 (en)
JPS6234945B2 (en)
JPH0160674B2 (en)
JPS636465Y2 (en)
JPS61207874A (en) Intake heating control method of internal-combustion engine
JPS58113581A (en) Discontinuity sensing device for preheated plug
JPH021983B2 (en)
JPH0229257Y2 (en)
JPH0158343B2 (en)
KR880000398Y1 (en) Storage type feed water unit
JPS6334309B2 (en)
JP2554124B2 (en) Starting aid for direct injection diesel engine
JPS6324152B2 (en)
JPH036872Y2 (en)
JPH0351908B2 (en)
JPS59108878A (en) Glow plug control device for diesel engine
JPS6143274A (en) Control of internal combustion engine
JPS62139977A (en) Device for controlling electrification to glow plug
JPS58135370A (en) Control system for heating of preglow plug
JPS5838385A (en) Apparatus for controlling preheating of engine
JPS6211187B2 (en)
JPS58152173A (en) Controlling circuit of energizing of glow plug
JPS6161976A (en) After glow timer of start assisting device