JPH04230245A - Production of tolan derivative - Google Patents

Production of tolan derivative

Info

Publication number
JPH04230245A
JPH04230245A JP9536191A JP9536191A JPH04230245A JP H04230245 A JPH04230245 A JP H04230245A JP 9536191 A JP9536191 A JP 9536191A JP 9536191 A JP9536191 A JP 9536191A JP H04230245 A JPH04230245 A JP H04230245A
Authority
JP
Japan
Prior art keywords
formula
compound
tolan
derivative
butoxypotassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9536191A
Other languages
Japanese (ja)
Other versions
JP2885537B2 (en
Inventor
Shuzo Akiyama
秋山 修三
Shinichi Nakatsuji
慎一 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP9536191A priority Critical patent/JP2885537B2/en
Publication of JPH04230245A publication Critical patent/JPH04230245A/en
Application granted granted Critical
Publication of JP2885537B2 publication Critical patent/JP2885537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title derivative in a single step by treating a stilbene derivative with t-butoxypotassium in a polar solvent. CONSTITUTION:A compound of formula I (R1 is amino, lower alkylamino, di- lower alkylamino or lower alkoxy) is treated with t-butoxypotassium in a polar solvent (pref. dimethylformamide) into a compound of formula II (R2 is H or OH). Use of >=4 (pref. >=5) molar equivalent of the t-butoxypotassium will obtain a compound of formula III (where R2 is OH), e.g. 4-dimethylamino-3'- hydroxy-4'-nitrotolan. The compound of the formula III is useful as a nonlinear optical material, intermediate for various kinds of coloring matter, liquid crystal compound intermediate, etc.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はトラン誘導体の製造法に
関する。更に詳しくは、本発明はスチルベン誘導体から
対応するトラン誘導体および/または更に水酸基の導入
されたトラン誘導体を製造する新規な製造法に関する。 【0002】 【従来の技術】スチルベン誘導体から対応するトラン誘
導体を製造する従来技術としては、スチルベン誘導体の
エチレン基を臭素で臭素化し、次いで塩基で脱臭化水素
する方法が一般的である。しかしながらこの方法は「臭
素化」および脱臭化水素」の二段階反応であるため煩雑
であり、かつ臭素化に用いられる臭素が結果的に廃棄物
になるため高価である。またトラン誘導体の中でも、ニ
トロ基およびそのオルト位に水酸基を有する化合物は非
線形光学材料、各種色素中間体、液晶化合物中間体など
として重要な物質であるが、従来トラン誘導体のニトロ
基のオルト位に水酸基を導入することは困難であり、そ
のような物質は製造されていない。 【0003】 【発明が解決しようとする課題】本発明の目的は、スチ
ルベン誘導体から簡易かつ温和な反応条件において一段
階の反応で、対応するトラン誘導体および/またはさら
にニトロ基のオルト位に水酸基の導入されたトラン誘導
体を与える新規な製造法を提供するものである。 【0004】 【課題を解決するための手段】本発明の目的は、一般式
(I)で表されるスチルベン誘導体を極性溶媒中、t−
ブトキシカリウムで処理することにより達成され、一般
式(II)で表されるトラン誘導体の少なくとも一種を
一段階の反応で得ることができる。 【0005】 【0006】 【0007】(式(I),式(II)において、R1は
アミノ基、低級アルキルアミノ基、ジ低級アルキルアミ
ノ基または低級アルコキシ基を示し、R2は水素原子ま
たは水酸基を示す。)スチルベン誘導体から式(II)
で表されるトラン誘導体を一段階の反応で与えられる本
発明の方法は、極性溶媒と特定の塩基を用いることによ
り達成されるものである。 【0008】本発明に用いられる極性溶媒の具体例とし
ては、ジメチルホルムアミド、ジメチルスルホキシド、
キノリン、テトラヒドロキノリン、メチルピロリドン、
ジメチルイミダゾリジノン、ヘキサメチルホスホルアミ
ドなどが挙げられる。好ましくは、ジメチルホルムアミ
ドおよびジメチルスルホキシドが用いられ、特にジメチ
ルホルムアミドが好ましい。更に、本発明の方法は、ス
チルベン誘導体を前記の極性溶媒中t−ブトキシカリウ
ムで処理することにより、式(II)で表されるトラン
誘導体が特異的に得られるものである。従って、t−ブ
トキシカリウムの代わりに、他の金属アルコキシド、例
えばメトキシナトリウム、メトキシリチウムあるいはエ
トキシナトリウムなどを用いる場合には式(II)で表
されるトラン誘導体は得られない。 【0009】本発明の方法において、t−ブトキシカリ
ウムの使用量が生成する式(II)化合物のR2の種類
の組成比に影響する。スチルベン誘導体のエチレン結合
をトラン誘導体のアセチレン結合に変換するためには、
t−ブトキシカリウムの使用量は最低限スチルベン誘導
体の2モル当量が必要である。従って、式(II)で表
されるトラン誘導体のうちR2が水素である化合物を得
るには、t−ブトキシカリウムはスチルベン誘導体の2
モル当量以上、好ましくは3モル当量以上を使用する。 t−ブトキシカリウムの使用量がスチルベン誘導体の2
モル当量よりも少ないと、未反応のスチルベン化合物の
残存量が多くなる。また、t−ブトキシカリウムの使用
量がスチルベン化合物の4モル当量以上、好ましくは5
モル当量以上であると生成する式(II)のトラン誘導
体のR2が水酸基であるものが、水素原子であるものに
混入して生成する。t−ブトキシカリウムの使用量が多
い程、R2が水酸基である化合物の生成比が増加する。 R2が水酸基であるものを選択的に得るには、t−ブト
キシカリウムを大過剰使用するのが有利である。 【0010】本発明の方法において、反応機構の詳細な
解明は未完であるが、エチレン結合をアセチレン結合に
変換する反応及び水酸基が導入される反応において、溶
媒中の溶存酸素が反応の進行に関与する知見を得ている
。また、式(II)のR2が水酸基であるトラン誘導体
の生成において、一旦生成したR2が水素原子であるト
ラン誘導体を、更にジメチルホルムアミドとt−ブトキ
シカリウムで処理してもR2が水酸基に変化することは
ないから、水酸基の導入はエチレン結合→アセチレン結
合変換と平行して進行するものと考えられる。本発明に
おいて、反応は室温で反応時間数分〜2時間で完了する
。反応は必要に応じて加熱しておこなってもよい。本発
明の方法において、クラウンエーテルを同時に使用する
と、t−ブトキシカリウム中のカリウムを捕捉すること
により、t−ブトキシカリウムを活性化する効果がある
。本発明に用いられる式(I)で表されるスチルベン誘
導体は、公知の種々の方法、例えばBull.Chem
.Soc.Jpn.,46,2828(1973)に記
載の方法により容易に合成できる。以下に実施例を示す
が、本発明はこの実施例に限定されるものではない。 【0011】 【実施例1】  4−ジメチルアミノ−4’−ニトロト
ランの製造 0.20g(0.740mmol)の4−ジメチルアミ
ノ−4’−ニトロスチルベンと20mlのジメチルホル
ムアミドと0.42g(3.74mmol)のt−ブト
キシカリウムを室温で1時間撹拌した。反応液を8ml
の水に排出し、20mlの2N塩酸を加えた後、125
mlのベンゼンで抽出した。抽出液を15mlの10%
水酸化ナトリウム水溶液で洗浄し、更に水で洗浄した後
、無水硫酸マグネシウムで乾燥した。次いで、抽出液よ
り減圧下に溶媒を留去し、残留物をベンゼンより再結晶
して0.077g(収率39%)の4−ジメチルアミノ
−4’−ニトロトランを赤褐色鱗片状結晶(m.p.2
07〜211℃)として得た。下記の分析結果より目的
の化合物であることを確認した。   MS(m/z):266(M+)   IR(KBr):2210cm−1(C≡C)  
1H  N.M.R.(CDCl3):3.02(pp
m)(s,6H,Me2N)            
                   6.67(d
,2H,J=7.0Hz)             
                  7.43(d,
2H,7.0)                  
             7.59(d,2H,8.
9)                       
        8.18(d,2H,8.9)元素分
析値:                    C 
       H          N  測定値 
                   72.01 
 5.24  10.40  計算値(C16H14N
2O2)  72.16  5.30  10.52【
0012】 【実施例2】  4−ジメチルアミノ−3’−ヒドロキ
シ−4’−ニトロトランの製造 0.40g(1.49mmol)の4−ジメチルアミノ
−4’−ニトロスチルベンと50mlのジメチルホルム
アミドと2.57g(22.9mmol)のt−ブトキ
シカリウムを室温で110分間撹拌した。反応液を15
0mlの水に排出し、425mlのベンゼンで抽出した
。抽出液を30mlの2N塩酸で洗浄し、洗浄後の抽出
液を無水硫酸マグネシウムで乾燥した。次いで、抽出液
より減圧下に溶媒を留去し、残留物をベンゼンより再結
晶して0.222g(53%収率)の4−ジメチルアミ
ノ−3’−ヒドロキシ−4’−ニトロトランを赤紫色針
状結晶(m.p.197〜200℃分解)として得た。 下記の分析結果より目的の化合物であることを確認した
。   MS(m/z):282(M+)   IR(KBr):2200cm−1(C≡C)  
1H  N.M.R.(CDCl3):3.02(pp
m)(s,6H,Me2N)            
                   6.66(d
,2H,J=8.8Hz)             
                  7.04(dd
,2H,8.8,1.8)             
                  7.21(d,
1H,1.8)                  
             7.42(d,2H,8.
8)                       
        8.03(d,1H,8.8)元素分
析値:                    C 
       H          N  測定値 
                   68.06 
 5.21    9.86  計算値(C16H14
N2O3)  68.07  5.00    9.9
3  【0013】 【実施例3】  4−メトキシ−4’−ニトロトランの
製造 0.20g(0.783mmol)の4−メトキシ−4
’−ニトロスチルベンと30mlのジメチルホルムアミ
ドと0.26g(2.32mmol)のt−ブトキシカ
リウムを室温で80分間撹拌した。反応液を80mlの
水に排出し、これに30mlの2N塩酸を加えた後、1
00mlのベンゼンで抽出した。抽出液を20mlの1
0%水酸化ナトリウム水溶液で2回洗浄し、更に水で洗
浄した後、無水硫酸マグネシウムで乾燥した。次いで、
抽出液より減圧下に溶媒を留去し、残留物をベンゼンと
ヘキサンの混合溶媒より再結晶して0.061g(31
%収率)の4−メトキシ−4’−ニトロトランを黄色結
晶(m.p.118〜120℃)として得た。下記の分
析結果より目的の化合物であることを確認した。   MS(m/z):253(M+)   IR(KBr):2210cm−1(C≡C)  
1H  N.M.R.(CDCl3):3.85(pp
m)(s,3H,MeO)             
                  6.91(d,
2H,J=8.8Hz)              
                 7.50(d,2
H,8.8)                   
            7.63(d,2H,8.8
)                        
       8.20(d,2H,8.8)元素分析
値:                    C  
      H          N  測定値  
                  71.31  
4.30    5.57  計算値(C15H11N
O3)   71.15  4.35    5.53
【0014】 【実施例4】  4−メトキシ−3’−ヒドロキシ−4
’−ニトロトランの製造 0.20g(0.783mmol)の4−メトキシ−4
’−ニトロスチルベンと50mlのジメチルホルムアミ
ドと1.32g(11.76mmol)のt−ブトキシ
カリウムを室温で90分間撹拌した。反応液を150m
lの水に排出し、これに30mlの2N塩酸を加えた後
、175mlのベンゼンで抽出した。抽出液を水で洗浄
し、洗浄後の抽出液を無水硫酸マグネシウムで乾燥した
。次いで、抽出液より減圧下に溶媒を留去し、残留物を
ベンゼンより再結晶して0.091g(43%収率)の
4−メトキシ−3’ヒドロキシ−4’−ニトロトランを
黄色結晶(m.p.163〜166℃)として得た。 下記の分析結果より目的の化合物であることを確認した
。   MS(m/z):269(M+)   IR(KBr):2220cm−1(C≡C)  
1H  N.M.R.(CDCl3):3.85(pp
m)(s,3H,MeO)             
                  6.91(d,
2H,J=9.5Hz)              
                 7.07(dd,
2H,8.8,1.8)              
                 7.26(d,1
H,1.8)                   
            7.49(d,2H,9.5
)                        
       8.07(d,1H,8.8)    
                         
  10.64(s,1H,OH)元素分析値:   
                 C       
 H          N  測定値       
             66.92  4.38 
   5.21  計算値(C15H11NO4)  
 66.91  4.12    5.20【0015
】 【発明の効果】本発明の製造法により、各種のスチルベ
ン誘導体より、対応するトラン誘導体および/または更
に水酸基の導入されたトラン誘導体を一段階の反応で、
かつ簡便な方法で製造できる。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing tolan derivatives. More specifically, the present invention relates to a novel method for producing a corresponding tolan derivative and/or a tolan derivative further introduced with a hydroxyl group from a stilbene derivative. [0002] As a conventional technique for producing the corresponding tolan derivative from a stilbene derivative, a general method is to bromine the ethylene group of the stilbene derivative with bromine, and then dehydrobromate it with a base. However, this method is complicated because it involves a two-step reaction of "bromination" and "dehydrobromation" and is expensive because the bromine used in bromination ends up as waste. Furthermore, among tolan derivatives, compounds having a nitro group and a hydroxyl group at the ortho position thereof are important substances as nonlinear optical materials, various dye intermediates, liquid crystal compound intermediates, etc.; It is difficult to introduce hydroxyl groups, and such materials have not been produced. [0003] An object of the present invention is to prepare a stilbene derivative by a one-step reaction under simple and mild reaction conditions to obtain a corresponding tolan derivative and/or a hydroxyl group at the ortho position of the nitro group. The present invention provides a new method for producing introduced tolan derivatives. Means for Solving the Problems The object of the present invention is to prepare a stilbene derivative represented by the general formula (I) in a polar solvent with t-
This is achieved by treatment with potassium butoxy, and at least one tolan derivative represented by the general formula (II) can be obtained in a one-step reaction. [0006] (In formula (I) and formula (II), R1 represents an amino group, a lower alkylamino group, a di-lower alkylamino group, or a lower alkoxy group, and R2 represents a hydrogen atom or a hydroxyl group. ) from a stilbene derivative of formula (II)
The method of the present invention, which provides a tolan derivative represented by the following in a one-step reaction, is achieved by using a polar solvent and a specific base. Specific examples of polar solvents used in the present invention include dimethylformamide, dimethyl sulfoxide,
quinoline, tetrahydroquinoline, methylpyrrolidone,
Examples include dimethylimidazolidinone and hexamethylphosphoramide. Preferably, dimethylformamide and dimethylsulfoxide are used, with dimethylformamide being particularly preferred. Further, in the method of the present invention, a tolan derivative represented by formula (II) can be specifically obtained by treating a stilbene derivative with t-butoxypotassium in the polar solvent described above. Therefore, when other metal alkoxides, such as sodium methoxy, lithium methoxy, or sodium ethoxy, are used instead of potassium t-butoxy, the tolan derivative represented by formula (II) cannot be obtained. In the method of the present invention, the amount of t-butoxypotassium used influences the composition ratio of R2 types of the compound of formula (II) produced. To convert the ethylene bond of the stilbene derivative to the acetylene bond of the tolan derivative,
The amount of potassium t-butoxy used must be at least 2 molar equivalents of the stilbene derivative. Therefore, in order to obtain a compound in which R2 is hydrogen among tolan derivatives represented by formula (II), t-butoxypotassium is
More than 3 molar equivalents are used, preferably 3 molar equivalents or more. The amount of potassium t-butoxy used is 2 of the stilbene derivative.
If it is less than the molar equivalent, the amount of unreacted stilbene compound remaining will increase. In addition, the amount of t-butoxypotassium used is 4 molar equivalents or more, preferably 5 molar equivalents of the stilbene compound.
When the molar equivalent or more is used, the tolan derivative of formula (II) in which R2 is a hydroxyl group is mixed with the tolan derivative in which R2 is a hydrogen atom. The larger the amount of potassium t-butoxy used, the higher the production ratio of compounds in which R2 is a hydroxyl group. In order to selectively obtain compounds in which R2 is a hydroxyl group, it is advantageous to use potassium t-butoxy in large excess. In the method of the present invention, although the detailed elucidation of the reaction mechanism has not been completed, dissolved oxygen in the solvent is involved in the progress of the reaction in the reaction of converting an ethylene bond into an acetylene bond and the reaction in which a hydroxyl group is introduced. We have obtained knowledge to Furthermore, in the production of tolan derivatives in which R2 in formula (II) is a hydroxyl group, even if the once produced tolan derivative in which R2 is a hydrogen atom is further treated with dimethylformamide and potassium t-butoxy, R2 changes to a hydroxyl group. Therefore, it is thought that the introduction of hydroxyl groups proceeds in parallel with the conversion of ethylene bonds to acetylene bonds. In the present invention, the reaction is completed within a few minutes to 2 hours at room temperature. The reaction may be carried out by heating if necessary. In the method of the present invention, the simultaneous use of crown ether has the effect of activating t-butoxypotassium by capturing potassium in t-butoxypotassium. The stilbene derivative represented by formula (I) used in the present invention can be prepared by various known methods, for example, Bull. Chem
.. Soc. Jpn. , 46, 2828 (1973). Examples are shown below, but the present invention is not limited to these examples. Example 1 Preparation of 4-dimethylamino-4'-nitrotran 0.20 g (0.740 mmol) of 4-dimethylamino-4'-nitrostilbene, 20 ml of dimethylformamide and 0.42 g (3. 74 mmol) of t-butoxypotassium was stirred at room temperature for 1 hour. 8ml of reaction solution
After draining into water and adding 20 ml of 2N hydrochloric acid,
Extracted with ml of benzene. 15ml of 10% extract
After washing with an aqueous sodium hydroxide solution and further washing with water, it was dried over anhydrous magnesium sulfate. Next, the solvent was distilled off from the extract under reduced pressure, and the residue was recrystallized from benzene to give 0.077 g (yield 39%) of 4-dimethylamino-4'-nitrotran as reddish brown flaky crystals (m. p.2
07-211°C). The following analysis results confirmed that this was the desired compound. MS (m/z): 266 (M+) IR (KBr): 2210 cm-1 (C≡C)
1H N. M. R. (CDCl3): 3.02 (pp
m) (s, 6H, Me2N)
6.67(d
, 2H, J=7.0Hz)
7.43(d,
2H, 7.0)
7.59 (d, 2H, 8.
9)
8.18 (d, 2H, 8.9) Elemental analysis value: C
H N measurement value
72.01
5.24 10.40 Calculated value (C16H14N
2O2) 72.16 5.30 10.52[
Example 2 Preparation of 4-dimethylamino-3'-hydroxy-4'-nitrotran 0.40 g (1.49 mmol) of 4-dimethylamino-4'-nitrostilbene, 50 ml of dimethylformamide and 2. 57 g (22.9 mmol) of potassium t-butoxy was stirred at room temperature for 110 minutes. 15% of the reaction solution
Drained into 0 ml water and extracted with 425 ml benzene. The extract was washed with 30 ml of 2N hydrochloric acid, and the washed extract was dried over anhydrous magnesium sulfate. Next, the solvent was distilled off from the extract under reduced pressure, and the residue was recrystallized from benzene to give 0.222 g (53% yield) of 4-dimethylamino-3'-hydroxy-4'-nitrotran as a reddish-purple color. Obtained as needle-like crystals (m.p. decomposed at 197-200°C). The following analysis results confirmed that this was the desired compound. MS (m/z): 282 (M+) IR (KBr): 2200 cm-1 (C≡C)
1H N. M. R. (CDCl3): 3.02 (pp
m) (s, 6H, Me2N)
6.66(d
, 2H, J=8.8Hz)
7.04 (dd
, 2H, 8.8, 1.8)
7.21(d,
1H, 1.8)
7.42(d, 2H, 8.
8)
8.03 (d, 1H, 8.8) Elemental analysis value: C
H N measurement value
68.06
5.21 9.86 Calculated value (C16H14
N2O3) 68.07 5.00 9.9
3 [Example 3] Production of 4-methoxy-4'-nitrotran 0.20 g (0.783 mmol) of 4-methoxy-4
'-Nitrostilbene, 30 ml of dimethylformamide, and 0.26 g (2.32 mmol) of potassium t-butoxy were stirred at room temperature for 80 minutes. The reaction solution was drained into 80 ml of water, and 30 ml of 2N hydrochloric acid was added thereto.
Extracted with 00ml of benzene. 20ml of the extract
After washing twice with 0% aqueous sodium hydroxide solution and further washing with water, it was dried over anhydrous magnesium sulfate. Then,
The solvent was distilled off from the extract under reduced pressure, and the residue was recrystallized from a mixed solvent of benzene and hexane to give 0.061 g (31
% yield) of 4-methoxy-4'-nitrotran was obtained as yellow crystals (m.p. 118-120°C). The following analysis results confirmed that this was the desired compound. MS (m/z): 253 (M+) IR (KBr): 2210 cm-1 (C≡C)
1H N. M. R. (CDCl3): 3.85 (pp
m)(s,3H,MeO)
6.91(d,
2H, J=8.8Hz)
7.50(d,2
H, 8.8)
7.63 (d, 2H, 8.8
)
8.20 (d, 2H, 8.8) Elemental analysis value: C
H N measurement value
71.31
4.30 5.57 Calculated value (C15H11N
O3) 71.15 4.35 5.53
Example 4 4-methoxy-3'-hydroxy-4
'-Production of nitrotran 0.20 g (0.783 mmol) of 4-methoxy-4
'-Nitrostilbene, 50 ml of dimethylformamide, and 1.32 g (11.76 mmol) of potassium t-butoxy were stirred at room temperature for 90 minutes. 150m of reaction solution
1 of water, 30 ml of 2N hydrochloric acid was added thereto, and the mixture was extracted with 175 ml of benzene. The extract was washed with water, and the washed extract was dried over anhydrous magnesium sulfate. Next, the solvent was distilled off from the extract under reduced pressure, and the residue was recrystallized from benzene to give 0.091 g (43% yield) of 4-methoxy-3'hydroxy-4'-nitrotran as yellow crystals (m .p.163-166°C). The following analysis results confirmed that this was the desired compound. MS (m/z): 269 (M+) IR (KBr): 2220 cm-1 (C≡C)
1H N. M. R. (CDCl3): 3.85 (pp
m)(s,3H,MeO)
6.91(d,
2H, J=9.5Hz)
7.07(dd,
2H, 8.8, 1.8)
7.26(d,1
H, 1.8)
7.49 (d, 2H, 9.5
)
8.07 (d, 1H, 8.8)

10.64 (s, 1H, OH) elemental analysis value:
C
H N measurement value
66.92 4.38
5.21 Calculated value (C15H11NO4)
66.91 4.12 5.20 0015
[Effects of the Invention] According to the production method of the present invention, a corresponding tolan derivative and/or a tolan derivative to which a hydroxyl group has been further introduced is prepared from various stilbene derivatives in one step.
And it can be manufactured by a simple method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  一般式(I)で表されるスチルベン誘
導体を極性溶媒中、t−ブトキシカリウムで処理するこ
とを特徴とする一般式(II)で表されるトラン誘導体
の製造法。 (式(I)、式(II)において、R1はアミノ基、低
級アルキルアミノ基、ジ低級アルキルアミノ基または低
級アルコキシ基を示し、R2は水素原子または水酸基を
示す。)
1. A method for producing a tolan derivative represented by general formula (II), which comprises treating a stilbene derivative represented by general formula (I) with potassium t-butoxy in a polar solvent. (In formula (I) and formula (II), R1 represents an amino group, a lower alkylamino group, a di-lower alkylamino group, or a lower alkoxy group, and R2 represents a hydrogen atom or a hydroxyl group.)
【請求項2】  一般式(I)で表されるスチルベン誘
導体を極性溶媒中、一般式(I)で表されるスチルベン
誘導体の4モル当量以上のt−ブトキシカリウムで処理
することを特徴とする一般式(III)で表されるトラ
ン誘導体の製造法。 (式(I),式(III)において、R1はアミノ基、
低級アルキルアミノ基、ジ低級アルキルアミノ基または
低級アルコキシ基を示す。)
2. A stilbene derivative represented by general formula (I) is treated with potassium t-butoxy in an amount of 4 molar equivalents or more of the stilbene derivative represented by general formula (I) in a polar solvent. A method for producing a tolan derivative represented by general formula (III). (In formula (I) and formula (III), R1 is an amino group,
Indicates a lower alkylamino group, a di-lower alkylamino group, or a lower alkoxy group. )
【請求項3】  極性溶媒がジメチルホルムアミドであ
る請求項(1)または(2)記載の製造法。
3. The production method according to claim 1 or 2, wherein the polar solvent is dimethylformamide.
JP9536191A 1990-11-01 1991-04-25 Method for producing tolan derivatives Expired - Lifetime JP2885537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9536191A JP2885537B2 (en) 1990-11-01 1991-04-25 Method for producing tolan derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-296350 1990-11-01
JP29635090 1990-11-01
JP9536191A JP2885537B2 (en) 1990-11-01 1991-04-25 Method for producing tolan derivatives

Publications (2)

Publication Number Publication Date
JPH04230245A true JPH04230245A (en) 1992-08-19
JP2885537B2 JP2885537B2 (en) 1999-04-26

Family

ID=26436611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9536191A Expired - Lifetime JP2885537B2 (en) 1990-11-01 1991-04-25 Method for producing tolan derivatives

Country Status (1)

Country Link
JP (1) JP2885537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001094A (en) * 2015-07-02 2015-10-28 江苏新淮河医药科技有限公司 5-(1-chloro-2-(2,4-dinitrophenyl)vinyl)-1,2,3-trimethoxy benzene compoundand a preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001094A (en) * 2015-07-02 2015-10-28 江苏新淮河医药科技有限公司 5-(1-chloro-2-(2,4-dinitrophenyl)vinyl)-1,2,3-trimethoxy benzene compoundand a preparation method thereof

Also Published As

Publication number Publication date
JP2885537B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
EP1098866B1 (en) Method for producing ortho-alkylated benzoic acid derivatives
JPH03109384A (en) Production of (s)-4-hydroxymethyl-gamma-lactone
JP3337728B2 (en) Method for producing 2-acetylbenzo [b] thiophene
EP3608324A1 (en) Method for preparing 2-arylmalonamide and applications of method
JPH04230245A (en) Production of tolan derivative
UA72021C2 (en) A method for producing 4-(heteroaryl-methyl)-halogen-1(2h)-phthalazinones
DE3314029C2 (en)
Uchiyama et al. Synthetic Studies on Dehydrorotenone
JP2885536B2 (en) Tolan derivatives
JPH06135902A (en) Production of diphenylacetylene derivative
JPS6241510B2 (en)
KR910003636B1 (en) Process for the preparation of benzophenon oxime compounds
KR100275039B1 (en) A method for producing cyclopentadec-2-enone for synthesis of mouscone
FR2485000A1 (en) LOWER ALKYL 4-METHYL 3-FORMYL PENTENE 1-OATES, PROCESS FOR PREPARING THEM AND THEIR APPLICATION
JPS5916878A (en) Production of 2,4-dihydroxy-3-acetylquinoline
JPH06135901A (en) Production of diphenylacetylene derivative
JPS62298547A (en) Production of 2-cyclopentenone derivative
JPH06256268A (en) Butadiene compound, butadiyne compound and production thereof
JPS6172063A (en) Naphthalene derivative
JPS60218347A (en) 4-(9',12',15'-octadecatrienyl)-catechol
JPS63211276A (en) Production of 2(5h)-furanone derivative
JPH02184688A (en) 2,7-dihetero-1,2,3,6,7,8-hexahydropyrene compound and production thereof
JPS6131090B2 (en)
JPS61140537A (en) Production of benzyl bromide derivative
JPH0579067B2 (en)