JPH0422190B2 - - Google Patents

Info

Publication number
JPH0422190B2
JPH0422190B2 JP60193786A JP19378685A JPH0422190B2 JP H0422190 B2 JPH0422190 B2 JP H0422190B2 JP 60193786 A JP60193786 A JP 60193786A JP 19378685 A JP19378685 A JP 19378685A JP H0422190 B2 JPH0422190 B2 JP H0422190B2
Authority
JP
Japan
Prior art keywords
parts
heat
group
weight
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60193786A
Other languages
Japanese (ja)
Other versions
JPS6254768A (en
Inventor
Yoshio Nishihara
Satoshi Kodera
Noryuki Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP19378685A priority Critical patent/JPS6254768A/en
Priority to DE8686111801T priority patent/DE3667070D1/en
Priority to EP19860111801 priority patent/EP0217129B1/en
Publication of JPS6254768A publication Critical patent/JPS6254768A/en
Priority to US07/172,962 priority patent/US4929507A/en
Publication of JPH0422190B2 publication Critical patent/JPH0422190B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ポリメタロカルボシランを含有する
新規な耐熱性塗料に関する。さらに詳しくは、ポ
リメタロカルボシラン、充填剤及びシリコン樹脂
を含有する新規な耐熱性塗料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel heat-resistant coatings containing polymetallocarbosilanes. More specifically, the present invention relates to a novel heat-resistant paint containing a polymetallocarbosilane, a filler, and a silicone resin.

(従来技術) 金属・非金属基材の高温における腐食、劣化を
防止する耐熱性塗料としてポリオルガノシロキサ
ンをビヒクルとし、各種顔料を添加した塗料が知
られている。このポリオルガノシロキサン系塗料
は、従来から公知のポリエステル、ポリイミド等
の有機高分子系塗料との比較では耐熱性に優れて
いるが、それでも400℃を越える高温の空気雰囲
気下では塗膜は基材から剥離する。
(Prior Art) Paints containing polyorganosiloxane as a vehicle and various pigments added thereto are known as heat-resistant paints that prevent corrosion and deterioration of metal and non-metallic base materials at high temperatures. This polyorganosiloxane paint has excellent heat resistance when compared to conventionally known organic polymer paints such as polyester and polyimide, but even so, in an air atmosphere with a high temperature of over 400°C, the paint film does not coat the base material. Peel from.

さらに産業の発展に伴い、例えば航空機部品、
製鉄あるいは金属の精練炉の炉体及び周辺部分な
ど1000℃を越える高温にさらされる金属あるいは
非金属基材の酸化、腐食を防止しうる塗装材料へ
の要求が増加してきている。
Furthermore, with the development of industry, for example, aircraft parts,
There is an increasing demand for coating materials that can prevent oxidation and corrosion of metal or nonmetal substrates that are exposed to high temperatures of over 1000°C, such as the furnace body and surrounding parts of iron-making or metal smelting furnaces.

特公昭第59−12746号公報には、炭素とケイ素
を骨格成分とする少量の金属元素を含むポリカル
ボシランを金属材料に塗布した後非酸化性雰囲気
中で800〜2000℃に加熱焼成することにより、ポ
リカルボシランを炭化ケイ素化させる耐熱金属材
料の製造方法が記載されている。特開昭第55−
84370号公報には、ポリカルボシランを含むセミ
無機化合物にセラミツクあるいは金属粉末を添加
した塗料用組成物を金属あるいは非金属材料に塗
布した後、非酸化性雰囲気下で400〜2000℃に加
熱、焼き付けを行つて耐熱性塗膜を得る方法が記
載されている。
Japanese Patent Publication No. 59-12746 discloses that polycarbosilane containing carbon and silicon as skeleton components and a small amount of metal elements is coated on a metal material and then heated and fired at 800 to 2000°C in a non-oxidizing atmosphere. describes a method for producing a heat-resistant metal material by converting polycarbosilane into silicon carbide. Japanese Patent Publication No. 55-
Publication No. 84370 discloses that after applying a coating composition in which ceramic or metal powder is added to a semi-inorganic compound containing polycarbosilane to a metal or non-metallic material, heating the composition to 400 to 2000°C in a non-oxidizing atmosphere; A method for obtaining a heat-resistant coating film by baking is described.

しかし、このポリカルボシランの1000℃(空気
中)における焼成残存率は約30%(重量換算)で
あるため、加熱焼き付け途中でのポリカルボシラ
ンの熱分解に伴い、大きな体積収縮が発生する。
このため、焼き付け塗膜の基材への密着性は不充
分なものとなる。空気中など酸化性雰囲気で加熱
焼き付けを行うと、塗膜は殆ど基材から剥離す
る。また生成した塗膜の耐熱性は空気中で約400
℃であり、従来からあるポリオルガノシロキサン
系塗料の耐熱温度と比較しても大きな差はない。
However, since the firing residual rate of this polycarbosilane at 1000°C (in air) is about 30% (weight equivalent), large volumetric shrinkage occurs as the polycarbosilane decomposes during heating and baking.
For this reason, the adhesion of the baked coating film to the base material becomes insufficient. When baking is performed in an oxidizing atmosphere such as air, most of the coating film peels off from the base material. The heat resistance of the resulting coating film is approximately 400% in air.
℃, which is not much different from the heat resistance temperature of conventional polyorganosiloxane paints.

(発明が解決しようとする問題点) 本発明は、空気中での焼成残存率が高く、空気
中での焼成焼き付が可能であり、さらには空気中
での耐熱温度が高い耐熱性塗料の提供により、高
温度条件下での金属あるいは非金属基材の酸化、
腐食を防止しようとするものである。
(Problems to be Solved by the Invention) The present invention provides a heat-resistant paint that has a high firing residual rate in the air, can be fired and baked in the air, and has a high heat resistance temperature in the air. Oxidation of metallic or non-metallic substrates under high temperature conditions;
The purpose is to prevent corrosion.

(問題点を解決するための手段) 本発明は、ポリメタロカルボシラン100重量部、
シリコン重量部10〜900重量部及び無機充填剤10
〜900重量部が有機溶剤に分散又は溶解されてい
ることからなる耐熱性塗料である。
(Means for solving the problems) The present invention provides 100 parts by weight of polymetallocarbosilane,
10 to 900 parts by weight of silicon and 10 parts by weight of inorganic filler
It is a heat-resistant paint consisting of ~900 parts by weight dispersed or dissolved in an organic solvent.

本発明で用いるポリメタロカルボシランは、ポ
リメタロカルボシランが下記(A)カルボシラン結合
単位及び少なくとも1種の下記(B)のメタロキサン
結合単位からなり、 (A): (但し、R1及びR2は同一又は異なつてもよく
相互に独立に低級アルキル基、フエニール基又
は水素原子を表わす) (B):−(M−O)− (但し、MはTi、ZrMo及びCrからなる群から
選ばれた少なくとも1種の元素を示し、場合に
よつては前記各元素の少なくとも1部分が側鎖
基として低級アルコキシ基又はフエノキシ基を
少なくとも1個有する) 前記(A)及び(B)各結合単位が主鎖骨格中でランダ
ムに結合した重合体、及び/又は前記(A)の結合単
位のケイ素原子の少なくとも1部が前記(B)の結合
単位の前記各元素と酸素原子を介して結合し、こ
れらによつて前記(A)の結合単位の連鎖によりえら
れるポリカルボシラン部分が前記(B)の結合単位に
よつて架橋された重合体であり、 前記(A)の結合単位の全数対前記(B)の結合単位の
全数の比率が1:1から10:1の範囲にあり数平
均分子量が400〜50000であることからなる有機金
属重合体である。
The polymetallocarbosilane used in the present invention is composed of the following (A) carbosilane bonding unit and at least one metalloxane bonding unit of the following (B), (A): (However, R 1 and R 2 may be the same or different and independently represent a lower alkyl group, a phenyl group, or a hydrogen atom.) (B): -(M-O)- (However, M is Ti, ZrMo and Cr, and in some cases, at least one portion of each element has at least one lower alkoxy group or phenoxy group as a side chain group) (A) and (B) a polymer in which each bonding unit is randomly bonded in the main chain skeleton, and/or at least a portion of the silicon atoms in the bonding unit in (A) are connected to each of the above elements in the bonding unit in (B). A polymer in which a polycarbosilane moiety obtained by linking the bonding units of (A) by bonding via oxygen atoms is crosslinked by the bonding units of (B), It is an organometallic polymer in which the ratio of the total number of bonding units in () to the total number of bonding units in (B) is in the range of 1:1 to 10:1, and the number average molecular weight is 400 to 50,000.

前記ポリメタロカルボシランは主鎖骨格が主と
して−(Si−CH2)−の構造単位よりなるポリカルボ
シランと−(M−O)−結合単位の金属アルコキシド
から誘導される高分子共重合体であり、これを原
料とする紡糸繊維が従来のポリカルボシランから
得られる繊維よりも耐熱性が優れていることが特
願昭54−149977に示されている。
The polymetallocarbosilane is a polymer copolymer whose main chain skeleton is derived from a polycarbosilane mainly consisting of structural units of -(Si-CH 2 )- and a metal alkoxide having a -(M-O)- bonding unit. It has been shown in Japanese Patent Application No. 149977/1983 that spun fibers made from this material have better heat resistance than fibers obtained from conventional polycarbosilanes.

このポリメタロカルボシランとシリコン樹脂及
び無機充填剤とからなる塗料を金属・非金属基材
に塗布した後、酸化性あるいは非酸化性雰囲気中
で200〜2000℃の加熱、焼付を行つて得られる塗
膜が前記のポリカルボシランから成る塗膜よりも
下地の金属・非金属基材への密着性が良く、耐熱
性も優れていることを見出だし、本発明に到達し
た。
After applying this paint consisting of polymetallocarbosilane, silicone resin, and inorganic filler to a metal/nonmetal substrate, it is obtained by heating and baking at 200 to 2000°C in an oxidizing or non-oxidizing atmosphere. It was discovered that the coating film has better adhesion to the underlying metal/nonmetal substrate and has better heat resistance than the coating film made of polycarbosilane, and the present invention has been achieved.

本発明で用いるポリメタロカルボシランは、空
気雰囲気下で1000℃で10時間以上熱処理しても加
熱減量は僅かに10〜15重量%に過ぎないため、焼
付塗膜の重量減少による収縮、ヒビ割れは起りに
くく、したがつて形成された焼付後の塗膜は緻密
質である。
The polymetallocarbosilane used in the present invention loses only 10 to 15% by weight even if it is heat-treated at 1000°C for 10 hours or more in an air atmosphere, so the baked coating film shrinks and cracks due to weight loss. is difficult to occur, and therefore the coating film formed after baking is dense.

また、ポリメタロカルボシランは金属を含有す
るため、これを特に金属基材表面に焼き付けると
超微粒子の金属化物あるいは金属酸化物が塗膜と
鋸基材の間に強固な結合を形成するために空気
中、1000℃以上でも剥離しない緻密な保護膜層を
形成する。おなじようにセラミツク、ガラス表面
上においても前記超微粒子がバインダーとしての
機能をも有するので、強固に結合した塗膜を形成
する。
In addition, since polymetallocarbosilane contains metal, when it is baked onto the surface of a metal substrate, ultrafine particles of metallization or metal oxide form a strong bond between the coating film and the saw substrate. Forms a dense protective film layer that does not peel off even in air at temperatures above 1000℃. Similarly, since the ultrafine particles also function as a binder on ceramic and glass surfaces, they form a strongly bonded coating film.

更に、このポリメタロカルボシランとシリコン
樹脂及び無機充填剤とから成る塗膜はポリメタロ
カルボシラン単独から成る塗膜よりも強固に基材
に密着し、更に耐熱性を向上させると共に可撓性
にも優れる。
Furthermore, this coating film made of polymetallocarbosilane, silicone resin, and inorganic filler adheres more firmly to the base material than a coating film made of polymetallocarbosilane alone, and further improves heat resistance and flexibility. Also excellent.

ポリメタロカルボシラン100重量部に対しシリ
コン樹脂を10〜900重量部好ましくは50〜500重量
部添加する。シリコン樹脂の添加量が10部以下で
あると焼付塗膜の可撓性が劣り、シリコン樹脂の
添加量が900重量部をこえるとシリコン樹脂の分
解温度以上の高温での耐熱性が損なわれる。本発
明で使用するシリコン樹脂は、ポリオルガノシロ
キサン、シルコンオイル、シリコンワニス、及び
シリコンゴムからなる群から選ばれた少なくとも
1種である。
10 to 900 parts by weight, preferably 50 to 500 parts by weight of silicone resin are added to 100 parts by weight of polymetallocarbosilane. If the amount of silicone resin added is less than 10 parts, the flexibility of the baked coating film will be poor, and if the amount of silicone resin added is more than 900 parts by weight, the heat resistance at high temperatures above the decomposition temperature of the silicone resin will be impaired. The silicone resin used in the present invention is at least one selected from the group consisting of polyorganosiloxane, silicone oil, silicone varnish, and silicone rubber.

更に無機充填剤をポリメタロカルボシラン100
重量部に対して10〜900重量好ましくは50〜500重
量部加える。無機充填剤の添加量が10部以下であ
ると焼付塗膜の基材に対する密着性が劣り、また
900重量部をこえると塗膜の可撓性が低下する。
Furthermore, the inorganic filler is polymetallocarbosilane 100.
Add 10 to 900 parts by weight, preferably 50 to 500 parts by weight. If the amount of inorganic filler added is less than 10 parts, the adhesion of the baked coating to the base material will be poor, and
If it exceeds 900 parts by weight, the flexibility of the coating film will decrease.

本発明で用いる無機充填剤は公知添加剤、ホウ
素、マグネシウム、アルミニウム、ケイ素、カル
シウム、チタン、バナジウム、クロム、マンガ
ン、亜鉛、ジルコニウム、モリブデン、カドミウ
ム、スズ、アンチモン、バリウム、タングステ
ン、鉛、ビスマスの酸化物、それらの炭化物、そ
れらの窒化物、リチウム、ナトリウム、カリウ
ム、マグネシウム、カルシウム、亜鉛のホウ酸
塩、リン酸塩、ケイ酸塩などである。
The inorganic fillers used in the present invention include known additives such as boron, magnesium, aluminum, silicon, calcium, titanium, vanadium, chromium, manganese, zinc, zirconium, molybdenum, cadmium, tin, antimony, barium, tungsten, lead, and bismuth. oxides, their carbides, their nitrides, borates, phosphates, silicates of lithium, sodium, potassium, magnesium, calcium, zinc, etc.

これらは単独で使用しても良く、又混合して使
用しても良い。
These may be used alone or in combination.

ポリメタロカルボシラン、シリコン樹脂及び無
機充填材をベンゼン、トルエン、キシレン等の適
当な溶剤に溶解又は分散させて塗料を得る。
A paint is obtained by dissolving or dispersing polymetallocarbosilane, silicone resin, and inorganic filler in a suitable solvent such as benzene, toluene, or xylene.

この塗料を金属基材あるいはガラス、セラミツ
ク耐火レンガ等の非金属基材にハケ塗り、ロール
コータ、スプレイガン、浸漬等の方法で塗布した
後、乾燥焼付を行なう。
This paint is applied to a metal base material or a non-metal base material such as glass or ceramic refractory brick by brushing, roll coater, spray gun, dipping, etc., and then dry baking is performed.

塗布量は20〜100g/m2が一般に望ましい。20
g/m2以下ではピンホールが発生し紡食性が低下
する。一方100g/m2以上では焼付時に塗膜の割
れが発生し易いので好ましくない。
A coating amount of 20 to 100 g/m 2 is generally desirable. 20
If it is less than g/m 2 , pinholes will occur and the spinnability will decrease. On the other hand, if it exceeds 100 g/m 2 , it is not preferable because the coating film tends to crack during baking.

焼付温度は、150℃以上が好ましいが、塗装後
被塗装物が150℃以上の使用環境に置かれる場合
には特に焼付工程を設けなくとも良い、焼付温度
が150℃以下では塗膜の強度が低く、硬度、耐衝
撃性とも劣るので好ましくない。
The baking temperature is preferably 150℃ or higher, but if the object to be coated is placed in an environment of 150℃ or higher after painting, there is no need to carry out a baking process. It is not preferable because it has low hardness and poor impact resistance.

本発明の耐熱性塗料から得られる焼付塗膜は耐
熱性に優れ同時に良好な耐食性、耐衝撃性および
可撓性を示す。
The baked coating obtained from the heat-resistant paint of the present invention has excellent heat resistance and at the same time exhibits good corrosion resistance, impact resistance, and flexibility.

以下実施例により、更に具体的に説明する。な
お、参考例及び実施例において、%及び部は特に
断りのない限り重量%及び重量部を示している。
A more specific explanation will be given below with reference to Examples. In addition, in the reference examples and examples, % and parts indicate weight % and parts by weight unless otherwise specified.

参考例 1 5の三口フラスコに無水キシレン2.5とナ
トリウム400gとを入れ、窒素ガス気流下でキシ
レンの沸点まで加熱し、ジメチルジクロロシラン
1を1時間で滴下した。滴下終了後、10時間加
熱還流し沈澱物を生成させた。この沈澱を過
し、まずメタノールで洗浄した後、水で洗浄し
て、白色粉末のポリジメチルシラン420gを得た。
Reference Example 1 2.5 g of anhydrous xylene and 400 g of sodium were placed in the three-necked flask of 5, heated to the boiling point of xylene under a nitrogen gas stream, and 1 portion of dimethyldichlorosilane was added dropwise over 1 hour. After the dropwise addition was completed, the mixture was heated under reflux for 10 hours to form a precipitate. This precipitate was filtered and washed first with methanol and then with water to obtain 420 g of white powder polydimethylsilane.

上記のポリメチルシラン400gを、ガス導入管、
撹拌機、冷却器および留出管を備えた3の三つ
口フラスコに仕込み、撹拌しながら窒素気流下
(50ml/min)で、420℃で加熱処理することによ
つて留出容器に350gの無色透明な少し粘性のあ
る液体を得た。この液体の数平均分子量は蒸気圧
浸透法(VPO法)により測定したところ470であ
つた。
Add 400g of the above polymethylsilane to the gas introduction pipe,
A three-necked flask equipped with a stirrer, a condenser, and a distillation tube was charged, and 350g of A colorless and transparent slightly viscous liquid was obtained. The number average molecular weight of this liquid was 470 as measured by vapor pressure osmosis (VPO method).

またこの物質の遠赤外吸収の測定により主とし
て−(Si−CH2)−結合単位および−(Si−Si)−結合

位からなり、ケイ素の側鎖に水素原子及びメチル
基を有する有機ケイ素ポリマーであることを確認
した。
Furthermore, measurements of far-infrared absorption of this substance revealed that it is an organosilicon polymer mainly composed of -(Si-CH 2 )-bonding units and -(Si-Si)- bonding units, and having hydrogen atoms and methyl groups in the silicon side chains. It was confirmed that

参考例 2 次にこの有機ケイ素ポリマー40gとチタンテト
ライソプロポキシド20gとを秤取し、この混合物
にキシレン400mlを加えて均一相からなる混合溶
液とし、窒素ガス雰囲気下で、130℃で1時間撹
拌しながら還流反応を行なつた。還流反応終了
後、さらに温度を上昇させて溶媒のキシレンを留
出させたのち、300℃で10時間重合を行ないシリ
コンとチタンを含有する有機金属架橋重合体を得
た。この重合体の数平均分子量はVPO法により
測定したところ1165であつた。ゲルパーミエーシ
ヨンクロマトグラフ、赤外吸収スペクトルからこ
こで得られたポリマーは、有機ケイ素ポリマー中
のSi−H結合が一部消失し、この部分のケイ素原
子が、チタンテトライソプロポキシドのチタン原
子と酸素原子を介して結合し、これによつて一部
は有機ケイ素ポリマーの側鎖に−O−Ti
(OC3H73基を有し、また一部は有機ケイ素ポリ
マーが−(Ti−o)−結合で架橋したポリチタノカ
ルボシランであり、このポリマー中のSi−H結合
部分での反応率および/又は架橋率は、44.5%で
ある。このポリマーの有機ケイ素ポリマー部分の
−(Si−CH2)−結合単位−(Si−Si)−結合単位の全

対−O−Ti(OC4H93および−Ti−O−結合単位
の全数の比率は約6:1であることを確認した。
Reference Example 2 Next, 40 g of this organosilicon polymer and 20 g of titanium tetraisopropoxide were weighed out, 400 ml of xylene was added to this mixture to make a mixed solution consisting of a homogeneous phase, and the mixture was heated at 130°C for 1 hour under a nitrogen gas atmosphere. The reflux reaction was carried out with stirring. After the reflux reaction was completed, the temperature was further raised to distill off the solvent xylene, and then polymerization was carried out at 300°C for 10 hours to obtain an organometallic crosslinked polymer containing silicon and titanium. The number average molecular weight of this polymer was 1165 as measured by the VPO method. From gel permeation chromatography and infrared absorption spectra, the polymer obtained here shows that some of the Si-H bonds in the organosilicon polymer have disappeared, and that the silicon atoms in this part are the titanium atoms of titanium tetraisopropoxide. through an oxygen atom, thereby partially forming -O-Ti into the side chain of the organosilicon polymer.
It is a polytitanocarbosilane that has three (OC 3 H 7 ) groups, and a part of the organosilicon polymer is cross-linked with -(Ti-o)- bonds, and the Si-H bond part in this polymer The reaction rate and/or crosslinking rate is 44.5%. The total number of -(Si- CH2 )-bonding units-(Si-Si)-bonding units of the organosilicon polymer portion of this polymer versus the total number of -O-Ti( OC4H9 ) 3 and -Ti-O-bonding units. It was confirmed that the total ratio was approximately 6:1.

上記反応生成物をキシレンに溶解させて固形分
が50%の溶液とした。
The above reaction product was dissolved in xylene to form a solution with a solid content of 50%.

参考例 3 参考例2における出発物質の1つであるチタン
テトライソプロポキシドの代わりに、ジルコニウ
ムテトライソプロポキシド、クロミウムトリメト
キシドまたはモリブデントリフエノキシドをそれ
ぞれ用いてポリジルコノカルボシラン、ポリクロ
ノカルボシランまたはポリモリブデリカルボシラ
ンを得た。反応条件、操作法は参考例2と実質的
に同一である。
Reference Example 3 In place of titanium tetraisopropoxide, which is one of the starting materials in Reference Example 2, zirconium tetraisopropoxide, chromium trimethoxide, or molybdenum triphenooxide was used to prepare polyzirconocarbosilane, polychlorinated Carbosilane or polymolybdelicarbosilane was obtained. The reaction conditions and operating method are substantially the same as in Reference Example 2.

実施例 1 参考例2のポリチタノカルボシランのキシレン
50%溶液30部、メチルフエニルシリコンオイルの
50%キシレン溶液(東芝シリコン社製TSR−
116)30部及び二酸化チタン40部を混合して耐熱
塗料を得た。この塗料を1mm厚のステンレス鋼板
(SUS304)にパーコータを用いて約50μ厚に塗布
した後200℃で1時間オーブン中で焼付けたこの
焼付塗装鋼板を1000℃オーブン中にて96時間加熱
した後、オーブンから取り出して空気中で除冷し
た。
Example 1 Xylene of polytitanocarbosilane of Reference Example 2
30 parts of a 50% solution of methylphenyl silicone oil
50% xylene solution (TSR- manufactured by Toshiba Silicon Co., Ltd.)
116) A heat-resistant paint was obtained by mixing 30 parts of titanium dioxide and 40 parts of titanium dioxide. This paint was applied to a 1mm thick stainless steel plate (SUS304) using a percoater to a thickness of approximately 50μ, and then baked in an oven at 200℃ for 1 hour.After heating this baked painted steel plate in a 1000℃ oven for 96 hours, It was removed from the oven and allowed to cool in the air.

この塗膜の基材への密着性を評価するために塗
膜に2mm幅で縦11本、横11本の素地に達する切り
込みをカツターナイフで入れ、合計100個のゴバ
ン目を作り、その表面に粘着セロハンテープを貼
り付け、それを急激にはがした後のゴバン目にお
ける塗膜の残存数を調べたところ、95/100と非常
に良好な密着性を示した。
In order to evaluate the adhesion of this coating film to the base material, we made 11 vertical and 11 horizontal cuts in the coating film with a cutter knife, making a total of 100 gobbles on the surface. After applying adhesive cellophane tape and rapidly peeling it off, we examined the number of coatings remaining in the goblets and found that it had a very good adhesion of 95/100.

実施例 2 参考例3のポリジルコノカルボシランのキシレ
ン50%溶液40部ジメチルシリコンオイル(東芝シ
リコン社製TSF431)40部及びホウ酸カリウム20
部を混合し、この組成物100重量部当たり50重量
部のキシレンを添加して耐熱塗料を得た。この塗
料に0.5mm厚のチタン板を浸漬、塗布した後、200
℃のオーブン中にて1時間焼付けた。
Example 2 40 parts of a 50% xylene solution of the polyzirconocarbosilane of Reference Example 3, 40 parts of dimethyl silicone oil (TSF431 manufactured by Toshiba Silicon Co., Ltd.), and 20 parts of potassium borate.
50 parts by weight of xylene was added per 100 parts by weight of this composition to obtain a heat-resistant paint. After dipping and applying a 0.5mm thick titanium plate in this paint,
Bake in an oven at ℃ for 1 hour.

この焼付塗装チタン板についてヒートサイクル
テスト(常温1時間−1000℃オーブン中1時間)
を10回行つたが塗膜の外観には全く変化はなく、
塗膜の基材からの剥離も見られなかつた。
Heat cycle test for this baked titanium plate (1 hour at room temperature - 1 hour in 1000℃ oven)
After doing this 10 times, there was no change in the appearance of the paint film.
No peeling of the coating film from the base material was observed.

実施例 3 参考例3のポリモリブデノカルボシランのキシ
レン50%溶液60部、メチルフエニルシリコンオイ
ル(東芝シリコン社製TSF−451)20部及びタル
ク20部を混合して耐熱塗料を得た。この塗料を1
mm厚のステンレス鋼板(SUS304)に刷毛塗り塗
布した後250℃にて1時間オーブン中で焼付けた。
Example 3 A heat-resistant paint was obtained by mixing 60 parts of a 50% xylene solution of the polymolybdenocarbosilane of Reference Example 3, 20 parts of methylphenyl silicone oil (TSF-451 manufactured by Toshiba Silicon Co., Ltd.), and 20 parts of talc. 1 of this paint
It was applied with a brush to a stainless steel plate (SUS304) with a thickness of mm and then baked in an oven at 250°C for 1 hour.

この焼付塗装鋼板を1000℃のオーブン中にて96
時間加熱した後空気中で除冷し、塗膜の密着性を
実施例と同じ方法で評価したところ、92/100と非
常に良好な結果を得た。
This baking-painted steel plate was placed in an oven at 1000℃ for 96
After heating for a period of time, it was slowly cooled in the air, and the adhesion of the coating film was evaluated using the same method as in the examples, and a very good result of 92/100 was obtained.

実施例 4 参考例3のポリクロシモカルボシランのキシレ
ン50%溶液50部、メチルフエニルシリコンワニス
の50%キシレン溶液(東芝シリコン社製TSR−
116)20部、酸化ホウ素30部を混合して耐熱塗料
を得た。この塗料を1mm厚のニツケル板にバーコ
ータを用いて40μ厚な塗布したのち200℃で1時
間オーブン中で焼付けた。
Example 4 50 parts of a 50% xylene solution of the polycrosimocarbosilane of Reference Example 3, a 50% xylene solution of methylphenyl silicone varnish (TSR- manufactured by Toshiba Silicon Co., Ltd.)
116) and 30 parts of boron oxide were mixed to obtain a heat-resistant paint. This paint was applied to a 1 mm thick nickel plate to a thickness of 40 μm using a bar coater, and then baked in an oven at 200° C. for 1 hour.

この焼付塗装ニツケル板を1000℃のオーブン中
にて3時間加熱した後、空気中で徐冷し、塗膜の
密着性を実施例1と同じ方法で評価したところ9
5/100であつた。
This baked-on nickel plate was heated in an oven at 1000°C for 3 hours, then slowly cooled in air, and the adhesion of the paint film was evaluated using the same method as in Example 19.
It was 5/100.

実施例 5 参考例2のポリチタノカルボシランのキシレン
50%溶液80部、メチルフエニルシリコンワニスハ
の50%キシレン溶液(東芝シリコン社製TSR−
116)10部、二酸化スズ10部を混合して耐熱塗料
を得た。この塗料を0.5mm厚のチタン板にローラ
ーコーテイングし200℃で1時間オーブン中で焼
付けた。
Example 5 Xylene of polytitanocarbosilane of Reference Example 2
80 parts of 50% solution, 50% xylene solution of methyl phenyl silicone varnish (TSR- manufactured by Toshiba Silicon Co., Ltd.)
116) and 10 parts of tin dioxide were mixed to obtain a heat-resistant paint. This paint was roller coated onto a 0.5 mm thick titanium plate and baked in an oven at 200°C for 1 hour.

この焼付塗装チタン板についてヒートサイクル
テスト(常温1時間−1000℃1時間)を5回行つ
たが、塗膜の外観変化、基材からの剥離ともに見
られなかつた。
A heat cycle test (1 hour at room temperature - 1 hour at 1000 DEG C.) was performed on this baked titanium plate five times, but no change in the appearance of the coating film or peeling from the substrate was observed.

比較例 1 参考例1で得たポリカルボシランのキシレン50
%溶液30部、メチルフエニルシリコンワニスの50
%キシレン溶液(東芝シリコン社製TSR116)30
部、酸化アルミニウム粉末40部を混合して塗料と
した。この塗料をバーコータにより1mm厚のステ
ンレス鋼板に約50μ厚に塗布した後、200℃で1
時間オーブン中で焼付けた。
Comparative Example 1 Polycarbosilane xylene 50 obtained in Reference Example 1
% solution 30 parts, 50 parts of methylphenyl silicone varnish
% xylene solution (TSR116 manufactured by Toshiba Silicon Corporation) 30
1 part and 40 parts of aluminum oxide powder were mixed to prepare a paint. After applying this paint to a thickness of approximately 50μ on a 1mm thick stainless steel plate using a bar coater,
Bake in the oven for an hour.

この焼付塗装鋼板を600℃オーブン中にて10時
間加熱した後、空気中で除冷し実施例1と同じ方
法で塗膜の密着性を評価したところ58/100であつ
た。
This baking-painted steel plate was heated in an oven at 600°C for 10 hours, then slowly cooled in air, and the adhesion of the coating film was evaluated in the same manner as in Example 1 and found to be 58/100.

比較例 2 参考例2のポリチタノカルボシランの50%キシ
レン溶液、50部、メチルフエニルシリコンワニス
の50%キシレン溶液(東芝シリコン社製TRS−
116)50部を混合して塗料を得た。この塗料をバ
ーコータにより1mm厚のステンレス鋼板に約5μ
厚に塗布した後、200℃で1時間オーブン中で焼
付けた。
Comparative Example 2 50 parts of a 50% xylene solution of polytitanocarbosilane of Reference Example 2, 50 parts of a 50% xylene solution of methylphenyl silicone varnish (TRS- manufactured by Toshiba Silicon Co., Ltd.)
116) A paint was obtained by mixing 50 parts. Approximately 5μ of this paint is applied to a 1mm thick stainless steel plate using a bar coater.
After coating it thickly, it was baked in an oven at 200°C for 1 hour.

この焼付塗装鋼板を1000℃オーブン中にて1時
間加熱した後取出して空気中で放冷し実施例1と
同じ方法で塗膜の密着性を評価したところ62/100
であつた。
This baked painted steel plate was heated in an oven at 1000°C for 1 hour, then taken out and left to cool in the air, and the adhesion of the paint film was evaluated in the same manner as in Example 1. It was 62/100.
It was hot.

比較例 3 参考例1で得たポリカルボシランのキシレン50
%溶液;30部、カーボランダム粉末70部を混合し
て塗料を得た。この塗料に0.5mm厚のチタン板を
浸漬、塗布した後、200℃のオーブン中にて1時
間焼付けた。
Comparative Example 3 Polycarbosilane xylene 50 obtained in Reference Example 1
% solution; and 70 parts of carborundum powder were mixed to obtain a paint. A 0.5 mm thick titanium plate was dipped and coated in this paint, and then baked in an oven at 200°C for 1 hour.

この焼付塗装チタン板についてヒートサイクル
テスト(常温1時間−1000℃オーブン中1時間)
を10回行つたところ、塗膜の一部が剥離し、亀裂
が見られた。
Heat cycle test for this baked titanium plate (1 hour at room temperature - 1 hour in 1000℃ oven)
After repeating this process 10 times, some parts of the paint film peeled off and cracks were observed.

Claims (1)

【特許請求の範囲】 1 ポリメタロカルボシラン100重量部、シリコ
ン樹脂10〜900重量部及び無機充填剤10〜900重量
部が有機溶剤に分散又は溶解されていることを特
徴とする耐熱性塗料。 2 ポリメタロカルボシランが下記(A)カルボシラ
ン結合単位及び少なくとも1種の下記(B)のメタロ
キサン結合単位とからなり、 (A): (但し、R1及びR2は同一又は異なつてもよく
相互に独立に低級アルキル基、フエニール基又
は水素原子を表す) (B):−(M−O)− (但し、MはTi、Zr、Mo及びCrからなる群か
ら選ばれた少なくとも1種の元素を示し、場合
によつては前記各元素の少なくとも1部分が側
鎖基として低級アルコキシ基又はフエノキシ基
を少なくとも1個有する) 前記(A)及び(B)各結合単位が主鎖骨格中でランダ
ムに結合した重合体、及び/又は前記(A)の結合単
位のケイ素原子の少なくとも1部が前記(B)の結合
単位の前記各元素と酸素原子を介して結合し、こ
れによつて前記(A)の結合単位の連鎖によりえられ
るポリカルボシラン部分が前記(B)の結合単位によ
つて架橋された重合体であり、 前記(A)の結合単位の全数対前記(B)の結合単位の
全数の比率が1:1から10:1の範囲にあり数平
均分子量が400〜50000であることを特徴とする特
許請求の範囲第1項に記載の耐熱性塗料。 3 シリコン樹脂が、ポリオルガノシロキサン、
シリコンオイル、シリコンワニス、シリコンゴム
からなる群から選ばれたものである特許請求の範
囲第1項記載の耐熱性塗料。 4 無機充填材が酸化物、ホウ酸塩、リン酸塩、
ケイ酸塩、ケイカ物、窒化物ホウ化物及び炭化物
からなる群から選ばれた少なくとも1種である特
許請求の範囲第1項記載の耐熱性塗料。
[Scope of Claims] 1. A heat-resistant paint characterized in that 100 parts by weight of polymetallocarbosilane, 10 to 900 parts by weight of silicone resin, and 10 to 900 parts by weight of inorganic filler are dispersed or dissolved in an organic solvent. 2 The polymetallocarbosilane consists of the following (A) carbosilane bonding unit and at least one metalloxane bonding unit of the following (B), (A): (However, R 1 and R 2 may be the same or different and independently represent a lower alkyl group, a phenyl group, or a hydrogen atom.) (B): -(M-O)- (However, M is Ti, Zr , Mo, and Cr, and in some cases, at least one portion of each of the above elements has at least one lower alkoxy group or phenoxy group as a side chain group) ( A) and (B) a polymer in which each bonding unit is randomly bonded in the main chain skeleton, and/or at least a portion of the silicon atoms in the bonding unit in (A) are in each of the bonding units in (B). A polymer in which the polycarbosilane moiety is bonded to an element via an oxygen atom, thereby resulting in a polycarbosilane moiety obtained by chaining the bonding units of (A), and is crosslinked by the bonding units of (B), Claims characterized in that the ratio of the total number of bonding units of (A) to the total number of bonding units of (B) is in the range of 1:1 to 10:1 and the number average molecular weight is 400 to 50,000. The heat-resistant paint according to item 1. 3 The silicone resin is polyorganosiloxane,
The heat-resistant paint according to claim 1, which is selected from the group consisting of silicone oil, silicone varnish, and silicone rubber. 4 The inorganic filler is an oxide, a borate, a phosphate,
The heat-resistant paint according to claim 1, which is at least one selected from the group consisting of silicates, silicates, nitride borides, and carbides.
JP19378685A 1985-08-27 1985-09-04 Heat-resistant paint Granted JPS6254768A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19378685A JPS6254768A (en) 1985-09-04 1985-09-04 Heat-resistant paint
DE8686111801T DE3667070D1 (en) 1985-08-27 1986-08-26 Heat-resistant paint comprising polymetallocarbosilane
EP19860111801 EP0217129B1 (en) 1985-08-27 1986-08-26 Heat-resistant paint comprising polymetallocarbosilane
US07/172,962 US4929507A (en) 1985-08-27 1988-03-23 Heat-resistant paint comprising polymetallocarbosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19378685A JPS6254768A (en) 1985-09-04 1985-09-04 Heat-resistant paint

Publications (2)

Publication Number Publication Date
JPS6254768A JPS6254768A (en) 1987-03-10
JPH0422190B2 true JPH0422190B2 (en) 1992-04-15

Family

ID=16313769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19378685A Granted JPS6254768A (en) 1985-08-27 1985-09-04 Heat-resistant paint

Country Status (1)

Country Link
JP (1) JPS6254768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118495B2 (en) * 2005-12-21 2013-01-16 日本碍子株式会社 Marking composition and information display method
KR102237798B1 (en) * 2020-06-16 2021-04-08 윤숙현 Method for manufacturing inorganic ceramic heat-resistant coating material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250012A (en) * 1987-04-07 1988-10-17 昭和電線電纜株式会社 Heat resisting insulated wire
JPH0653864B2 (en) * 1987-12-28 1994-07-20 日本カーボン株式会社 Heat and corrosion resistant composition
JPH08168966A (en) * 1994-12-16 1996-07-02 Tone Corp Electrodeposition grinding wheel for cast iron
JP2005322810A (en) * 2004-05-10 2005-11-17 Tdk Corp Rare earth magnet
JP5763494B2 (en) 2011-09-30 2015-08-12 日本特殊陶業株式会社 Lubricating paint composition and mounting part for internal combustion engine
JP6059170B2 (en) 2013-04-30 2017-01-11 日本特殊陶業株式会社 Temperature sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434332A (en) * 1977-08-23 1979-03-13 Kansai Paint Co Ltd Inorganic paint composition
JPS5441937A (en) * 1977-09-08 1979-04-03 Kansai Paint Co Ltd Film-forming composition
JPS56151732A (en) * 1980-04-28 1981-11-24 Satoshi Yajima Polycarbosilane containing metalloxane bond partly and its preparation
JPS58132026A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polyzirconocarbosilane
JPS58132025A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polytitanocarbosilane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434332A (en) * 1977-08-23 1979-03-13 Kansai Paint Co Ltd Inorganic paint composition
JPS5441937A (en) * 1977-09-08 1979-04-03 Kansai Paint Co Ltd Film-forming composition
JPS56151732A (en) * 1980-04-28 1981-11-24 Satoshi Yajima Polycarbosilane containing metalloxane bond partly and its preparation
JPS58132026A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polyzirconocarbosilane
JPS58132025A (en) * 1983-01-13 1983-08-06 Tokushu Muki Zairyo Kenkyusho New polytitanocarbosilane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118495B2 (en) * 2005-12-21 2013-01-16 日本碍子株式会社 Marking composition and information display method
KR102237798B1 (en) * 2020-06-16 2021-04-08 윤숙현 Method for manufacturing inorganic ceramic heat-resistant coating material

Also Published As

Publication number Publication date
JPS6254768A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
JP2844896B2 (en) Heat resistant insulation paint
EP0217129B1 (en) Heat-resistant paint comprising polymetallocarbosilane
US3455732A (en) Heat-resistant silicone resin coating
US5254411A (en) Formation of heat-resistant dielectric coatings
US4808659A (en) Adhesive composition comprising organometallic polymer
JPH0422190B2 (en)
JPH0579711B2 (en)
JPH07116582B2 (en) Sealing method for thermal spray coating
JP2953152B2 (en) Heat and stain resistant paint and heat and stain resistant coating
JPH0715093B2 (en) Adhesive composition
JPS6312672A (en) Coating composition
US2672105A (en) Baking pan, coating compounds, and methods of preparation and baking
JPS63297469A (en) Sialon based heat-resistant coating
JPH0580957B2 (en)
JP3439554B2 (en) Method for producing metal substrate with ceramic coating
JPH0538480A (en) Forming method for heat-resistant insulated coating film
JPH0643267B2 (en) Infrared radiation coating
JPH04100875A (en) Heat-resistant coating material
JPH01280546A (en) Black silicon resin coated metallic plate
JPH04100873A (en) Heat-resistant coating material
JPH04239078A (en) Heat-resistant coating composition
JPS63193951A (en) Epoxy resin composition
JPH02173159A (en) Polyurethane resin composition
JPH04100876A (en) Heat-resistant coating material
JPH0586332A (en) Heat-resistant coating composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term