JPH04214074A - Production of carbon fiber reinforced carbon material - Google Patents

Production of carbon fiber reinforced carbon material

Info

Publication number
JPH04214074A
JPH04214074A JP2410433A JP41043390A JPH04214074A JP H04214074 A JPH04214074 A JP H04214074A JP 2410433 A JP2410433 A JP 2410433A JP 41043390 A JP41043390 A JP 41043390A JP H04214074 A JPH04214074 A JP H04214074A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
molded body
thermosetting resin
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2410433A
Other languages
Japanese (ja)
Inventor
Kazuo Muramatsu
一生 村松
Katsuya Goto
克也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2410433A priority Critical patent/JPH04214074A/en
Publication of JPH04214074A publication Critical patent/JPH04214074A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a carbon fiber reinforced carbon material having high density at low cost. CONSTITUTION:At first, a thermosetting resin is impregnated into a carbon fiber 1, which is formed into the shape in which the carbon fiber 1 is surrounded by the surface part of the thermosetting resin. Next, this formed body is calcined to convert the thermosetting resin into amorphous carbon. At this time, the temp. of the preliminary baking is regulated, and the calcination is finished in the state where hydrogen remains. Next, this calcined product is subjected to hot isostatic pressing treatment. In this way, graphite is stuck to the carbon fiber 1, by which a carbon fiber reinforced carbon material 3 can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車及び航空機のブ
レーキディスク並びに超高速航空機のノーズコーン等に
使用される高密度、高強度及び軽量の炭素繊維強化炭素
材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-density, high-strength and lightweight carbon fiber-reinforced carbon material used for brake discs of automobiles and aircraft, nose cones of ultra-high-speed aircraft, and the like.

【0002】0002

【従来の技術】従来、炭素繊維強化炭素材は以下に示す
方法により製造されている。
BACKGROUND OF THE INVENTION Conventionally, carbon fiber reinforced carbon materials have been manufactured by the following method.

【0003】先ず、炭素繊維(カーボンファイバー)の
織布又は不織布に熱硬化性樹脂を含浸させた後、これを
焼成する。そして、この含浸及び焼成工程を1乃至2回
繰り返す。次いで、ピッチ含浸及び焼成の工程を1乃至
3回繰り返す。これにより、熱硬化性樹脂及びピッチが
炭素化して、炭素質が炭素繊維に付着する。その後、黒
鉛化処理を施す。これにより、炭素繊維強化炭素材を得
ることができる。
First, a woven or nonwoven carbon fiber fabric is impregnated with a thermosetting resin and then fired. This impregnation and firing process is then repeated once or twice. The pitch impregnation and firing steps are then repeated one to three times. As a result, the thermosetting resin and pitch are carbonized, and carbonaceous matter is attached to the carbon fibers. After that, graphitization treatment is performed. Thereby, a carbon fiber reinforced carbon material can be obtained.

【0004】また、以下に示す方法により製造すること
もできる。
[0004] It can also be produced by the method shown below.

【0005】先ず、炭素繊維の織布又は不織布に熱硬化
性樹脂を含浸させた後、これを焼成する。この含浸及び
焼成工程は1又は2回実施する。その後、CVD(Ch
emicalVapor Deposition )法
により、炭素繊維間に黒鉛質を堆積させる。これにより
、炭素繊維強化炭素材を得ることができる。
First, a woven or nonwoven carbon fiber fabric is impregnated with a thermosetting resin and then fired. This impregnation and firing step is carried out once or twice. After that, CVD (Ch
Graphite is deposited between the carbon fibers by the chemical vapor deposition method. Thereby, a carbon fiber reinforced carbon material can be obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来の炭素繊維強化炭素材の製造方法には以下に示す
問題点がある。
[Problems to be Solved by the Invention] However, the above-described conventional method for producing carbon fiber reinforced carbon materials has the following problems.

【0007】前者の方法においては、熱処理時に発生す
るガスにより組織がポーラスな状態になる。従って、密
度を向上させるためには、樹脂及びピッチを含浸させた
後夫々焼成する工程を2乃至3回繰り返す必要がある。 このため、この方法においては、製造コストが高くなる
という欠点がある。なお、炭素繊維の織布又は不織布に
熱硬化性樹脂又はピッチを含浸させ、次にこの樹脂又は
ピッチを炭化させた後、HIP装置を使用してHIP処
理を施すことにより、含浸及び焼成工程のサイクル数を
低減すると共に高密度化を達成しようとする試みもある
。しかし、この方法においては、後工程における黒鉛化
処理時に炭素繊維強化炭素材の組織がポーラスになり、
達成可能な密度(かさ密度)は高々 1.5乃至1.6
 g/cm3 と低い。
In the former method, the structure becomes porous due to gas generated during heat treatment. Therefore, in order to improve the density, it is necessary to repeat the process of impregnating resin and pitch and then firing each process two to three times. Therefore, this method has the disadvantage of increasing manufacturing costs. Note that the impregnation and firing process can be completed by impregnating a carbon fiber woven or nonwoven fabric with a thermosetting resin or pitch, then carbonizing the resin or pitch, and then performing HIP treatment using a HIP device. There are also attempts to achieve higher densities while reducing the number of cycles. However, in this method, the structure of the carbon fiber reinforced carbon material becomes porous during the graphitization treatment in the subsequent process.
The achievable density (bulk density) is at most 1.5 to 1.6
As low as g/cm3.

【0008】一方、後者の方法においては、CVD法に
より黒鉛質を堆積させるため処理時間が長い。また、C
VD処理中に反応性ガスの濃度勾配が生じるため、細気
孔部に黒鉛質が堆積されず、高密度の炭素繊維強化炭素
材を得ることができないという問題点がある。
On the other hand, in the latter method, since graphite is deposited by CVD, the processing time is long. Also, C
Since a concentration gradient of the reactive gas occurs during the VD treatment, there is a problem in that graphite is not deposited in the pores, making it impossible to obtain a high-density carbon fiber-reinforced carbon material.

【0009】本発明はかかる問題点に鑑みてなされたも
のであって、密度が高い炭素繊維強化炭素材を製造する
ことができると共に製造コストが低い炭素繊維強化炭素
材の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a carbon fiber reinforced carbon material that can produce a carbon fiber reinforced carbon material with high density and at a low production cost. With the goal.

【0010】0010

【課題を解決するための手段】本発明に係る炭素繊維強
化炭素材の製造方法は、熱硬化性樹脂及び炭素繊維によ
り構成された成形体を予備焼成し、水素が残存する状態
でこれを終了する工程と、この予備焼成品を熱間静水圧
加圧処理する工程とを有することを特徴とする。
[Means for Solving the Problems] A method for producing a carbon fiber-reinforced carbon material according to the present invention involves preliminarily firing a molded body made of a thermosetting resin and carbon fibers, and finishing the molded body in a state in which hydrogen remains. and a step of subjecting the pre-fired product to hot isostatic pressing.

【0011】[0011]

【作用】例えば、フェノールホルムアルデヒド樹脂を炭
化焼成して得たアモルファスカーボンを熱間静水圧加圧
(HIP)装置で処理すると、高密度なアモルファスカ
ーボン材を得ることができる(特開平1−24071 
)。このとき、アモルファスカーボン成形体の残留水素
濃度及び板厚を適正に制御し、このアモルファスカーボ
ン成形体に対して適正な条件でHIP処理を施すと、成
形体内部に黒鉛相が析出する(特願昭63−20303
2 )。即ち、HIP処理中に成形体内部で発生したH
2 が炭素をエッチングして、その結果CH4 及びC
2 H2 等の炭化水素が生成される。そして、これら
の炭化水素により微小気孔内に黒鉛が析出して、成形体
の内部に黒鉛相が生成される。
[Operation] For example, if amorphous carbon obtained by carbonizing and firing phenol formaldehyde resin is treated with a hot isostatic pressing (HIP) device, a high-density amorphous carbon material can be obtained (Japanese Patent Application Laid-Open No. 1-24071
). At this time, if the residual hydrogen concentration and plate thickness of the amorphous carbon molded body are properly controlled and the amorphous carbon molded body is subjected to HIP treatment under appropriate conditions, a graphite phase will precipitate inside the molded body (patent application Showa 63-20303
2). That is, the H generated inside the molded body during the HIP process
2 etches carbon, resulting in CH4 and C
Hydrocarbons such as 2 H2 are produced. Graphite is precipitated within the micropores by these hydrocarbons, and a graphite phase is generated inside the molded body.

【0012】そこで、本発明においては、先ず、熱硬化
性樹脂及び炭素繊維により構成された成形体を予備焼成
する。これにより、熱硬化性樹脂がアモルファスカーボ
ンになり、アモルファスカーボン内に炭素繊維が埋め込
まれた構造の成形体を得ることができる。なお、予備焼
成は、次工程のHIP処理においてH2 ガスが発生す
るように、成形体内部に水素が残存する状態で終了する
。 次に、この成形体に対してHIP処理を施す。そうする
と、成形体内部にH2 ガスが発生し、このH2ガスが
炭素をエッチングしてCH4及びC2 H2 等の炭化
水素が生成される。そして、この炭化水素により、炭素
繊維の周囲に黒鉛が析出する。このようにして、成形体
の内部に炭素繊維及び炭素の複合材(即ち、炭素繊維強
化炭素材;以下、C/Cコンポジット材という)が形成
される。
Therefore, in the present invention, first, a molded body made of a thermosetting resin and carbon fibers is preliminarily fired. As a result, the thermosetting resin becomes amorphous carbon, and a molded article having a structure in which carbon fibers are embedded in the amorphous carbon can be obtained. Note that the preliminary firing ends with hydrogen remaining inside the compact so that H2 gas is generated in the next HIP process. Next, this molded body is subjected to HIP treatment. Then, H2 gas is generated inside the molded body, and this H2 gas etches carbon to generate hydrocarbons such as CH4 and C2 H2. This hydrocarbon causes graphite to precipitate around the carbon fibers. In this way, a composite material of carbon fibers and carbon (ie, a carbon fiber reinforced carbon material; hereinafter referred to as a C/C composite material) is formed inside the molded body.

【0013】つまり、本発明においては、従来CVD装
置を使用して炭素繊維間に黒鉛質を堆積させている処理
を、CVD装置を使用せずに、成形体内部において成形
体自体から発生したガスを利用して実施する。これによ
り、HIP処理による緻密化効果と相俟って、従来に比
して高密度及び高強度のC/Cコンポジット材を得るこ
とができる。また、工程数が少なく、製造コストを低減
することができる。
In other words, in the present invention, the process of depositing graphite between carbon fibers using a conventional CVD device can be replaced with a process in which the gas generated from the compact itself inside the compact is replaced without using a CVD device. Implemented using. This, together with the densification effect of the HIP process, makes it possible to obtain a C/C composite material with higher density and higher strength than before. Furthermore, the number of steps is small, and manufacturing costs can be reduced.

【0014】なお、HIP処理における加熱温度は20
00乃至3000℃、加圧力は1000乃至3000気
圧であることが好ましい。これにより、ガラス状炭素に
囲まれた状態で大形状の高配向性黒鉛結晶が成形体内部
に析出する。
[0014] The heating temperature in the HIP treatment is 20
It is preferable that the temperature is 00 to 3000°C and the applied pressure is 1000 to 3000 atm. As a result, large highly oriented graphite crystals are precipitated inside the compact while being surrounded by glassy carbon.

【0015】[0015]

【実施例】次に、本発明の実施例について添付の図面を
参照して説明する。
Embodiments Next, embodiments of the present invention will be described with reference to the accompanying drawings.

【0016】図1(a)及び(b)は本発明の実施例方
法を工程順に示す模式的断面図である。
FIGS. 1(a) and 1(b) are schematic sectional views showing the method according to the present invention in the order of steps.

【0017】先ず、図1(a)に示すように、炭素繊維
1に液状の熱硬化性樹脂を含浸させ、炭素繊維1が熱硬
化性樹脂からなる表面部2に囲まれた形状に成形する。 次に、この成形体を予備焼成して、熱硬化性樹脂をアモ
ルファスカーボンに変換する。
First, as shown in FIG. 1(a), a carbon fiber 1 is impregnated with a liquid thermosetting resin and formed into a shape in which the carbon fiber 1 is surrounded by a surface portion 2 made of a thermosetting resin. . Next, this molded body is prefired to convert the thermosetting resin into amorphous carbon.

【0018】この場合に、予備焼成温度は水素ガスの発
生が終了する温度以下であることが必要である。予備焼
成温度がこの温度を超える場合は、残留水素濃度が低過
ぎて次工程でHIP処理を行なっても黒鉛結晶の析出が
生じない。一方、予備焼成温度が低過ぎると、HIP処
理において、黒鉛結晶相を取り込むガラス状炭素相が脆
弱になり、大形状の黒鉛結晶を製造することができない
。このため、予備焼成は、例えば残留水素濃度が50乃
至5000ppm の範囲になる温度で実施する。
[0018] In this case, the pre-firing temperature needs to be below the temperature at which hydrogen gas generation ends. If the pre-calcination temperature exceeds this temperature, the residual hydrogen concentration will be so low that graphite crystals will not precipitate even if HIP treatment is performed in the next step. On the other hand, if the pre-calcination temperature is too low, the glassy carbon phase that incorporates the graphite crystal phase becomes brittle in the HIP treatment, making it impossible to produce large-sized graphite crystals. For this reason, the preliminary firing is performed at a temperature such that the residual hydrogen concentration is in the range of 50 to 5000 ppm, for example.

【0019】次いで、この成形体に対してHIP処理を
施す。このHIP処理は、温度が2000乃至3000
℃、加圧力が1000乃至3000気圧の条件で実施す
る。そうすると、図1(b)に示すように、炭素繊維1
に黒鉛が付着して、C/Cコンポジット材3が形成され
る。このコンポジット材3は、表面部2を切り開くこと
により、容易に取り出すことができる。
Next, this molded body is subjected to HIP treatment. This HIP treatment is performed at a temperature of 2000 to 3000.
The test is carried out at a temperature of 1,000 to 3,000 atmospheres. Then, as shown in FIG. 1(b), the carbon fiber 1
Graphite adheres to the C/C composite material 3. This composite material 3 can be easily taken out by cutting open the surface portion 2.

【0020】次に、本実施例方法により、実際にC/C
コンポジット材を製造した結果について説明する。
Next, using the method of this embodiment, the C/C
The results of manufacturing the composite material will be explained.

【0021】PAN(ポリアクリロニトル)系炭素繊維
の織布に液状のフェノールホルムアルデヒド樹脂を含浸
させ、この樹脂を 200℃の温度で24時間かけて乾
燥させた。この樹脂の含浸及び乾燥工程を3回繰り返し
て、成形体のかさ密度を1.12g/cm3 まで増加
させた。次いで、この成形体の全表面を粉状のフェノー
ルホルムアルデヒド樹脂で被覆し、その後ホットプレス
加工を施して、炭素繊維をフェノールホルムアルデヒド
樹脂で取り囲んだ構造の成形体を得た。
A PAN (polyacrylonitrile) carbon fiber woven fabric was impregnated with liquid phenol formaldehyde resin, and this resin was dried at a temperature of 200° C. for 24 hours. This resin impregnation and drying process was repeated three times to increase the bulk density of the molded article to 1.12 g/cm@3. Next, the entire surface of this molded body was coated with powdered phenol formaldehyde resin, and then hot pressing was performed to obtain a molded body having a structure in which carbon fibers were surrounded by phenol formaldehyde resin.

【0022】次に、この成形体を不活性ガス中で100
0℃の温度で焼成して、フェノールホルムアルデヒド樹
脂をアモルファスカーボンに変換した。
Next, this molded body was heated in an inert gas for 100 min.
The phenol formaldehyde resin was converted into amorphous carbon by firing at a temperature of 0°C.

【0023】次いで、この成形体を熱間静水圧加圧装置
を使用して、2450℃の温度で2000気圧の条件で
HIP処理を施した。このHIP処理においては、成形
体の内部にCH4 が発生する。そして、このCH4 
の気相反応により黒鉛が析出する。この黒鉛が炭素繊維
に付着してC/Cコンポジット材が生成される。
[0023] Next, this molded body was subjected to HIP treatment at a temperature of 2450°C and a pressure of 2000 atm using a hot isostatic pressing device. In this HIP treatment, CH4 is generated inside the molded body. And this CH4
Graphite is precipitated by the gas phase reaction. This graphite adheres to carbon fibers to produce a C/C composite material.

【0024】この成形体の内部に生成されたC/Cコン
ポジット材は、成形体の表面部分に切り込みを入れると
、容易に取り出すことができる。このようにして、高密
度及び高強度のC/Cコンポジット材を得ることができ
る。
[0024] The C/C composite material produced inside the molded body can be easily taken out by making an incision in the surface portion of the molded body. In this way, a C/C composite material with high density and high strength can be obtained.

【0025】なお、上述の如く成形体の内部で黒鉛相を
析出させるためには、HIP処理前の残留水素量、成形
体の板厚及びHIP処理条件を適正に設定する必要があ
る。残留水素量は、予備焼成温度に依存する。
[0025] In order to precipitate the graphite phase inside the molded body as described above, it is necessary to appropriately set the amount of residual hydrogen before the HIP treatment, the plate thickness of the molded body, and the HIP treatment conditions. The amount of residual hydrogen depends on the pre-calcination temperature.

【0026】このようにして得たC/Cコンポジット材
の物理特性を下記表1に示す。
The physical properties of the C/C composite material thus obtained are shown in Table 1 below.

【0027】[0027]

【表1】   この表1から明らかなように、本実施例方法により
製造したC/Cコンポジット材は気孔率が小さく、かさ
密度が高く、曲げ強度が極めて高い。
[Table 1] As is clear from Table 1, the C/C composite material manufactured by the method of this example has a small porosity, a high bulk density, and an extremely high bending strength.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば熱硬
化性樹脂及び炭素繊維により構成された成形体を予備焼
成した後、この予備焼成品に対して熱間静水圧加圧処理
を施すから、成形体内部で発生したH2 ガスが炭素を
エッチングして、CH4 及びC2 H2 等の炭化水
素が生成され、微小気孔内に黒鉛が析出して炭素繊維強
化炭素材を得ることができる。このようにして製造した
炭素繊維強化炭素材は、従来に比して密度が高い。また
、工程数が少ないため、製造コストを低減できるという
効果もある。
[Effects of the Invention] As explained above, according to the present invention, after a molded body made of a thermosetting resin and carbon fiber is pre-fired, the pre-fired product is subjected to a hot isostatic pressing treatment. The H2 gas generated inside the compact etches the carbon, producing hydrocarbons such as CH4 and C2H2, and graphite is precipitated in the micropores to obtain a carbon fiber-reinforced carbon material. The carbon fiber-reinforced carbon material manufactured in this manner has a higher density than conventional carbon materials. Furthermore, since the number of steps is small, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1の(a)及び(b)は本発明の実施例方法
を工程順に示す模式的断面図である。
FIGS. 1A and 1B are schematic cross-sectional views showing an example method of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1;炭素繊維 2;表面部 3;コンポジット材 1; Carbon fiber 2; Surface part 3; Composite material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  熱硬化性樹脂及び炭素繊維により構成
された成形体を予備焼成し水素が残存する状態でこれを
終了する工程と、この予備焼成品を熱間静水圧加圧処理
する工程とを有することを特徴とする炭素繊維強化炭素
材の製造方法。
Claim 1: A step of pre-calcining a molded body made of a thermosetting resin and carbon fibers and finishing the process in a state where hydrogen remains; and a step of subjecting the pre-fired product to hot isostatic pressing. A method for producing a carbon fiber-reinforced carbon material, comprising:
【請求項2】  前記熱間静水圧加圧処理は、温度が2
000乃至3000℃、圧力が1000乃至3000気
圧の条件で実施することを特徴とする請求項1に記載の
炭素繊維強化炭素材の製造方法。
2. The hot isostatic pressure treatment is performed at a temperature of 2.
2. The method for producing a carbon fiber reinforced carbon material according to claim 1, wherein the method is carried out at a temperature of 000 to 3000°C and a pressure of 1000 to 3000 atmospheres.
【請求項3】  前記成形体はその内部を熱硬化性樹脂
と炭素繊維との複合体が占め、その表面部を熱硬化性樹
脂が占めていることを特徴とする請求項1又は2に記載
の炭素繊維強化炭素材の製造方法。
3. The molded body according to claim 1 or 2, wherein an interior of the molded body is occupied by a composite of a thermosetting resin and carbon fibers, and a surface portion of the molded body is occupied by a thermosetting resin. A method for producing a carbon fiber reinforced carbon material.
JP2410433A 1990-12-12 1990-12-12 Production of carbon fiber reinforced carbon material Pending JPH04214074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410433A JPH04214074A (en) 1990-12-12 1990-12-12 Production of carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410433A JPH04214074A (en) 1990-12-12 1990-12-12 Production of carbon fiber reinforced carbon material

Publications (1)

Publication Number Publication Date
JPH04214074A true JPH04214074A (en) 1992-08-05

Family

ID=18519601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410433A Pending JPH04214074A (en) 1990-12-12 1990-12-12 Production of carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPH04214074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779782A (en) * 2020-07-20 2020-10-16 杭州安耐特实业有限公司 High-stability friction-resistant brake pad and production process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779782A (en) * 2020-07-20 2020-10-16 杭州安耐特实业有限公司 High-stability friction-resistant brake pad and production process thereof
CN111779782B (en) * 2020-07-20 2021-10-01 杭州安耐特实业有限公司 High-stability friction-resistant brake pad and production process thereof

Similar Documents

Publication Publication Date Title
CA1229964A (en) Composite materials constituted by a matrix in resin coke carbon, reinforced with pyrolytic carbon-coated refractory fibers, and method of obtaining same
US4178413A (en) Fiber reinforced carbon and graphite articles and a method of producing said articles
US5071700A (en) Carbon fiber-reinforced carbon composite material
US5217657A (en) Method of making carbon-carbon composites
US7938992B2 (en) CVI followed by coal tar pitch densification by VPI
US3936535A (en) Method of producing fiber-reinforced composite members
US5597611A (en) Reinforced carbon composites
JPH0737345B2 (en) Carbon fiber reinforced carbon composite
EP0335736A2 (en) Process for producing carbon/carbon composites
US5238568A (en) Porous carbon-carbon composite filtering membrane support with a carbon fibre mat substrate
CN112552066A (en) Preparation method of 2D carbon/carbon PECVD carrier plate
JPH04214074A (en) Production of carbon fiber reinforced carbon material
USH420H (en) Co-pyrolysis process for forming carbonized composite bodies
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP2000103686A (en) Production of carbon fiber reinforced carbon composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH0524921A (en) Production of oxidation resistance c/c composite
CN117776756A (en) Preparation process of high-performance carbon-carbon composite material
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JPH1160357A (en) Oxidation resistant c/c composite material and its production
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material