JPH0524921A - Production of oxidation resistance c/c composite - Google Patents

Production of oxidation resistance c/c composite

Info

Publication number
JPH0524921A
JPH0524921A JP3205544A JP20554491A JPH0524921A JP H0524921 A JPH0524921 A JP H0524921A JP 3205544 A JP3205544 A JP 3205544A JP 20554491 A JP20554491 A JP 20554491A JP H0524921 A JPH0524921 A JP H0524921A
Authority
JP
Japan
Prior art keywords
composite
oxidation resistant
tic
base material
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3205544A
Other languages
Japanese (ja)
Inventor
Toshiya Sedaka
俊哉 瀬高
Takaomi Sugihara
孝臣 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3205544A priority Critical patent/JPH0524921A/en
Publication of JPH0524921A publication Critical patent/JPH0524921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the process for production of an oxidation resistant C/C composite (carbon fiber reinforced carbon composite)which exhibits excellent oxidation resistance in a high-temp. oxidizing atmosphere. CONSTITUTION:The carbon fibers constituted by forming coating layers of an oxidation resistant material consisting of B4C or TiC on fiber surfaces is molded in combination with a matrix resin and the molding is subjected to a curing and calcining carbonization treatment, by which the C/C composite base material is produced. A precursor soln. of the above-mentioned oxidation resistant material (aq. boric acid soln., titania/sulfuric acid soln. or titanium sulfate/dilute sulfuric acid soln.) is applied on the surface of this C/C composite base material and thereafter, the base material is subjected to drying and a calcination treatment in an inert atmosphere, by which the coating layer of the B4C or TiC is formed on the surface of the composite base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温酸化雰囲気におい
て優れた酸化抵抗性を発揮するC/C複合材(炭素繊維
強化炭素複合材)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a C / C composite material (carbon fiber reinforced carbon composite material) which exhibits excellent oxidation resistance in a high temperature oxidizing atmosphere.

【0002】[0002]

【従来の技術】C/C材は、卓越した比強度、比弾性率
を有するうえに優れた耐熱性および化学的安定性を備え
ているため、航空宇宙用をはじめ多くの分野で使用され
る構造材料として有用されている。ところが、この材料
には易酸化性という炭素材固有の材質的な欠点があり、
これが汎用性を阻害する最大のネックとなっている。こ
のため、C/C材の表面に耐酸化性の被覆を施して改質
化する試みが従来からおこなわれており、例えばZrO
2 、Al2 3 、SiC、Si3 4 等のセラミックス
系物質によって被覆処理する方法が提案されている。し
かし、SiC被覆層を除いては、使用時の熱サイクルで
被覆界面に層間剥離や亀裂が生じ、酸化の進行を十分に
阻止する機能が発揮されない。
2. Description of the Related Art C / C materials are used in many fields including aerospace, because they have excellent specific strength and specific elastic modulus as well as excellent heat resistance and chemical stability. It is used as a structural material. However, this material has a material defect unique to carbon materials such as easy oxidation,
This is the biggest bottleneck that hinders versatility. Therefore, attempts have been made to modify the surface of the C / C material by coating it with an oxidation resistant coating, for example, ZrO.
A method of coating with a ceramic material such as 2 , Al 2 O 3 , SiC, and Si 3 N 4 has been proposed. However, except for the SiC coating layer, delamination and cracks occur at the coating interface during the thermal cycle during use, and the function of sufficiently preventing the progress of oxidation is not exhibited.

【0003】従来、C/C基材の表面にSiCの被覆を
施す方法として、気相反応により生成するSiCを直接
沈着させるCVD法(化学的気相蒸着法)と、基材の炭
素を反応源に利用して珪素成分と反応させることにより
SiCに転化させるコンバージョン法が知られている。
ところが、前者のCVD法を適用して形成したSiC被
覆層は、基材との界面が明確に分離している関係で、熱
衝撃を与えると相互の熱膨張差によって層間剥離現象が
起こり易い。このため、高温域での十分な耐酸化性は望
めない。これに対し、後者のコンバージョン法による場
合には基材の表層部が連続組織としてSiC層を形成す
る傾斜機能材質となるため界面剥離を生じることはない
が、CVD法に比べて緻密性に劣るうえ、反応時、被覆
層に微細なクラックが発生する問題がある。
Conventionally, as a method for coating the surface of a C / C base material with SiC, a CVD method (chemical vapor deposition method) for directly depositing SiC produced by a vapor phase reaction and a carbon of the base material are reacted. A conversion method is known in which a source is used to react with a silicon component to convert it into SiC.
However, in the SiC coating layer formed by applying the former CVD method, the interface with the substrate is clearly separated, so that when a thermal shock is applied, a delamination phenomenon is likely to occur due to a mutual thermal expansion difference. Therefore, sufficient oxidation resistance in the high temperature range cannot be expected. On the other hand, in the latter conversion method, the surface layer portion of the base material is a functionally graded material that forms the SiC layer as a continuous structure, so interface peeling does not occur, but it is less dense than the CVD method. In addition, there is a problem that minute cracks are generated in the coating layer during the reaction.

【0004】このような問題点の解消を図るため、C/
C基材面にSiO接触によるコンバージョン法で第1の
SiC被膜を形成し、さらにその表面をアモルファスS
iCが析出するような条件でCVD法による第2のSi
C被覆層を形成する耐酸化処理法(特願平2−114872
号) が本出願人によって提案されている。しかし、通常
のCVD法では反応が拡散律速となる関係で第1層上に
発生した亀裂の内部まで第2のSiC被覆層を充填形成
することが困難となり、結果的に十分な耐酸化性能を付
与することができない難点がある。
In order to solve such problems, C /
The first SiC film is formed on the surface of the C substrate by the conversion method by contacting with SiO, and the surface of the first SiC film is made of amorphous S.
Second Si produced by the CVD method under the condition that iC is deposited
Oxidation-resistant treatment method for forming C coating layer (Japanese Patent Application No. 2-114872)
No.) has been proposed by the applicant. However, in the ordinary CVD method, it becomes difficult to fill and form the second SiC coating layer up to the inside of the crack generated on the first layer because the reaction is diffusion-controlled, and as a result, sufficient oxidation resistance performance is obtained. There are difficulties that cannot be given.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、強化材
炭素繊維の表面に予め耐酸化性被膜を形成したC/C複
合材の表面に耐酸化性被覆を施す2段階の耐酸化処理プ
ロセスを採る場合には、SiC以外のB4 C、TiC等
の炭化物を被覆物質としても剥離、亀裂などの発生現象
は軽減化され、また若干の剥離や亀裂現象が生じても酸
化の進行を効果的に阻止できることを実験的に確認し
た。
DISCLOSURE OF THE INVENTION The inventors of the present invention have proposed a two-stage oxidation resistance treatment for applying an oxidation resistant coating to the surface of a C / C composite material in which an oxidation resistant coating has been previously formed on the surface of a reinforcing carbon fiber. When the process is adopted, the occurrence of peeling and cracking is mitigated even when carbides such as B 4 C and TiC other than SiC are used as the coating material, and the progress of oxidation is promoted even if some peeling or cracking phenomenon occurs. It was confirmed experimentally that it can be effectively blocked.

【0006】本発明は前記の知見に基づいて開発された
もので、B4 CまたはTiCからなる炭化物系の物質を
用いて高温下で優れた耐酸化性を付与することができる
C/C複合材の製造方法を提供することにある。
The present invention was developed on the basis of the above-mentioned findings, and a C / C composite which can impart excellent oxidation resistance at high temperature by using a carbide type substance composed of B 4 C or TiC. It is to provide a manufacturing method of the material.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による耐酸化性C/C複合材の製造方法は、
繊維表面にB4 CまたはTiCからなる耐酸化性物質の
被覆層を形成した炭素繊維をマトリックス樹脂とともに
複合成形し、硬化および焼成炭化処理して炭素繊維強化
炭素体の複合基材を作製し、ついで該複合基材の表面に
前記耐酸化性物質の前駆体溶液を塗布したのち、乾燥お
よび不活性雰囲気下で焼成処理を施して複合基材面にB
4 CまたはTiCの被覆層を形成することを構成上の特
徴とするものである。
The method for producing an oxidation resistant C / C composite material according to the present invention for achieving the above object comprises:
A carbon fiber having a coating layer of an oxidation resistant material made of B 4 C or TiC formed on the surface of the fiber is composite-molded with a matrix resin, and is hardened and calcined to produce a composite base material of a carbon fiber-reinforced carbon body, Then, the precursor solution of the oxidation resistant substance is applied to the surface of the composite base material, followed by drying and baking treatment in an inert atmosphere to form B on the composite base material surface.
The constitutional feature is to form a coating layer of 4 C or TiC.

【0008】C/C複合基材を構成する炭素繊維には、
ポリアクリロニトリル系、レーヨン系、ピッチ系など各
種原料から製造された平織、朱子織、綾織などの織布を
一次元または多次元方向に配向した繊維体、フェルト、
トウ等が使用される。
The carbon fibers constituting the C / C composite substrate include
Fibers, felts, etc. in which woven fabrics such as plain weave, satin weave, and twill weave manufactured from various raw materials such as polyacrylonitrile-based, rayon-based, and pitch-based are oriented in one-dimensional or multi-dimensional directions.
Tow etc. are used.

【0009】これら炭素繊維の表面には、予めB4 Cま
たはTiCからなる耐酸化性物質の被覆層が形成される
が、被覆形成の方法は特に限定されない。しかし、好ま
しい態様は後工程のC/C複合基材面に対する被覆処理
と同一の前駆体溶液を利用して形成することである。す
なわち、B4 Cの被覆層を形成する場合には炭素繊維の
表面を浸漬、塗布などの手段によりほう酸水溶液で十分
に濡らし、乾燥したのち不活性雰囲気下、1200〜1600℃
の温度域で焼成処理する方法、また、TiCの被覆層を
形成するにあたっては、同様に炭素繊維の表面をチタニ
ア/硫酸溶液または硫酸チタン/希硫酸溶液で濡らし、
乾燥後に不活性雰囲気において1300〜1600℃の温度で焼
成処理する方法が採られる。
A coating layer of an oxidation resistant substance made of B 4 C or TiC is formed on the surface of these carbon fibers in advance, but the method for forming the coating is not particularly limited. However, a preferred embodiment is to use the same precursor solution as the coating process for the C / C composite substrate surface in the subsequent step. That is, when forming a coating layer of B 4 C, the surface of the carbon fiber is sufficiently wetted with an aqueous solution of boric acid by means such as dipping or coating, dried and then under an inert atmosphere at 1200 to 1600 ° C.
In the method of firing treatment in the temperature range of, and in forming the TiC coating layer, similarly, the surface of the carbon fiber is wetted with a titania / sulfuric acid solution or titanium sulfate / dilute sulfuric acid solution,
After drying, a method of baking at a temperature of 1300 to 1600 ° C. in an inert atmosphere is adopted.

【0010】B4 CまたはTiCの表面被覆層を形成し
た炭素繊維は、浸漬、含浸、塗布など適宜な手段により
マトリックス樹脂で十分に濡らしたのち半硬化してプリ
プレグを形成し、ついで積層加圧成形する。成形体は加
熱して樹脂成分を完全に硬化し、引き続き常法に従って
焼成炭化処理または更に黒鉛化処理を施して炭素繊維強
化炭素体の複合基材を得る。複合基材の緻密化を図るた
めには、基材組織にマトリックス樹脂もしくはタールピ
ッチを含浸して炭化処理する操作を反復するプロセスが
有効となる。複合対象となるマトリックス樹脂には、フ
ェノール系、フラン系など高炭化性の液状熱硬化性樹
脂、タールピッチのような熱可塑性物質が用いられる。
The carbon fiber on which the surface coating layer of B 4 C or TiC is formed is sufficiently wetted with a matrix resin by an appropriate means such as dipping, impregnation and coating, and then semi-cured to form a prepreg. Mold. The molded body is heated to completely cure the resin component, and subsequently subjected to firing carbonization treatment or further graphitization treatment according to a conventional method to obtain a carbon fiber reinforced carbon body composite substrate. In order to densify the composite base material, it is effective to repeat the process of impregnating the base material structure with the matrix resin or tar pitch and carbonizing. As the matrix resin to be combined, a highly thermosetting liquid thermosetting resin such as phenol or furan, or a thermoplastic substance such as tar pitch is used.

【0011】ついで、複合基材の表面にB4 CまたはT
iCからなる耐酸化性物質の前駆体溶液を塗布するが、
この際に塗布する前駆体溶液は予め炭素繊維表面に被覆
した耐酸化性物質と同一物質を形成する種類のものを選
定することが好ましい。すなわち、B4 C被覆層を形成
した炭素繊維による複合基材に対しては、表面にB4
の前駆体溶液を塗布し、またTiC被覆層を形成した炭
素繊維による複合基材に対しては、表面にTiCの前駆
体溶液を塗布する。塗布した複合基材は、引き続き乾燥
および不活性雰囲気下で焼成処理を施して複合基材面に
それぞれB4 CまたはTiCの被覆層を形成する。
Then, B 4 C or T is added to the surface of the composite substrate.
The precursor solution of the oxidation resistant material consisting of iC is applied,
The precursor solution to be applied at this time is preferably selected from a type that forms the same substance as the oxidation resistant substance previously coated on the carbon fiber surface. That is, for a carbon fiber composite base material having a B 4 C coating layer, B 4 C
The precursor solution is applied, and the TiC precursor solution is applied to the surface of the composite substrate made of carbon fibers on which the TiC coating layer is formed. The applied composite substrate is subsequently dried and calcined in an inert atmosphere to form a coating layer of B 4 C or TiC on the surface of the composite substrate.

【0012】このうち、B4 Cの表面被覆層を形成する
には、前駆体溶液として好ましくは濃度 0.1〜2%のほ
う酸水溶液を用い、この溶液を複合基材の全面に塗布し
たのち乾燥被着し、ついでアルゴンのような不活性雰囲
気中で1200〜1600℃の温度域で焼成処理を施す方法が好
適に用いられる。一方、TiC表面被覆層を形成するた
めの好適な工程は、前駆体溶液として濃度 0.1〜2%程
度のチタニア/硫酸溶液または硫酸チタン/希硫酸溶液
を用い、これらに溶液で複合基材の全面を塗布したのち
乾燥し、ついでアルゴンのような不活性雰囲気中、1300
〜1600℃の温度範囲で焼成処理することである。
Of these, in order to form the B 4 C surface coating layer, a boric acid aqueous solution having a concentration of preferably 0.1 to 2% is used as a precursor solution, and this solution is applied to the entire surface of the composite substrate and then dried. It is preferable to use a method of depositing and then performing a baking treatment in a temperature range of 1200 to 1600 ° C. in an inert atmosphere such as argon. On the other hand, a suitable step for forming the TiC surface coating layer is to use a titania / sulfuric acid solution or titanium sulfate / dilute sulfuric acid solution having a concentration of about 0.1 to 2% as a precursor solution, and apply a solution to the entire surface of the composite substrate. And then dry, then 1300 in an inert atmosphere such as argon.
It is a firing treatment in a temperature range of up to 1600 ° C.

【0013】[0013]

【作用】本発明の製造工程によれば、予めB4 Cまたは
TiCで被覆した炭素繊維を強化材としたC/C複合基
材の表面に耐酸化性物質の前駆体溶液を塗布乾燥し、こ
の状態で焼成処理する段階において表面に被着されたほ
う酸または酸化チタンが基材炭素と反応してB4 Cまた
はTiCに転化する。このようにして形成される被覆層
は、均一で剥離し難い薄膜の表層保護被膜を呈してい
る。
According to the manufacturing process of the present invention, the precursor solution of the oxidation resistant substance is applied and dried on the surface of the C / C composite substrate having the carbon fiber previously coated with B 4 C or TiC as the reinforcing material, In this stage of the firing treatment, boric acid or titanium oxide deposited on the surface reacts with the base carbon and is converted to B 4 C or TiC. The coating layer thus formed is a thin surface protective film which is uniform and hardly peeled off.

【0014】したがって、炭素繊維表面を被覆する耐酸
化性物質の介在と前記複合基材の表面に形成された耐酸
化性物質の被覆層が内外両面組織の耐酸化性を高めるた
めに機能し、この作用で多少の剥離、亀裂現象が生じて
も酸化の進行は効果的に阻止される。このため、従来技
術で酸化防止機能が期待できなかったB4 CやTiCの
被覆層によっても優れた耐酸化性を付与することが可能
となる。
Therefore, the interposition of the oxidation-resistant substance for coating the surface of the carbon fiber and the coating layer of the oxidation-resistant substance formed on the surface of the composite base material function to enhance the oxidation resistance of the inner and outer surfaces. This action effectively prevents the progress of oxidation even if some peeling or cracking occurs. Therefore, it becomes possible to provide excellent oxidation resistance even with a B 4 C or TiC coating layer, which has not been expected to have an antioxidant function in the prior art.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 (1) 炭素繊維面へのB4 C被覆 水にほう酸(B2 3)を1%濃度になるように溶解し、
1週間静置して前駆体溶液を作製した。この溶液を高弾
性ポリアクリロニトリル炭素繊維で編組した平織布の全
面に塗布し、真空中で乾燥した。ついで、アルゴン雰囲
気に保持された電気炉に移し、1400℃の温度で焼成処理
して被着したほう酸成分をB4 Cに転化して被覆層を形
成した。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. Example 1 (1) Boric acid (B 2 O 3 ) was dissolved in B 4 C-coated water on the carbon fiber surface so as to have a concentration of 1%,
It left still for 1 week and the precursor solution was produced. This solution was applied to the entire surface of a plain woven fabric braided with high-elasticity polyacrylonitrile carbon fiber, and dried in vacuum. Then, it was transferred to an electric furnace maintained in an argon atmosphere, and the boric acid component deposited by baking treatment at a temperature of 1400 ° C. was converted into B 4 C to form a coating layer.

【0016】(2) C/C複合基材の作製 B4 C被覆層を形成した平織炭素繊維布をフェノール樹
脂初期縮合物〔大日本インキ工業(株)製〕からなるマ
トリックス樹脂液に浸漬して含浸処理し、48時間風乾し
てプリプレグシートを作成した。このプリプレグシート
を14枚積層してモールドに入れ、加熱温度 110℃、適用
圧力20kg/cm2の条件で複合成形した。該成形体を 250℃
の温度に加熱して完全に硬化したのち、窒素雰囲気に保
持された焼成炉に移し、5℃/hr の昇温速度で1400℃ま
で上昇し5時間保持して焼成炭化した。得られたC/C
複合基材にマトリックスと同一のフェノール樹脂液を真
空加圧下に含浸し、上記と同様に1000℃に焼成する処理
を3回反復して緻密組織のC/C複合基材を作製した。
(2) Preparation of C / C composite base material A plain woven carbon fiber cloth having a B 4 C coating layer formed thereon was dipped in a matrix resin solution containing a phenol resin initial condensation product (manufactured by Dainippon Ink and Chemicals, Inc.). Was impregnated and air dried for 48 hours to prepare a prepreg sheet. Fourteen prepreg sheets were laminated and placed in a mold, and composite molding was performed under the conditions of a heating temperature of 110 ° C. and an applied pressure of 20 kg / cm 2 . 250 ° C for the molded body
After being completely hardened by heating to a temperature of 1, the material was transferred to a firing furnace held in a nitrogen atmosphere, heated to 1400 ° C. at a temperature rising rate of 5 ° C./hr, and held for 5 hours to be carbonized. C / C obtained
The composite base material was impregnated with the same phenol resin solution as the matrix under vacuum pressure, and the treatment of baking to 1000 ° C. was repeated three times in the same manner as above to prepare a C / C composite base material having a dense structure.

【0017】(3) C/C複合基材面へのB4 C被覆 C/C複合基材の表面に前記(1) と同一組成のほう酸水
溶液を低湿度系内で塗布したのち乾燥し、窒素雰囲気に
保持された電気炉に移して1400℃の温度で焼成処理を施
し、表面にB4 Cの被覆層を形成した。
(3) B 4 C coating on C / C composite substrate surface An aqueous solution of boric acid having the same composition as the above (1) is applied to the surface of the C / C composite substrate in a low humidity system and then dried. It was transferred to an electric furnace maintained in a nitrogen atmosphere and subjected to a firing treatment at a temperature of 1400 ° C. to form a B 4 C coating layer on the surface.

【0018】(4) 耐熱耐酸化性の評価 上記の工程を経て製造されたC/C複合材を、空気を30
0ml/min.の流量で送入している電気炉に入れ、800 ℃お
よび1200℃の温度に各30分間保持する条件で酸化の度合
を測定した。その結果を、処理後の重量減少率として表
1に示した。
(4) Evaluation of heat resistance and oxidation resistance The C / C composite material manufactured through the above steps was treated with 30% air.
The degree of oxidization was measured under the conditions of placing in an electric furnace fed at a flow rate of 0 ml / min. And keeping the temperature at 800 ° C and 1200 ° C for 30 minutes each. The results are shown in Table 1 as the weight loss rate after the treatment.

【0019】比較例1 B4 C被覆層を形成しない平織炭素繊維布を用いて実施
例1と同一条件によりC/C複合基材を作製し、このC
/C複合基材の表面に実施例1と同一の条件およびプロ
セスでB4 C被覆層を形成した。得られたC/C複合材
につき実施例1と同様にして耐酸化性のテストをおこな
い、その結果を処理後の重量減少率として表1に併載し
た。
Comparative Example 1 A C / C composite substrate was prepared under the same conditions as in Example 1 using a plain woven carbon fiber cloth without forming a B 4 C coating layer.
/ C to form a B 4 C coating layer on the surface of the composite base material in Example 1 the same conditions and processes and. The obtained C / C composite material was tested for oxidation resistance in the same manner as in Example 1, and the results are also shown in Table 1 as the weight reduction rate after treatment.

【0020】実施例2 (1) 炭素繊維面へのTiC被覆 希硫酸に硫酸チタン〔Ti(SO4)2 〕を1%濃度にな
るように溶解し、1週間静置して前駆体溶液を作製し
た。この溶液を高弾性ポリアクリロニトリル系炭素繊維
で編組した平織布の全面に塗布し、乾燥した。ついで、
アルゴン雰囲気に保持された電気炉に移して1400℃の温
度で焼成処理し、被着した酸化チタン成分をTiCに転
化した。
Example 2 (1) TiC coating on carbon fiber surface Titanium sulfate [Ti (SO 4 ) 2 ] was dissolved in dilute sulfuric acid to a concentration of 1%, and the solution was allowed to stand for 1 week to obtain a precursor solution. It was made. This solution was applied to the entire surface of a plain woven fabric braided with high-elasticity polyacrylonitrile-based carbon fiber and dried. Then,
It was transferred to an electric furnace maintained in an argon atmosphere and subjected to a firing treatment at a temperature of 1400 ° C. to convert the deposited titanium oxide component into TiC.

【0021】(2) C/C複合基材の作製 TiC被覆層を形成した炭素繊維布を用い、実施例1と
同一条件により積層型のC/C複合基材を作製した。
(2) Preparation of C / C composite base material Using the carbon fiber cloth having the TiC coating layer formed thereon, a laminated C / C composite base material was prepared under the same conditions as in Example 1.

【0022】(3) C/C複合基材面へのTiC被覆 C/C複合基材の表面に前記(1) と同一組成の硫酸チタ
ン/希硫酸溶液を低湿度系内で塗布し、乾燥したのち、
アルゴン雰囲気に保持された電気炉に移して1400℃の温
度で焼成処理して表面にTiC被覆層を形成した。
(3) TiC coating on C / C composite substrate surface A titanium sulfate / dilute sulfuric acid solution having the same composition as in (1) above is applied to the surface of the C / C composite substrate in a low humidity system and dried. After that,
It was transferred to an electric furnace maintained in an argon atmosphere and baked at a temperature of 1400 ° C. to form a TiC coating layer on the surface.

【0023】このようにして被覆処理されたC/C複合
基材につき、実施例1と同様にして耐酸化テストをおこ
ない、結果を処理後の重量減少率として表1に併載し
た。
The C / C composite substrate thus coated was subjected to an oxidation resistance test in the same manner as in Example 1, and the results are also shown in Table 1 as the weight reduction rate after the treatment.

【0024】比較例2 TiC被覆層を形成しない平織炭素繊維布を用いて実施
例2と同一条件によりC/C複合基材を作製し、このC
/C複合基材の表面に実施例2と同一の条件およびプロ
セスを適用してTiC被覆層を形成した。得られたC/
C複合材につき実施例1と同様にして耐酸化テストをお
こない、その結果を処理後の重量減少率として表1に併
載した。
Comparative Example 2 A C / C composite base material was prepared under the same conditions as in Example 2 using a plain weave carbon fiber cloth without forming a TiC coating layer.
The same conditions and processes as in Example 2 were applied to the surface of the / C composite substrate to form a TiC coating layer. C / obtained
An oxidation resistance test was performed on the C composite material in the same manner as in Example 1, and the results are also shown in Table 1 as the weight reduction rate after the treatment.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から、実施例1、2のC/C複
合材は対応する比較例1、2に比べて処理後の重量減少
率が大幅に減少しており、耐酸化性能が顕著に増大して
いることが認められる。
From the results shown in Table 1, the C / C composite materials of Examples 1 and 2 had a significantly reduced weight reduction rate after the treatment as compared with the corresponding Comparative Examples 1 and 2, and the oxidation resistance performance was remarkable. It is recognized that the number is increasing.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば高温時の
耐酸化性に優れるB4 CまたはTiCを組織骨格となる
炭素繊維表面およびC/C複合材の表面に同時に被覆層
として形成することができるから、材質全体として高度
の耐酸化性能が付与される。したがって、高温酸化雰囲
気下の過酷な条件に曝される構造部材用途に適用して安
定性能の確保、耐久寿命の延長化などの効果が発揮され
る。
As described above, according to the present invention, B 4 C or TiC, which is excellent in oxidation resistance at high temperature, is simultaneously formed as a coating layer on the surface of the carbon fiber as the tissue skeleton and the surface of the C / C composite material. Therefore, a high degree of oxidation resistance is imparted to the material as a whole. Therefore, when applied to structural member applications exposed to severe conditions under a high temperature oxidizing atmosphere, effects such as securing stable performance and extending durable life are exhibited.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維表面にB4 CまたはTiCからなる
耐酸化性物質の被覆層を形成した炭素繊維をマトリック
ス樹脂とともに複合成形し、硬化および焼成炭化処理し
て炭素繊維強化炭素体の複合基材を作製し、ついで該複
合基材の表面に前記耐酸化性物質の前駆体溶液を塗布し
たのち、乾燥および不活性雰囲気下で焼成処理を施して
複合基材面にB4 CまたはTiCの被覆層を形成するこ
とを特徴とする耐酸化性C/C複合材の製造方法。
1. A composite group of carbon fiber reinforced carbon bodies, which are formed by composite molding of carbon fibers having a coating layer of an oxidation resistant material made of B 4 C or TiC on the surface of the fibers together with a matrix resin, followed by curing and firing carbonization. Material, and then the precursor solution of the oxidation resistant substance is applied to the surface of the composite base material, followed by drying and firing treatment in an inert atmosphere to form B 4 C or TiC on the composite base material surface. A method for producing an oxidation resistant C / C composite material, which comprises forming a coating layer.
【請求項2】 B4 Cを耐酸化性物質とする場合の前駆
体溶液が、ほう酸水溶液である請求項1記載の耐酸化性
C/C複合材の製造方法。
2. The method for producing an oxidation resistant C / C composite material according to claim 1, wherein the precursor solution when B 4 C is used as the oxidation resistant substance is an aqueous solution of boric acid.
【請求項3】 TiCを耐酸化性物質とする場合の前駆
体溶液が、チタニア/硫酸溶液または硫酸チタン/希硫
酸溶液である請求項1記載の耐酸化性C/C複合材の製
造方法。
3. The method for producing an oxidation resistant C / C composite material according to claim 1, wherein the precursor solution when TiC is used as the oxidation resistant material is a titania / sulfuric acid solution or a titanium sulfate / dilute sulfuric acid solution.
JP3205544A 1991-07-22 1991-07-22 Production of oxidation resistance c/c composite Pending JPH0524921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205544A JPH0524921A (en) 1991-07-22 1991-07-22 Production of oxidation resistance c/c composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3205544A JPH0524921A (en) 1991-07-22 1991-07-22 Production of oxidation resistance c/c composite

Publications (1)

Publication Number Publication Date
JPH0524921A true JPH0524921A (en) 1993-02-02

Family

ID=16508654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205544A Pending JPH0524921A (en) 1991-07-22 1991-07-22 Production of oxidation resistance c/c composite

Country Status (1)

Country Link
JP (1) JPH0524921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7363885B2 (en) 2005-06-23 2008-04-29 Kawasaki Jukogyo Kabushiki Kaisha Combustion engine having unitary structure of cooling fan and starter pulley
CN106747666A (en) * 2016-12-19 2017-05-31 北京世纪金光半导体有限公司 A kind of preparation method of high-temperaure coating
EP3747851A1 (en) * 2019-06-05 2020-12-09 Goodrich Corporation Oxidation protection systems and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7363885B2 (en) 2005-06-23 2008-04-29 Kawasaki Jukogyo Kabushiki Kaisha Combustion engine having unitary structure of cooling fan and starter pulley
CN106747666A (en) * 2016-12-19 2017-05-31 北京世纪金光半导体有限公司 A kind of preparation method of high-temperaure coating
EP3747851A1 (en) * 2019-06-05 2020-12-09 Goodrich Corporation Oxidation protection systems and methods
US11739413B2 (en) 2019-06-05 2023-08-29 Goodrich Corporation Oxidation protection systems and methods

Similar Documents

Publication Publication Date Title
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH0524921A (en) Production of oxidation resistance c/c composite
JPH0648872A (en) Production of oxidation-resistant c/c composite material
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP3038493B2 (en) Method for producing oxidation resistant C / C material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH0952777A (en) Production of oxidation resistant c/c composite material
JPH06345570A (en) Productiom of oxidation resistant c/c composite material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPH05148018A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3198157B2 (en) Method for producing oxidation resistant C / C composite
JPH0570228A (en) Production of oxidation-resistant c/c composite material
JP3957229B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JPH0859377A (en) Treatment of carbon fiber reinforced carbon composite material for imparting oxidation resistance
CN117776756A (en) Preparation process of high-performance carbon-carbon composite material