JP5610789B2 - Copper alloy sheet and method for producing copper alloy sheet - Google Patents

Copper alloy sheet and method for producing copper alloy sheet Download PDF

Info

Publication number
JP5610789B2
JP5610789B2 JP2010039870A JP2010039870A JP5610789B2 JP 5610789 B2 JP5610789 B2 JP 5610789B2 JP 2010039870 A JP2010039870 A JP 2010039870A JP 2010039870 A JP2010039870 A JP 2010039870A JP 5610789 B2 JP5610789 B2 JP 5610789B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
alloy sheet
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010039870A
Other languages
Japanese (ja)
Other versions
JP2011174142A (en
Inventor
良輔 宮原
良輔 宮原
維林 高
維林 高
章 菅原
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2010039870A priority Critical patent/JP5610789B2/en
Publication of JP2011174142A publication Critical patent/JP2011174142A/en
Application granted granted Critical
Publication of JP5610789B2 publication Critical patent/JP5610789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅合金板材および銅合金板材の製造方法に関し、特に、リードフレームなどに使用するCu−Fe−P系銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for producing a copper alloy sheet, and more particularly to a Cu—Fe—P copper alloy sheet used for a lead frame and the like and a method for producing the same.

リードフレームなどの電気電子部品に使用される材料は、高硬度で、導電性および耐熱性に優れていることが要求される。このような材料として、CDA194合金などのCu−Fe−P系銅合金が使用されている。   Materials used for electrical and electronic parts such as lead frames are required to have high hardness and excellent conductivity and heat resistance. As such a material, a Cu—Fe—P based copper alloy such as CDA194 alloy is used.

近年、リードフレームなどを使用する半導体装置の大容量化、小型化および高機能化に伴い、リードフレームなどに使用される材料には、さらに高い硬度および導電率を有することが要求されている。加えて、リードフレームは、一般にスタンピング加工(プレス打ち抜き加工)によって多数のピンを有する形状に加工され、スタンピング加工時の歪を除去するために高温で加熱処理されるので、耐熱性に優れていることも要求される。   In recent years, with the increase in capacity, miniaturization, and high functionality of semiconductor devices that use lead frames and the like, materials used for lead frames and the like are required to have higher hardness and conductivity. In addition, the lead frame is generally processed into a shape having a large number of pins by a stamping process (press punching process), and is heat-treated at a high temperature in order to remove distortion at the time of the stamping process, and thus has excellent heat resistance. It is also required.

そのため、例えば特許文献1には、Cu−Fe−P系銅合金からなるリード素材に、新たな添加元素としてMgなどを添加して、硬さおよび耐熱性を向上させることが提案されている。また、例えば特許文献2には、Cu−Fe−P系銅合金材に、時効処理前に溶体化熱処理および中間の冷間圧延を行って、硬さと耐熱性を向上させることが提案されている。さらに、例えば特許文献3には、Cu−Fe−P系銅合金材に、熱間加工後で冷間加工前に高温および低温の2段階時効処理を行って、高い硬度を損なうことなく、導電性を向上させることが提案されている。   Therefore, for example, Patent Document 1 proposes that Mg and the like are added as a new additive element to a lead material made of a Cu—Fe—P-based copper alloy to improve hardness and heat resistance. Moreover, for example, Patent Document 2 proposes that a Cu—Fe—P-based copper alloy material is subjected to solution heat treatment and intermediate cold rolling before aging treatment to improve hardness and heat resistance. . Furthermore, for example, in Patent Document 3, a Cu—Fe—P-based copper alloy material is subjected to high-temperature and low-temperature two-stage aging treatment after hot working and before cold working, without impairing high hardness. It has been proposed to improve performance.

特公昭64−449号公報Japanese Examined Patent Publication No. 64-449 特許第3896793号公報Japanese Patent No. 3896793 特開平10−324935公報JP-A-10-324935

しかしながら、導電率、硬さ、耐熱性の間にはトレードオフ関係があり、三者を同時に向上させることは容易ではない。具体的に、導電率、硬さおよび耐熱性は、Fe析出物(少量のFe−P)の量とサイズに依存する。析出物のサイズ(直径)は均一ではなく、一般に数nmから数百nmの範囲内に分布する。時効の温度と時間により、各種粒子の割合が変わる。なお、本明細書では、数nmの析出物を小粒子、数十nmの析出物を中粒子、百nm以上の析出物を大粒子と呼ぶ。   However, there is a trade-off relationship between conductivity, hardness, and heat resistance, and it is not easy to improve the three at the same time. Specifically, electrical conductivity, hardness, and heat resistance depend on the amount and size of Fe precipitates (a small amount of Fe—P). The size (diameter) of the precipitate is not uniform and is generally distributed within a range of several nm to several hundred nm. The proportion of various particles varies depending on the aging temperature and time. In the present specification, a precipitate of several nm is called a small particle, a precipitate of several tens of nm is called a medium particle, and a precipitate of 100 nm or more is called a large particle.

導電率は、析出物のサイズによらず、ほぼ析出物の量のみに依存する。析出物の量が多いほど、導電率は高い。一方、硬さと耐熱性は、小粒子の量が多いほど高くなり、中粒子と大粒子の影響は小さい。また、大粒子は再結晶の起点になりやすく、耐熱性が著しく低下する可能性がある。   The conductivity almost depends only on the amount of precipitates, regardless of the size of the precipitates. The greater the amount of precipitate, the higher the conductivity. On the other hand, the hardness and heat resistance increase as the amount of small particles increases, and the influence of medium particles and large particles is small. In addition, large particles tend to be the starting point for recrystallization, and heat resistance may be significantly reduced.

すなわち、導電率、硬さおよび耐熱性を同時に向上させるためには、小粒子を多量に生成させることが必要である。しかしながら、Cu−Fe−P系銅合金において、例えばビッカース硬さHVが160以上の高硬度を達成するためには、析出物(小粒子の量とサイズ)制御だけではなく、転位強化、すなわち時効処理後の仕上げ圧延による加工硬化が必要である。仕上げ圧延中に一部の小粒子が転位により切断され、再固溶することにより、導電率が著しく低下することが一般的に知られている。   That is, in order to improve conductivity, hardness and heat resistance at the same time, it is necessary to produce a large amount of small particles. However, in order to achieve a high hardness of, for example, a Vickers hardness HV of 160 or more in a Cu-Fe-P-based copper alloy, not only control of precipitates (amount and size of small particles) but also dislocation strengthening, that is, aging Work hardening by finish rolling after treatment is required. It is generally known that the electrical conductivity is remarkably lowered when some small particles are cut by dislocation during the finish rolling and re-dissolved.

特許文献1のように、Mgなどの活性元素を添加する場合には、銅合金を製造する際のMgなどの酸化によって歩留りが低下したり、コストが増大することが多い。また、特許文献2のように、時効処理前に溶体化処理を行った場合、析出物をより微細に制御することができるが、時効後の仕上げ圧延による導電率低下の問題が解決できない。更に、一定の仕上げ圧延率を確保するため、溶体化処理時点の板が比較的厚いため、一般的な連続溶体化装置が対応できない。つまり、専用の厚板溶体化設備が必要となるため、現在Cu−Fe−P系銅合金の製造では、溶体化処理を行わないのが主流である。特許文献3のように、熱間加工、冷間加工後に高温および低温の2段階時効処理を行う場合には、析出が、粒界や変形帯などで優先的に発生し、一般的に不均一になるため、小粒子と中粒子の密度のバランスが得にくい。   When an active element such as Mg is added as in Patent Document 1, the yield is often lowered or the cost is increased due to oxidation of Mg or the like when producing a copper alloy. In addition, as in Patent Document 2, when the solution treatment is performed before the aging treatment, the precipitate can be more finely controlled, but the problem of the decrease in conductivity due to finish rolling after aging cannot be solved. Furthermore, in order to ensure a certain finish rolling rate, the plate at the time of solution treatment is relatively thick, so a general continuous solution apparatus cannot cope with it. That is, since a dedicated thick plate solution forming facility is required, in the current production of Cu—Fe—P-based copper alloys, the solution treatment is not mainly performed. When performing two-stage aging treatment at high and low temperatures after hot working and cold working as in Patent Document 3, precipitation occurs preferentially at grain boundaries, deformation bands, etc., and is generally non-uniform. Therefore, it is difficult to obtain a balance between the density of small particles and medium particles.

いずれにしても、導電率、硬さ、耐熱性の間のトレードオフ関係を十分に解消できないため、現存のCDA194合金などの銅合金は、一部の用途で対応できなくなる場合もある。   In any case, since the trade-off relationship among conductivity, hardness, and heat resistance cannot be sufficiently eliminated, existing copper alloys such as CDA194 alloy may not be able to cope with some applications.

したがって、本発明は、このような従来の問題点に鑑み、高い硬度で、導電性および耐熱性に優れたCu−Fe−P系銅合金板材を安価に製造することができる、銅合金板材およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides a copper alloy sheet material that can produce a Cu-Fe-P-based copper alloy sheet material having high hardness and excellent conductivity and heat resistance at low cost, and It aims at providing the manufacturing method.

本発明は、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPを含み、残部がCuおよび不可避不純物からなり、粒径が15nm以下の析出粒子の密度が10000個/μm以上、粒径が15〜100nmの析出粒子の密度が100〜200個/μm、粒径が100nm以上の析出粒子の密度が10個/μm以下であり、導電率が60%IACS以上、ビッカース硬さHVが155以上であり、475℃で30分間保持した後のビッカース硬さHVが145以上であることを特徴とする銅合金板材を提供する。加えて、Snの含有量が0.042質量%以下、Mgの含有量が0.15質量%以下、Znの含有量が0.3質量%以下であることが好ましい。 The present invention contains 1.5 to 3.0% by mass of Fe and 0.01 to 0.2% by mass of P, with the balance being Cu and inevitable impurities, and the density of precipitated particles having a particle size of 15 nm or less. There 10000 / [mu] m 3 or more, the density of the precipitated particles of particle size 15~100nm is 100-200 / [mu] m 3, the density of the particle size 100nm or more deposited particles is 10 / [mu] m is 3 or less, electrical conductivity And a Vickers hardness HV of 155 or more, and a Vickers hardness HV after holding at 475 ° C. for 30 minutes is 145 or more . In addition, the Sn content is preferably 0.042 % by mass or less, the Mg content is 0.15% by mass or less, and the Zn content is preferably 0.3% by mass or less.

さらに、本発明の銅合金板材は、Ni、Ca、Al、Si、Cr、Mn、Zr、Ag、Cd、Be、Ti、Co、S、Au、Pt、Pb、Bi、Sbのうちいずれか1種以上が、合計0.4質量%以下の範囲で含まれてもよい。また、前記ビッカース硬さHVが160以上であり、475℃で30分間保持した後のビッカース硬さHVが145以上でもよい。 Furthermore, the copper alloy sheet of the present invention is any one of Ni, Ca, Al, Si, Cr, Mn, Zr, Ag, Cd, Be, Ti, Co, S, Au, Pt, Pb, Bi, and Sb. The seeds or more may be included in a total range of 0.4% by mass or less. The Vickers hardness HV may be 160 or more, and the Vickers hardness HV after being held at 475 ° C. for 30 minutes may be 145 or more.

また、本発明は、前記銅合金板材の製造方法であって、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPを含み、残部がCuおよび不可避不純物からなる原料を溶融して鋳造した鋳塊を900〜1000℃まで加熱し、その加熱温度中に2時間以上保持した後、1000℃〜750℃の温度域で加工度が60%以上、600℃〜450℃の温度域で加工度が30%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、0〜80%の圧延率で冷間圧延を行い、520〜620℃で30分〜6時間の高温時効および400〜500℃で3〜20時間の低温時効の2段階時効処理を行うことを特徴とする、銅合金板材の製造方法を提供する。さらに、前記銅合金板材の製造方法であって、1.5〜3.0質量%のFeと、0.01〜0.2質量%のPを含み、さらに、0.042質量%以下のSn、0.15質量%以下のMg、0.3質量%以下のZnを含有し、残部がCuおよび不可避不純物からなる原料を溶融して鋳造した鋳塊を900〜1000℃まで加熱し、その加熱温度中に2時間以上保持した後、1000℃〜750℃の温度域で加工度が60%以上、600℃〜450℃の温度域で加工度が30%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、0〜80%の圧延率で冷間圧延を行い、520〜620℃で30分〜6時間の高温時効および400〜500℃で3〜20時間の低温時効の2段階時効処理を行うことを特徴とする、銅合金板材の製造方法を提供する。 Moreover, this invention is a manufacturing method of the said copper alloy board | plate material , Comprising: It contains 1.5-3.0 mass% Fe and 0.01-0.2 mass% P, and remainder is Cu and an unavoidable impurity. An ingot obtained by melting and casting a raw material made of is heated to 900 to 1000 ° C., held at the heating temperature for 2 hours or more, and then processed at a temperature range of 1000 ° C. to 750 ° C. with a workability of 60% or more, 600 ° C. Hot rolling is performed at 1000 ° C. to 450 ° C. so that the degree of processing becomes 30% or more in a temperature range of −450 ° C., then cold rolling is performed at a rolling rate of 0 to 80%, and 520 to 620 ° C. Provided is a method for producing a copper alloy sheet material, comprising performing a two-stage aging treatment of high temperature aging for 30 minutes to 6 hours and low temperature aging for 3 to 20 hours at 400 to 500 ° C. Furthermore, it is a manufacturing method of the said copper alloy board | plate material, Comprising: 1.5-3.0 mass% Fe, 0.01-0.2 mass% P, Furthermore, 0.042 mass% or less Sn The ingot that contains 0.15% by mass or less of Mg and 0.3% by mass or less of Zn, with the balance of Cu and inevitable impurities melted and cast, is heated to 900 to 1000 ° C., and the heating After holding in the temperature for 2 hours or more, the degree of work is 60% or more in the temperature range of 1000 ° C. to 750 ° C., and the degree of work is 30% or more in the temperature range of 600 ° C. to 450 ° C. Followed by cold rolling at a rolling rate of 0 to 80%, high temperature aging at 520 to 620 ° C. for 30 minutes to 6 hours and low temperature aging at 400 to 500 ° C. for 3 to 20 hours. Manufacture of copper alloy sheet characterized by performing two-stage aging treatment The law provides.

前記2段階時効処理後の銅合金板材に、圧延率が80%以上の仕上げ冷間圧延を行ってもよい。前記仕上げ冷間圧延を行った後に、250〜500℃で低温焼鈍を行ってもよい。   The copper alloy sheet after the two-stage aging treatment may be subjected to finish cold rolling with a rolling rate of 80% or more. You may perform low temperature annealing at 250-500 degreeC after performing the said finish cold rolling.

さらに、前記原料に、Ni、Ca、Al、Si、Cr、Mn、Zr、Ag、Cd、Be、Ti、Co、S、Au、Pt、Pb、Bi、Sbのうちいずれか1種以上が、合計0.4質量%以下の範囲で含まれてもよい。   Furthermore, the raw material contains at least one of Ni, Ca, Al, Si, Cr, Mn, Zr, Ag, Cd, Be, Ti, Co, S, Au, Pt, Pb, Bi, and Sb. It may be included in the range of 0.4% by mass or less in total.

本発明によれば、高い硬度で、導電性および耐熱性に優れたCu−Fe−P系銅合金板材を安価に製造することができる。   According to the present invention, a Cu—Fe—P-based copper alloy sheet material having high hardness and excellent electrical conductivity and heat resistance can be produced at low cost.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

先ず、原料の化学組成について説明する。   First, the chemical composition of the raw material will be described.

Feは、銅合金板材の硬度を向上させる作用を有するが、その含有量が1.5質量%未満では硬度の向上が不十分であり、3.0質量%を超えると導電率が低下するので、Fe含有量は1.5〜3.0質量%であるのが好ましく、2.0〜2.5質量%であるのがさらに好ましい。   Fe has the effect of improving the hardness of the copper alloy sheet, but if its content is less than 1.5% by mass, the improvement in hardness is insufficient, and if it exceeds 3.0% by mass, the conductivity decreases. The Fe content is preferably 1.5 to 3.0% by mass, more preferably 2.0 to 2.5% by mass.

Pは、溶湯の脱酸作用を有するとともに、Feと化合物を形成して析出することによって導電率および硬度を向上させる作用を有するが、その含有量が0.01質量%未満ではこれらの作用が不十分であり、0.2質量%を超えるとこれらの作用が飽和して逆に析出物が粗大化しやすいので、P含有量は0.01〜0.2質量%であるのが好ましく、0.015〜0.15質量%であるのがさらに好ましい。   P has a deoxidizing action of the molten metal and has an action of improving conductivity and hardness by forming and precipitating with Fe, but when the content is less than 0.01% by mass, these actions are not achieved. If the amount exceeds 0.2% by mass, these actions are saturated and the precipitate is liable to be coarsened. Therefore, the P content is preferably 0.01 to 0.2% by mass. More preferably, it is .015 to 0.15 mass%.

Snは、銅合金板材の耐熱性を向上させる作用を有するが、その含有量が0.2質量%を超えると導電率が低下するので、Snを含む場合、その含有量は0.2質量%以下であるのが好ましく、0.1質量%以下であるのがさらに好ましい。   Sn has the effect of improving the heat resistance of the copper alloy sheet, but if its content exceeds 0.2% by mass, the conductivity decreases, so when it contains Sn, its content is 0.2% by mass. Or less, more preferably 0.1% by mass or less.

Mgは、銅合金板材の耐熱性を向上させる作用を有し、しかも導電率の低下が比較小さいが、その含有量が0.15質量%を超えると製造性が低下するので、Mgを含む場合、その含有量は0.15質量%以下であるのが好ましく、0.1質量%以下であるのがさらに好ましい。   Mg has the effect of improving the heat resistance of the copper alloy sheet, and the decrease in conductivity is relatively small. However, when the content exceeds 0.15% by mass, the productivity is reduced. The content thereof is preferably 0.15% by mass or less, and more preferably 0.1% by mass or less.

Znは、Pと同様に溶湯の脱酸作用を有するが、その含有量が0.3質量%を超えると脱酸作用が飽和して導電率が低下するので、Zn含有量は0.3質量%以下であるのが好ましく、0.2質量%以下であるのがさらに好ましい。   Zn has a deoxidizing action of the molten metal in the same manner as P. However, if its content exceeds 0.3% by mass, the deoxidizing action is saturated and the conductivity decreases, so the Zn content is 0.3% by mass. % Or less is preferable, and 0.2% by mass or less is more preferable.

なお、銅合金板材の原料として、電子材料のスクラップなどを使用する場合には、スクラップ中に混入した元素が原料中に不可避的に混入する可能性がある。また、多数の種類の銅合金を製造する場合、それぞれの銅合金の原料を同一の溶解炉で溶解すると、僅かではあるが、前の銅合金の成分が原料中に混入する場合がある。これらの不純物が固溶または一部が化合物を析出して、若干の硬度の向上に寄与することもあるが、一般的には導電率を低下させ、また製造条件の最適範囲がずれることもあり、多量に含むのは望ましくない。このような不可避不純物として、例えば、Ni、Ca、Al、Si、Cr、Mn、Zr、Ag、Cd、Be、Ti、Co、S、Au、Pt、Pb、Bi、Sbなどは、1種類につき0.2質量%以下、合計0.4質量%以下の範囲であれば含んでもよい。好ましくは、1種類につき0.15質量%以下、合計0.30質量%以下であり、さらに好ましくは、1種類につき0.15質量%以下、合計0.15質量%以下である。   In addition, when using the scrap of an electronic material etc. as a raw material of a copper alloy board | plate material, the element mixed in the scrap may be inevitably mixed in the raw material. Moreover, when manufacturing many types of copper alloys, if the raw materials of the respective copper alloys are melted in the same melting furnace, the components of the previous copper alloy may be mixed in the raw materials, though only slightly. These impurities may form a solid solution or a part of the compound may precipitate and contribute to a slight improvement in hardness. In general, however, the conductivity may be lowered and the optimum range of manufacturing conditions may be shifted. It is not desirable to contain a large amount. Examples of such inevitable impurities include Ni, Ca, Al, Si, Cr, Mn, Zr, Ag, Cd, Be, Ti, Co, S, Au, Pt, Pb, Bi, and Sb. It may be included in the range of 0.2% by mass or less and a total of 0.4% by mass or less. Preferably, it is 0.15% by mass or less per type, and a total of 0.30% by mass or less, and more preferably 0.15% by mass or less per type, and a total of 0.15% by mass or less.

次に、析出粒子について説明する。   Next, the precipitated particles will be described.

粒径が15nm以下の析出粒子(小粒子)は、転位と粒界の移動のピンニング効果があり、その密度が高いほど、硬度と耐熱性が優れる。ビッカース硬さHVが150以上、および475℃で30分間保持した後のビッカース硬さHVが140以上の耐熱性を確保するために、小粒子の密度は10000個/μm以上であるのが好ましく、15000個/μm以上であるのがさらに好ましい。なお、ビッカース硬さHVが155以上、および475℃で30分間保持した後のビッカース硬さHVが145以上であることが、より好ましい。 Precipitated particles (small particles) having a particle size of 15 nm or less have a pinning effect of dislocation and grain boundary movement, and the higher the density, the better the hardness and heat resistance. In order to ensure heat resistance with a Vickers hardness HV of 150 or more and a Vickers hardness HV of 140 or more after being held at 475 ° C. for 30 minutes, the density of the small particles is preferably 10,000 particles / μm 3 or more. 15000 / μm 3 or more is more preferable. It is more preferable that the Vickers hardness HV is 155 or more and the Vickers hardness HV after being held at 475 ° C. for 30 minutes is 145 or more.

15〜100nmの析出粒子(中粒子)は、小粒子よりは少ないが、硬度と耐熱性の向上効果がある。特に、前述のように、時効処理後に生じる小粒子は、その後に硬度を向上させるための仕上げ圧延中に、転位により切断されて再固溶することで、導電率が低下しやすい。そのため、一定量の転位により切断されにくい中粒子が必要である。中粒子の密度が低すぎると、導電率低下を抑制する効果が不十分であり、中粒子の密度が高すぎると、必然的に小粒子の密度が低下してしまう。そのため、中粒子の密度は100〜200個/μmであるのが好ましく、120〜150個/μmであるのがさらに好ましい。 Although there are fewer precipitated particles (medium particles) of 15 to 100 nm than small particles, they have the effect of improving hardness and heat resistance. In particular, as described above, the small particles generated after the aging treatment are cut by dislocation and then re-dissolved during finish rolling for improving the hardness, so that the electrical conductivity tends to decrease. Therefore, medium particles that are difficult to be cut by a certain amount of dislocations are required. If the density of the medium particles is too low, the effect of suppressing the decrease in conductivity is insufficient, and if the density of the medium particles is too high, the density of small particles is inevitably reduced. Therefore, the density of the medium particles is preferably 100 to 200 / μm 3 , and more preferably 120 to 150 / μm 3 .

100nm以上の析出粒子(大粒子)は、硬度と耐熱性の向上効果がほとんどなく、その密度が低いほど、相対的に小粒子や中粒子の密度が増大する。したがって、大粒子の密度は10個/μm以下であるのが好ましく、5個/μm以下であるのがさらに好ましい。 Precipitated particles (large particles) of 100 nm or more have almost no effect of improving hardness and heat resistance, and the density of small particles and medium particles increases relatively as the density decreases. Therefore, the density of the large particles is preferably 10 particles / μm 3 or less, and more preferably 5 particles / μm 3 or less.

次に、本発明にかかる銅合金板材の製造条件について説明する。   Next, manufacturing conditions for the copper alloy sheet according to the present invention will be described.

本発明によって前述の化学組成の銅合金の原料を溶解して鋳造する鋳塊は、通常の銅合金の連続鋳造法または半連続鋳造法により製造することができる。   According to the present invention, the ingot for melting and casting the raw material of the copper alloy having the above-mentioned chemical composition can be manufactured by a normal copper alloy continuous casting method or semi-continuous casting method.

この鋳塊の熱間圧延は、加熱炉によって900〜1000℃程度までに加熱し、その状態を2時間以上保持した後に行う。これは、鋳造中に生じる偏析の減軽や晶出物の固溶に効果がある。これに続いて、熱間圧延を行う。Cu−Fe−P系銅合金は、熱間圧延中に、比較的、動的再結晶が発生しにくい。再結晶は原子の再配列過程であり、この段階で再結晶しないと、粗大な析出物は最終製品まで残って、硬度と耐熱性がともに低下する。そのため、この熱間圧延時には、1000℃〜750℃の温度域での強圧延により、動的再結晶を発生させ、粗大な析出物を固溶できる。従って、1000℃〜750℃の温度域で圧延率が60%以上であるのが好ましく、70%以上であるのがさらに好ましい。   The ingot is hot-rolled after being heated to about 900 to 1000 ° C. by a heating furnace and maintaining that state for 2 hours or more. This is effective in reducing segregation occurring during casting and solid solution of crystallized substances. This is followed by hot rolling. The Cu—Fe—P-based copper alloy is relatively less susceptible to dynamic recrystallization during hot rolling. Recrystallization is an atomic rearrangement process, and if not recrystallized at this stage, coarse precipitates remain until the final product, and both hardness and heat resistance decrease. Therefore, at the time of this hot rolling, dynamic recrystallization can be generated by strong rolling in the temperature range of 1000 ° C. to 750 ° C., and coarse precipitates can be dissolved. Therefore, the rolling rate is preferably 60% or more and more preferably 70% or more in the temperature range of 1000 ° C to 750 ° C.

その後、600℃〜450℃の温度域で圧延率30%以上の熱間圧延を行う。この熱間圧延によって、銅マトリックス中に微細なFeまたはFe−P系化合物が析出すると考えられる。なお、600℃〜450℃の低温域の熱間圧延では、金属間化合物が動的に析出することにより、析出物の生成と微細化が起こるという効果があり、その後の時効焼鈍処理で小粒子と中粒子の密度のバランスを制御できる。   Then, hot rolling with a rolling rate of 30% or more is performed in a temperature range of 600 ° C to 450 ° C. It is considered that fine Fe or Fe-P compounds are precipitated in the copper matrix by this hot rolling. In addition, in hot rolling in a low temperature range of 600 ° C. to 450 ° C., there is an effect that the formation and refinement of precipitates occur due to the dynamic precipitation of intermetallic compounds, and small particles are obtained by subsequent aging annealing treatment. And the density balance of medium particles can be controlled.

また、最終熱間圧延後の導電率が、35〜50%IACSであるのが好ましい。導電率が35%IACS未満であると、FeまたはFe−P系化合物の析出の進行が不十分であり、その後の時効焼鈍処理で得られる小粒子と中粒子の密度のバランスの制御が困難になると考えられる。一方、熱間圧延後の導電率が50%IACSを越えると、析出物が粗大化する可能性がある。そのため、熱間圧延後の導電率が35〜50%IACSであるのが好ましく、40〜45%IACSであるのがさらに好ましい。上記の熱間圧延を行うことによって、熱間圧延後の導電率をこの範囲にすることができる。   Moreover, it is preferable that the electrical conductivity after the last hot rolling is 35-50% IACS. When the electrical conductivity is less than 35% IACS, the progress of precipitation of Fe or Fe-P compounds is insufficient, and it is difficult to control the balance between the density of small particles and medium particles obtained by subsequent aging annealing treatment. It is considered to be. On the other hand, if the electrical conductivity after hot rolling exceeds 50% IACS, the precipitates may become coarse. Therefore, the electrical conductivity after hot rolling is preferably 35 to 50% IACS, and more preferably 40 to 45% IACS. By performing the above hot rolling, the electrical conductivity after hot rolling can be set within this range.

なお、それぞれの温度域での圧延率ε(%)は、(1)式によって算出される。
ε=(t−t)/t×100 (1)
:圧延前の板厚
:圧延後の板厚。
In addition, rolling rate (epsilon) (%) in each temperature range is calculated by (1) Formula.
ε = (t 0 −t 1 ) / t 0 × 100 (1)
t 0 : Plate thickness before rolling t 1 : Plate thickness after rolling.

例えば1000〜900℃の間で行う最初の圧延パスに供する鋳片の板厚が180mmであり、750℃以上の温度で実施された最後の圧延パス終了時に板厚が70mmになり、引き続いて圧延を継続して、熱間圧延の最終パスを600℃〜450℃の範囲で行い、板厚30mmから最終的に板厚15mmの熱間圧延材を得たとする。この場合、1000℃〜750℃の温度域で行われた圧延の圧延率は(1)式により、(180−70)/180×100=61(%)である。また、600℃〜450℃の温度域での圧延率は同じく(1)式により、(30−15)/30×100=50(%)である。   For example, the plate thickness of the slab used for the first rolling pass performed between 1000 ° C. and 900 ° C. is 180 mm, the plate thickness becomes 70 mm at the end of the final rolling pass performed at a temperature of 750 ° C. or higher, and subsequently rolled. Then, the final pass of hot rolling is performed in the range of 600 ° C. to 450 ° C., and a hot rolled material having a plate thickness of 15 mm is finally obtained from a plate thickness of 30 mm. In this case, the rolling rate of the rolling performed in the temperature range of 1000 ° C. to 750 ° C. is (180−70) / 180 × 100 = 61 (%) according to the equation (1). Moreover, the rolling rate in the temperature range of 600 ° C. to 450 ° C. is (30−15) / 30 × 100 = 50 (%) according to the same expression (1).

次いで、0〜80%の圧延率で、冷間圧延を行う。圧延率が0%とは、この冷間圧延を行わず、直接時効処理に供することを意味する。本発明の銅合金板材は、生産性を向上させるために、この段階での冷間圧延工程を省略してもよい。また、この段階の圧延率が80%を超えると、最終の仕上げ圧延率を確保できない可能性がある。   Next, cold rolling is performed at a rolling rate of 0 to 80%. A rolling rate of 0% means that this cold rolling is not carried out but directly subjected to an aging treatment. The copper alloy sheet of the present invention may omit the cold rolling process at this stage in order to improve productivity. If the rolling rate at this stage exceeds 80%, the final finish rolling rate may not be ensured.

続いて、固溶元素を析出させるための時効処理を行う。従来の時効処理であれば、時効温度が、例えば450℃程度と比較的低い場合、析出速度が遅く、導電率を確保するための析出量を達成する時効時間が数十時間程度必要である。また、析出物の粒径が小さく、その後の仕上げ圧延中に転位により切断して再固溶しやすく、最終的な板材の導電率が低下してしまう。逆に、時効温度が、例えば600℃程度と比較的高い温度の場合は、析出速度が速く、析出物が粗大化しやすい。そのため、小粒子と中粒子の密度制御は困難である。また、例えば550℃程度の中間温度で時効処理を行っても、析出が、粒界や変形帯などで優先的に発生し、一般的に不均一になるため、小粒子と中粒子の密度のバランスが得にくい。   Subsequently, an aging treatment for precipitating solid solution elements is performed. In the case of the conventional aging treatment, when the aging temperature is relatively low, for example, about 450 ° C., the deposition rate is slow, and an aging time for achieving the amount of precipitation for securing conductivity is required for several tens of hours. Moreover, the particle size of the precipitate is small, and it is easy to re-dissolve by cutting by dislocation during the subsequent finish rolling, and the conductivity of the final plate material is lowered. On the other hand, when the aging temperature is relatively high, for example, about 600 ° C., the deposition rate is high and the precipitate is likely to be coarsened. Therefore, it is difficult to control the density of small particles and medium particles. In addition, even when an aging treatment is performed at an intermediate temperature of about 550 ° C., for example, precipitation occurs preferentially at grain boundaries and deformation bands, and generally becomes non-uniform. It is difficult to get a balance.

本発明では、520〜620℃で30分〜6時間の高温時効、および400〜500℃で3〜20時間の低温時効の、2段階時効処理を行う。前述の熱間圧延後の板材には、動的析出により、微細かつ均一な析出粒子がある。520〜620℃で30分〜6時間の高温時効を行うことにより、動的析出した微細析出物が、比較的短時間で中粒子に成長する。温度が低すぎるか、または時間が短すぎると、中粒子の密度が不十分であり、温度が高すぎるか、または時間が長すぎると、大粒子の密度が増加してしまう。400〜500℃で3〜20時間の低温時効では、小粒子の密度を増加させると同時に、高温時間で生じる中粒子の過度な成長を抑制する。この温度が低すぎるか、または時間が短すぎると、小粒子の密度が不十分であり、温度が高すぎるか、または時間が長すぎると、中粒子が粗大化してしまう。520〜610℃で30分〜6時間の高温時効、420〜500℃で3〜20時間の低温時効を行うことが、より好ましい。   In the present invention, a two-stage aging treatment is performed at 520 to 620 ° C. for 30 minutes to 6 hours, and 400 to 500 ° C. for 3 to 20 hours. The plate material after hot rolling has fine and uniform precipitated particles due to dynamic precipitation. By performing high temperature aging at 520 to 620 ° C. for 30 minutes to 6 hours, the dynamically precipitated fine precipitate grows into medium particles in a relatively short time. If the temperature is too low or the time is too short, the density of the medium particles is insufficient, and if the temperature is too high or the time is too long, the density of the large particles increases. The low temperature aging at 400 to 500 ° C. for 3 to 20 hours increases the density of small particles and suppresses excessive growth of medium particles occurring at high temperature time. If the temperature is too low or the time is too short, the density of the small particles is insufficient, and if the temperature is too high or the time is too long, the medium particles become coarse. It is more preferable to perform high temperature aging at 520 to 610 ° C. for 30 minutes to 6 hours and low temperature aging at 420 to 500 ° C. for 3 to 20 hours.

この熱間圧延後の高温および低温の2段階時効処理は、焼鈍炉の温度調整により、連続的に行うことができる。なお、設備的に温度制御が難しい場合には、それぞれの温度に分けて1回ずつ処理してもよい。   The high-temperature and low-temperature two-stage aging treatment after the hot rolling can be continuously performed by adjusting the temperature of the annealing furnace. In addition, when it is difficult to control the temperature in terms of equipment, it may be processed once for each temperature.

以上の工程により、最終時効処理後の導電率が60〜70%IACSの銅合金板材が得られる。   Through the above steps, a copper alloy sheet having an electrical conductivity of 60 to 70% IACS after the final aging treatment is obtained.

時効焼鈍後の仕上げ圧延は、所望の板厚になるように行う。一般に、加工度が高くなるにつれて硬度が高くなるが、導電率および耐熱性が低下すると考えられる。しかし、本発明によって製造される銅合金板材は、最終冷間圧延の加工度が80%以上、好ましくは90%以上であっても、優れた耐熱性を有する。また、要求される硬さおよび板厚によっては、仕上げ圧延後に、250℃〜500℃で60分以下、好ましくは5分以下の低温焼鈍を行ってもよい。この低温焼鈍は、歪取り焼鈍であり、また、仕上げ圧延によって低下した導電率を部分的に回復することができる。なお、表面の酸化物を除去するために、面削や酸洗を適宜行っても良い。   Finish rolling after aging annealing is performed so as to obtain a desired thickness. Generally, the hardness increases as the degree of processing increases, but it is considered that the electrical conductivity and heat resistance decrease. However, the copper alloy sheet produced according to the present invention has excellent heat resistance even when the degree of workability of the final cold rolling is 80% or more, preferably 90% or more. Further, depending on the required hardness and plate thickness, low temperature annealing may be performed at 250 ° C. to 500 ° C. for 60 minutes or less, preferably 5 minutes or less after finish rolling. This low-temperature annealing is a strain relief annealing and can partially recover the conductivity lowered by finish rolling. In addition, in order to remove the surface oxide, chamfering or pickling may be appropriately performed.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

表1に示すように、本発明の化学成分および製造条件による実施例1〜4、6〜10と、Snの含有量のみが本発明の請求項2の範囲外である参考例と、化学成分または製造条件のいずれかが本発明の範囲外である比較例1〜7の銅合金板材を作製した。先ず、それぞれの化学成分を有する銅合金を高周波溶解炉で溶解し、それぞれ厚さ30mm×幅50mm×長さ150mmの鋳塊を作製した。なお、表1において、本発明の範囲外である項目には下線を付した。 As shown in Table 1, Examples 1 to 4, 6 to 10 according to the chemical components and production conditions of the present invention, a reference example in which only the Sn content is outside the scope of claim 2 of the present invention, and chemical components Or the copper alloy board | plate material of Comparative Examples 1-7 whose production conditions are outside the range of this invention was produced. First, copper alloys having respective chemical components were melted in a high-frequency melting furnace to produce ingots each having a thickness of 30 mm × width 50 mm × length 150 mm. In Table 1, items that are outside the scope of the present invention are underlined.

Figure 0005610789
Figure 0005610789

実施例1〜4、6〜10、参考例については、これらの鋳塊を、加熱炉によって950℃まで加熱後に3時間保持した後、950〜750℃で6パスの熱間圧延を行って板厚10mmの圧延材を得た。すなわち、この温度域950〜750℃で行う圧延率を66%とした。圧延パス間において、温度低下を防止するため、850℃の加熱炉に2分保持した。続いて、600℃の加熱炉に2分保持した後、温度域600〜450℃で2パスの圧延を行い、板厚6mmの圧延材を得た。すなわち、この温度域600〜450℃で行う圧延率を40%とした。 In Examples 1 to 4 , 6 to 10 and Reference Examples , these ingots were heated to 950 ° C. in a heating furnace and held for 3 hours, and then subjected to 6-pass hot rolling at 950 to 750 ° C. A rolled material having a thickness of 10 mm was obtained. That is, the rolling rate performed in this temperature range 950 to 750 ° C. was set to 66%. In order to prevent a temperature drop between rolling passes, it was kept in a heating furnace at 850 ° C. for 2 minutes. Then, after hold | maintaining for 2 minutes in a 600 degreeC heating furnace, the rolling of 2 passes was performed by the temperature range 600-450 degreeC, and the sheet | seat thickness of 6 mm was obtained. That is, the rolling rate performed in this temperature range of 600 to 450 ° C. was set to 40%.

次に、得られた熱間圧延材に、実施例1〜3、7〜10については0%、実施例4、6、参考例については75%の圧延率で冷間圧延を行った。その後、焼鈍炉によって、600℃または575℃の高温で1〜5時間、450℃の低温で4〜10時間の、2段階時効処理を行った。 Next, the obtained hot-rolled material was cold-rolled at a rolling rate of 0% for Examples 1 to 3 and 7 to 10, and 75% for Examples 4 and 6 and Reference Example . Thereafter, a two-stage aging treatment was performed in an annealing furnace at a high temperature of 600 ° C. or 575 ° C. for 1 to 5 hours and at a low temperature of 450 ° C. for 4 to 10 hours.

最後に、2段階時効処理後の圧延材の表面および裏面を研磨し、板厚0.127mmまで仕上げ冷間圧延を行った後、425℃の焼鈍炉内で1分間保持する低温焼鈍を行って、板厚0.127mmの銅合金板材を作製した。   Finally, the front and back surfaces of the rolled material after the two-stage aging treatment are polished, finish cold-rolled to a thickness of 0.127 mm, and then annealed at a low temperature in a 425 ° C. annealing furnace for 1 minute. A copper alloy sheet having a thickness of 0.127 mm was prepared.

一方、比較例1〜3は、実施例1と同一の化学成分を有し、製造条件のうち、時効処理のみ従来の等温時効を行い、比較例1は600℃で10時間、比較例2は450℃で24時間、比較例3は550℃で14時間とした。それ以外は実施例1〜3と同様の方法により、銅合金板材を作製した。比較例4、5は、化学成分が本発明の範囲外であり、製造条件は実施例1と同様とした。比較例6、7は、熱間圧延条件が本発明の範囲外であり、その後の製造工程は、実施例1と同様とした。   On the other hand, Comparative Examples 1 to 3 have the same chemical components as in Example 1, and among the production conditions, only the aging treatment is performed with conventional isothermal aging, Comparative Example 1 is 600 ° C. for 10 hours, and Comparative Example 2 is 24 hours at 450 ° C. and 14 hours at 550 ° C. in Comparative Example 3. Other than that produced the copper alloy board | plate material by the method similar to Examples 1-3. In Comparative Examples 4 and 5, the chemical components were outside the scope of the present invention, and the production conditions were the same as in Example 1. In Comparative Examples 6 and 7, the hot rolling conditions were outside the scope of the present invention, and the subsequent manufacturing steps were the same as in Example 1.

以上のようにして得られた各銅合金板材について、析出物の密度、導電率、硬さ、耐熱試験後の硬さを測定した。析出物の密度は、透過型電子顕微鏡(TEM)を用いて、加速電圧200KVにて各種試料中の100個以上の析出粒子を観察し、粒子の直径を測定した。また、消衰縞法より薄膜試料の厚さを測定し、析出物の密度(単位体積あたりの個数)を求めた。導電率は、JIS H0505の導電率測定方法に従って測定した。硬さは、ビッカース硬さHVをJIS Z2244に準拠して測定した。耐熱性の評価は、475℃で30分間保持した後、ビッカース硬さHVを測定して行った。結果を表2に示す。なお、表2において、本発明の範囲外となった項目には下線を付した。   About each copper alloy board | plate material obtained as mentioned above, the density of a precipitate, electrical conductivity, hardness, and the hardness after a heat test were measured. The density of the precipitates was determined by observing 100 or more precipitated particles in various samples using a transmission electron microscope (TEM) at an acceleration voltage of 200 KV and measuring the diameter of the particles. Moreover, the thickness of the thin film sample was measured by the extinction fringe method, and the density of the precipitates (number per unit volume) was obtained. The electrical conductivity was measured according to the electrical conductivity measurement method of JIS H0505. Hardness measured Vickers hardness HV based on JISZ2244. Evaluation of heat resistance was performed by measuring Vickers hardness HV after holding at 475 ° C. for 30 minutes. The results are shown in Table 2. In Table 2, items outside the scope of the present invention are underlined.

Figure 0005610789
Figure 0005610789

表2に示すように、実施例1〜4、6〜10の銅合金板材はいずれも、導電率が60%IACS以上、ビッカース硬さHVが160以上、475℃で30分間保持した後のビッカース硬さHVが150以上であった。 As shown in Table 2, all of the copper alloy plate materials of Examples 1 to 4 and 6 to 10 have a conductivity of 60% IACS or more, a Vickers hardness HV of 160 or more, and Vickers after being held at 475 ° C. for 30 minutes. Hardness HV was 150 or more.

比較例1は時効温度が高いため、小粒子の密度が低く、中・大粒子の密度が高くなった。そのため、最終的に得られた銅合金板材の導電率は高いが、硬度は低く、特に耐熱性が低かった。比較例2は時効温度が低いため、時効後に生じる小粒子の密度は高いものの、仕上げ圧延後に再固溶し、導電率が低下した。比較例3は比較例1および2の中間的な時効温度としたが、小、中、大粒子の密度のバランスが適正でなく、耐熱性が低かった。   Since Comparative Example 1 had a high aging temperature, the density of small particles was low, and the density of medium and large particles was high. Therefore, although the electrical conductivity of the finally obtained copper alloy sheet was high, the hardness was low and the heat resistance was particularly low. Since Comparative Example 2 has a low aging temperature, the density of small particles generated after aging was high, but it was re-dissolved after finish rolling, resulting in a decrease in conductivity. Comparative Example 3 had an aging temperature intermediate between those of Comparative Examples 1 and 2, but the density balance of small, medium and large particles was not appropriate, and the heat resistance was low.

比較例4、5は、導電率、硬さ、耐熱性のバランスが良くなかった。比較例4はFe量が多すぎるため、固溶量が高いとともに一部のFeが熱間圧延中に固溶できず、粗大粒子のままで最後まで残っているため、導電率と耐熱性ともに低かった。一方、比較例5はFe量が少なすぎるため、最終的に得られた銅合金板材の硬度が低かった。   In Comparative Examples 4 and 5, the balance of conductivity, hardness, and heat resistance was not good. In Comparative Example 4, since the amount of Fe is too large, the amount of solid solution is high and part of Fe cannot be dissolved during hot rolling, and remains as coarse particles until the end, both conductivity and heat resistance. It was low. On the other hand, since the comparative example 5 had too little Fe amount, the finally obtained copper alloy sheet material had low hardness.

比較例6、7は、導電率、硬さ、耐熱性のバランスが良くなかった。比較例6は750℃以上の温度域での圧延率が40%と低く、十分に再結晶することなく粗大粒子が残るため、硬度、耐熱性ともに低かった。比較例7は600〜450℃の温度域で圧延しなかったため、高温時効中に中粒子の生成量が少なく、最終的に得られた銅合金板材の硬度と耐熱性はよいものの、導電率が低くなった。   In Comparative Examples 6 and 7, the balance of conductivity, hardness, and heat resistance was not good. In Comparative Example 6, the rolling rate in the temperature range of 750 ° C. or higher was as low as 40%, and coarse particles remained without being sufficiently recrystallized, so both the hardness and heat resistance were low. Since Comparative Example 7 was not rolled in the temperature range of 600 to 450 ° C., the amount of medium particles produced during high temperature aging was small, and the finally obtained copper alloy sheet material had good hardness and heat resistance, but the conductivity was high. It became low.

本発明は、高硬度で、導電性および耐熱性に優れている銅合金板材および銅合金板材の製造方法として適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied as a copper alloy sheet material having high hardness and excellent conductivity and heat resistance and a method for producing a copper alloy sheet material.

Claims (9)

1.5〜3.0質量%のFeと、0.01〜0.2質量%のPを含み、残部がCuおよび不可避不純物からなり、粒径が15nm以下の析出粒子の密度が10000個/μm以上、粒径が15〜100nmの析出粒子の密度が100〜200個/μm、粒径が100nm以上の析出粒子の密度が10個/μm以下であり、
導電率が60%IACS以上、ビッカース硬さHVが155以上であり、475℃で30分間保持した後のビッカース硬さHVが145以上であることを特徴とする銅合金板材。
Fe containing 1.5 to 3.0% by mass of Fe and 0.01 to 0.2% by mass of P, the balance being made of Cu and inevitable impurities, and the density of precipitated particles having a particle size of 15 nm or less is 10,000 / [mu] m 3 or more, the density of the precipitated particles of particle size 15~100nm is 100-200 / [mu] m 3, the density of the particle size 100nm or more deposited particles is 10 / [mu] m is 3 or less,
A copper alloy sheet having a conductivity of 60% IACS or more, a Vickers hardness HV of 155 or more, and a Vickers hardness HV of 145 or more after being held at 475 ° C. for 30 minutes .
さらに、Snの含有量が0.042質量%以下、Mgの含有量が0.15質量%以下、Znの含有量が0.3質量%以下であることを特徴とする、請求項1に記載の銅合金板材。 The Sn content is 0.042 % by mass or less, the Mg content is 0.15% by mass or less, and the Zn content is 0.3% by mass or less. Copper alloy sheet material. Ni、Ca、Al、Si、Cr、Mn、Zr、Ag、Cd、Be、Ti、Co、S、Au、Pt、Pb、Bi、Sbのうちいずれか1種以上が、合計0.4質量%以下の範囲で含まれることを特徴とする、請求項1または2に記載の銅合金板材。 Any one or more of Ni, Ca, Al, Si, Cr, Mn, Zr, Ag, Cd, Be, Ti, Co, S, Au, Pt, Pb, Bi, and Sb is 0.4% by mass in total. The copper alloy sheet according to claim 1 or 2, wherein the copper alloy sheet is included in the following range . 前記ビッカース硬さHVが160以上であり、475℃で30分間保持した後のビッカース硬さHVが145以上であることを特徴とする、請求項1〜3のいずれかに記載の銅合金板材。 The said Vickers hardness HV is 160 or more, and the Vickers hardness HV after hold | maintaining for 30 minutes at 475 degreeC is 145 or more, The copper alloy board | plate material in any one of Claims 1-3 characterized by the above-mentioned. 請求項1に記載の銅合金板材の製造方法であって、
1.5〜3.0質量%のFeと、0.01〜0.2質量%のPを含み、残部がCuおよび不可避不純物からなる原料を溶融して鋳造した鋳塊を900〜1000℃まで加熱し、その加熱温度中に2時間以上保持した後、1000℃〜750℃の温度域で加工度が60%以上、600℃〜450℃の温度域で加工度が30%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、0〜80%の圧延率で冷間圧延を行い、520〜620℃で30分〜6時間の高温時効および400〜500℃で3〜20時間の低温時効の2段階時効処理を行うことを特徴とする、銅合金板材の製造方法。
It is a manufacturing method of the copper alloy sheet material according to claim 1,
An ingot obtained by melting and casting a raw material containing 1.5 to 3.0% by mass of Fe and 0.01 to 0.2% by mass of P, with the balance consisting of Cu and inevitable impurities up to 900 to 1000 ° C. After heating and holding at the heating temperature for 2 hours or more, the workability is 60% or more in the temperature range of 1000 ° C to 750 ° C, and the workability is 30% or more in the temperature range of 600 ° C to 450 ° C. Hot rolling is performed at 1000 ° C. to 450 ° C., followed by cold rolling at a rolling rate of 0 to 80%, high temperature aging at 520 to 620 ° C. for 30 minutes to 6 hours, and 3 to 20 at 400 to 500 ° C. A method for producing a copper alloy sheet material, comprising performing a two-stage aging treatment of low temperature aging for a time.
請求項2に記載の銅合金板材の製造方法であって、
1.5〜3.0質量%のFeと、0.01〜0.2質量%のPを含み、さらに、0.042質量%以下のSn、0.15質量%以下のMg、0.3質量%以下のZnを含有し、残部がCuおよび不可避不純物からなる原料を溶融して鋳造した鋳塊を900〜1000℃まで加熱し、その加熱温度中に2時間以上保持した後、1000℃〜750℃の温度域で加工度が60%以上、600℃〜450℃の温度域で加工度が30%以上になるように1000℃〜450℃で熱間圧延を行い、次いで、0〜80%の圧延率で冷間圧延を行い、520〜620℃で30分〜6時間の高温時効および400〜500℃で3〜20時間の低温時効の2段階時効処理を行うことを特徴とする、銅合金板材の製造方法。
It is a manufacturing method of the copper alloy sheet material according to claim 2,
1.5-3.0 mass% Fe and 0.01-0.2 mass% P, and further 0.042 mass% or less Sn, 0.15 mass% or less Mg, 0.3 An ingot containing a mass% Zn or less, the balance of which is made of Cu and inevitable impurities is melted and heated to 900 to 1000 ° C., kept at the heating temperature for 2 hours or more, and then 1000 ° C. to Hot rolling is performed at 1000 ° C. to 450 ° C. so that the workability is 60% or more in the temperature range of 750 ° C. and 30% or more in the temperature range of 600 ° C. to 450 ° C., and then 0 to 80%. The copper is characterized in that it is cold-rolled at a rolling rate of 520 to 620 ° C. and subjected to a two-stage aging treatment of high temperature aging at 520 to 620 ° C. for 30 minutes to 6 hours and low temperature aging at 400 to 500 ° C. for 3 to 20 hours. A method for producing an alloy sheet.
前記2段階時効処理後の銅合金板材に、圧延率が80%以上の仕上げ冷間圧延を行うことを特徴とする、請求項5または6に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 5 or 6, wherein finish cold rolling with a rolling rate of 80% or more is performed on the copper alloy sheet after the two-stage aging treatment . 前記仕上げ冷間圧延を行った後に、250〜500℃で低温焼鈍を行うことを特徴とする、請求項7に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 7, wherein low-temperature annealing is performed at 250 to 500 ° C. after the finish cold rolling . 前記原料に、さらにNi、Ca、Al、Si、Cr、Mn、Zr、Ag、Cd、Be、Ti、Co、S、Au、Pt、Pb、Bi、Sbのうちいずれか1種以上が、合計0.4質量%以下の範囲で含まれることを特徴とする、請求項5〜8のいずれかに記載の銅合金板材の製造方法。Any one or more of Ni, Ca, Al, Si, Cr, Mn, Zr, Ag, Cd, Be, Ti, Co, S, Au, Pt, Pb, Bi, and Sb are added to the raw material. It is contained in the range of 0.4 mass% or less, The manufacturing method of the copper alloy board | plate material in any one of Claims 5-8 characterized by the above-mentioned.
JP2010039870A 2010-02-25 2010-02-25 Copper alloy sheet and method for producing copper alloy sheet Active JP5610789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039870A JP5610789B2 (en) 2010-02-25 2010-02-25 Copper alloy sheet and method for producing copper alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039870A JP5610789B2 (en) 2010-02-25 2010-02-25 Copper alloy sheet and method for producing copper alloy sheet

Publications (2)

Publication Number Publication Date
JP2011174142A JP2011174142A (en) 2011-09-08
JP5610789B2 true JP5610789B2 (en) 2014-10-22

Family

ID=44687254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039870A Active JP5610789B2 (en) 2010-02-25 2010-02-25 Copper alloy sheet and method for producing copper alloy sheet

Country Status (1)

Country Link
JP (1) JP5610789B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988794B2 (en) * 2012-09-14 2016-09-07 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP6210887B2 (en) * 2014-01-18 2017-10-11 株式会社神戸製鋼所 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP6210910B2 (en) * 2014-03-18 2017-10-11 株式会社神戸製鋼所 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP6389414B2 (en) * 2014-10-17 2018-09-12 Dowaメタルテック株式会社 Method for producing copper alloy sheet
JP2016211053A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy excellent in heat resistance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130755A (en) * 1996-11-01 1998-05-19 Kobe Steel Ltd High strength and high conductivity copper alloy excellent in shearing workability
JP3772319B2 (en) * 1997-03-24 2006-05-10 同和鉱業株式会社 Copper alloy for lead frame and manufacturing method thereof
JPH11264037A (en) * 1998-03-18 1999-09-28 Nippon Mining & Metals Co Ltd Copper alloy foil
JP3835004B2 (en) * 1998-07-22 2006-10-18 日立電線株式会社 Copper alloy processing method
JP3763234B2 (en) * 1999-08-05 2006-04-05 日立電線株式会社 Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP3980808B2 (en) * 2000-03-30 2007-09-26 株式会社神戸製鋼所 High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP3896793B2 (en) * 2001-02-16 2007-03-22 日立電線株式会社 Manufacturing method of high strength and high conductivity copper alloy material
JP5570109B2 (en) * 2008-10-15 2014-08-13 三菱伸銅株式会社 Copper alloy and lead frame material for electronic equipment
JP5297855B2 (en) * 2009-03-26 2013-09-25 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011174142A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
EP3040430B1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP4950584B2 (en) Copper alloy with high strength and heat resistance
TWI704240B (en) Copper alloy material for resistance material, manufacturing method thereof, and resistor
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
TW201233818A (en) Copper alloy for electronic and/or electrical device, copper alloy thin plate, and conductive member
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
CN103842551A (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
TWI429764B (en) Cu-Co-Si alloy for electronic materials
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP2017186664A (en) Copper alloy for electronic and electrical device, copper alloy sheet strip material for electronic and electrical device, component for electronic and electrical device, terminal, bus bar and movable piece for relay
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
JP4620173B1 (en) Cu-Co-Si alloy material
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
CN104903478A (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP5988794B2 (en) Copper alloy sheet and manufacturing method thereof
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5610789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250