JPH042046A - Battery - Google Patents

Battery

Info

Publication number
JPH042046A
JPH042046A JP2101988A JP10198890A JPH042046A JP H042046 A JPH042046 A JP H042046A JP 2101988 A JP2101988 A JP 2101988A JP 10198890 A JP10198890 A JP 10198890A JP H042046 A JPH042046 A JP H042046A
Authority
JP
Japan
Prior art keywords
film
battery
oxygen
membrane
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101988A
Other languages
Japanese (ja)
Other versions
JP2817343B2 (en
Inventor
Masaaki Yoshino
芳野 公明
Shigeto Noya
重人 野矢
Akira Hanabusa
花房 彰
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101988A priority Critical patent/JP2817343B2/en
Publication of JPH042046A publication Critical patent/JPH042046A/en
Application granted granted Critical
Publication of JP2817343B2 publication Critical patent/JP2817343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To enhance the discharging performance of a cell and allow it to endure long time service and storage by forming an oxygen selective penetration film as a Co porphyrin complex film or a mixture film of this material and polytrymethylsilylpropine, and furnishing this penetration film between the air take in side of a gas diffusion electrode and the inside of a battery vessel. CONSTITUTION:A composite film used 11 shall be of oxygen selective penetration type consisting in a Co porphyrin complex film or a mixture film of this substance and polytrimethylsirylpropine. This is installed between a porous film 2 and a porous body to perform oxygen dispersion in such as arrangement that the side containing the complex body confronts the side with air intake hole 3. This increases the oxygen penetrating speed as a trait of battery, improves the effect of shutting off water vapor and/or CO2 gas from the atmosphere, and enhances the high load discharging performance required of a practical battery as well as the performance in the case of long time discharge in an atmosphere with high or low humidity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属、もしくはアルコール、ヒドラジン、水
素等の負極活物質とを備えた電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a battery equipped with a negative electrode active material such as.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液1
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応じて水蒸気
の出入りがあり、電池的電解液の濃度変化1体積変化が
起こり、これが電池諸特性に影響を与えていた。ボタン
形空気亜鉛電池を例にとり、第2図を用いてその状況を
説明する。図中1は酸素極(空気極)、2はガス拡散性
はあるが液体は阻止するポリテトラフルオロエチレン(
P T F E)よりなる酸素極を支持する多孔膜であ
る。3は外部からの空気取り入れ孔、4は酸素極の支持
と空気の拡散を行なう多孔体、5,6はセパレータ、7
は水酸化カリウム水溶液と汞化亜鉛粉末との混合体から
なる負極である。一般にアルカリ電解液には水酸化カリ
ウム水溶液を使用し、その濃度は30〜35%で用いら
れている。このため相対湿度か47〜59%より高いと
外部の湿軍を取り込んで電解液濃度の低下と体積膨張と
が起こり、放電性能の低下、電解液の漏液を生じていた
。一方、相対湿度が前記の範囲以下の場合には電解液の
蒸発が起こり、内部抵抗の増大や放電性能の低下をもた
らしていた。
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution 1
In a battery that uses a neutral aqueous solution as an electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the battery electrolyte, which affect various battery characteristics. was influencing. Taking a button-type zinc-air battery as an example, the situation will be explained using FIG. 2. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a polytetrafluoroethylene (polytetrafluoroethylene) that has gas diffusivity but blocks liquids.
This is a porous membrane that supports an oxygen electrode made of PTFE. 3 is an air intake hole from the outside, 4 is a porous body that supports the oxygen electrode and diffuses air, 5 and 6 are separators, and 7
is a negative electrode made of a mixture of potassium hydroxide aqueous solution and zinc chloride powder. Generally, an aqueous potassium hydroxide solution is used as the alkaline electrolyte at a concentration of 30 to 35%. For this reason, when the relative humidity is higher than 47% to 59%, external moisture is taken in, resulting in a decrease in electrolyte concentration and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolyte occurs, resulting in an increase in internal resistance and a decrease in discharge performance.

従って、環境雰囲気によって著しい影響を受は易いため
長期間保存後の特性に問題があり、空気電池や燃料電池
はある特定の分野用に設計されるにとどまり、汎用化を
図る上で大きな課題を有していた。なお、図中8は負極
容器、9は絶縁ガスケット、10は正極容器である。
Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

発明が解決しようとする課題 これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば空気孔周辺の一部に電解液と反応
する物質を挿入し、電池外部への電解液漏出を防止する
。あるいは紙または高分子材料よりなる不織布等の電解
液吸収材を設けて、電池外部への電解液漏出を防止する
。さらに、空気孔を極端に小さくして酸素の供給量を制
限してまでも、水蒸気や炭酸ガスの電池内部への浸入を
防止する等の提案がなされているが、いずれの方法も漏
液防止や放電性能、特に長期間放電での性能に大きな課
題を残していた。これらの主要原因は空気中の水蒸気の
電池内への浸入による電解液の希釈と体積膨張、および
炭酸ガスの浸入による炭酸塩の生成に基づく放電反応の
阻害と空気流通経路の閉塞によるもので、外気が低湿の
場合には、逆に電解液中の水分の蒸発が性能低下の原因
となっていた。この原因を取り除くため、近年では、水
蒸気や炭酸ガスの透過を制御し、選択的に酸素を優先し
て透過する膜を介して空気を酸素極に供給する方法、例
えばポリシロキサン系の無孔性の均一な薄膜や金属酸化
物あるいは金属原子を含有する有機化合物の薄膜と適宜
な多孔性膜とを一体化させた膜を用いる方法が提案され
ていた。
Problems to be Solved by the Invention In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery, even by making the air holes extremely small and limiting the amount of oxygen supplied; however, neither method prevents leakage. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are dilution and volumetric expansion of the electrolyte due to the infiltration of water vapor from the air into the battery, and inhibition of the discharge reaction due to the formation of carbonates due to the infiltration of carbon dioxide gas and blockage of the air circulation path. Conversely, when the outside air is low-humidity, evaporation of water in the electrolyte causes performance to deteriorate. In order to eliminate this cause, in recent years, methods have been developed to control the permeation of water vapor and carbon dioxide gas and to supply air to the oxygen electrode through a membrane that selectively allows oxygen to pass through, such as non-porous polysiloxane membranes. A method using a film that integrates a uniform thin film of , a thin film of a metal oxide or an organic compound containing metal atoms, and a suitable porous film has been proposed.

しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気、炭酸ガスの透
過阻止能か充分でないことなどから、満足な放電性能が
得られず、長期の使用や貯蔵に耐えられないという技術
課題を持っていたので、実用化に至っていない。
However, to date, it has not been possible to obtain satisfactory discharge performance due to the inability to obtain sufficiently effective oxygen gas selective permeability and the insufficient ability to block the permeation of water vapor and carbon dioxide. It has not been put into practical use because of the technical issue of not being able to withstand storage.

そこで、本発明は上記の電池の貯蔵性、長期使用におけ
る性能を改善するとともに低負荷から高負荷に至る放電
条件で満足な放電性能を得るために、大気中の酸素ガス
を選択的に充分な速度で電池内に取り入れ、大気中の水
蒸気及び炭酸ガスの電池内への浸入を長期にわたり防止
する有効な手段を提供することを目的とするものである
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, and to obtain satisfactory discharge performance under discharge conditions ranging from low to high loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するための手段 本発明は、酸素を活物質とするガス拡散電極と、外気に
通じる空気取り入れ孔を有する電池容器を備えた電池の
ガス拡散電極の空気取り入れ側と電池容器の内面との間
に、コバルトポルフィリン錯体膜、あるいはコバルトポ
ルフィリン錯体とポリトリメチルシリルプロピンの混合
膜を酸素選択性透過膜として介在させるものである。
Means for Solving the Problems The present invention provides a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with the outside air. In between, a cobalt porphyrin complex membrane or a mixed membrane of a cobalt porphyrin complex and polytrimethylsilylpropyne is interposed as an oxygen-selective permeable membrane.

さらにこの膜を支持する多孔質基材として耐アルカリ性
に優れたポリプロピレン、ポリエチレン等のポリオレフ
ィン、フッ素樹脂、ポリスルフォン等を選び検討を深め
て完成した。なお微多孔膜は単層であっても良いが、取
扱いや製造時あるいは使用時の強度を確保するために、
必要に応じて耐アルカリ性不織布をさらに一体化した二
層以上の構成としても良い。
Furthermore, as a porous base material to support this membrane, we selected polyolefins such as polypropylene and polyethylene, fluororesin, polysulfone, etc., which have excellent alkali resistance, and completed the research after further investigation. The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use,
If necessary, it may have a structure of two or more layers further integrated with an alkali-resistant nonwoven fabric.

本発明は、前記のコバルトポルフィリン錯体膜等を電池
用として鋭意検討の結果、上述の諸特性を総合的に満た
し、これを適用した電池の性能が極めて優れていること
を見い出し完成したものである。
The present invention was completed after intensive study of the above-mentioned cobalt porphyrin complex membrane etc. for use in batteries, and the discovery that it comprehensively satisfies the above-mentioned characteristics and that the performance of batteries to which it is applied is extremely excellent. .

作用 この構成により後述の実施例における電池試験の結果か
らも明らかなように、電池用としての酸素透過速度と同
時に、水蒸気や炭酸ガスを大気から遮断する効果も共に
満足すべき状態にあり、実用的な電池に要求される高負
荷放電性能と、高湿度や低湿度の雰囲気下で長時間放電
した場合の性能も共に満足することとなる。
Function: As is clear from the results of the battery test in the Examples described below, this configuration has a satisfactory oxygen permeation rate for batteries as well as the effect of blocking water vapor and carbon dioxide from the atmosphere, making it suitable for practical use. This satisfies both the high-load discharge performance required of standard batteries and the performance when discharging for a long time in an atmosphere of high or low humidity.

実施例 以下、本発明の一実施例を示す。Example An embodiment of the present invention will be shown below.

コバルトポルフィリン錯体膜を酸素選択性透過膜として
使用した電池およびさらにコバルトポルフィリン錯体と
ポリトリメチルシリルプロピンの混合膜を酸素選択性透
過膜として使用した電池、比較例として上記膜を使用し
ない電池を試作評価して検討した。
A battery using a cobalt porphyrin complex membrane as an oxygen-selective permeable membrane, a battery using a mixed membrane of cobalt porphyrin complex and polytrimethylsilylpropyne as an oxygen-selective permeable membrane, and a comparative example of a battery that does not use the above membrane was prototyped and evaluated. I considered it.

比較例の場合は第2図と全く同一に構成した。In the case of a comparative example, the structure was exactly the same as that shown in FIG.

コバルトポルフィリン錯体膜を酸素選択性透過膜として
使用した電池およびさらにコバルトポルフィリン錯体と
ポリトリメチルシリルプロピンの混合膜を酸素選択性透
過膜として使用した電池である、実施例1,2も電池構
成の上からは第2図とほぼ同様であり、第1図に示すよ
うにPTFEの多孔膜2と酸素の拡散を行なう多孔体4
との間にそれぞれの実施例の複合膜が介在し、複合膜は
錯体を含む側が空気取り入れ孔3の側に対向するよう配
設した点が、第2図と異なるのみである。
Examples 1 and 2, which are batteries using a cobalt porphyrin complex membrane as an oxygen-selective permeable membrane and a battery using a mixed membrane of a cobalt porphyrin complex and polytrimethylsilylpropyne as an oxygen-selective permeable membrane, also have different battery configurations. 2, and as shown in FIG. 1, a porous film 2 of PTFE and a porous body 4 for oxygen diffusion are shown.
The only difference from FIG. 2 is that the composite membrane of each example is interposed between the two and the composite membrane is disposed so that the side containing the complex faces the side of the air intake hole 3.

試作した電池の形状は直径11.6mm、総高5.4r
i+nであり、比較的高負荷(75Ω)で20℃、常温
(60%RH)での連続放電により電池内への空気中の
酸素の取り込み速度の充足性を評価し、比較的低負荷(
3にΩ)で20℃、高湿度(90%RH)及び低湿度(
20%RH)での長期間連続放電により、長期の放電期
間中の、雰囲気中の水蒸気の取り込みや電池内の水分の
蒸発、及び炭酸ガスの取り込みなと電池性能への影響度
を評価した。
The prototype battery has a diameter of 11.6 mm and a total height of 5.4 r.
i + n, and the sufficiency of the rate of oxygen uptake from the air into the battery was evaluated by continuous discharge at 20°C and room temperature (60% RH) under a relatively high load (75Ω).
3Ω) at 20°C, high humidity (90% RH) and low humidity (
By conducting a long-term continuous discharge at 20% RH), we evaluated the influence of the uptake of water vapor in the atmosphere, evaporation of water inside the battery, and uptake of carbon dioxide gas on the battery performance during the long-term discharge period.

試作した電池の内訳は第1表に示すとおりである。また
第2表に試作電池の性能試験結果を示す。
The details of the prototype batteries are shown in Table 1. Table 2 also shows the performance test results of the prototype batteries.

第1表:試作電池の内訳 第2表:試作電池の性能特性試験結果 第2表において放電終止電圧はいずれも0.9Vであり
、重量変化は放電試験前後の増減を示しており、主とし
て放電中の水分の取り込み、あるいは蒸発の多少を示唆
する数値である。
Table 1: Breakdown of prototype batteries Table 2: Results of performance characteristic tests of prototype batteries This value indicates the amount of moisture taken in or evaporated.

本発明の複合膜の支持体は、耐アルカリ性の材料で構成
されている。これらの電池の特性を複合膜を使用してい
ない比較例と対比すると、最も端的に本発明の詳細な説
明できる。
The support of the composite membrane of the present invention is made of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with a comparative example that does not use a composite membrane.

まず20℃、常湿での高負荷試験では放電期間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考慮する必要がない。従
って、このような条件では比較例でも優れた特性が得ら
れる。これに対し前述の実施例1,2は比較例と同等の
放電特性が得られており、複合膜を透過する酸素の速度
が放電反応により消費される酸素の速度に充分追従して
いることを示している。
First, in high load tests at 20℃ and normal humidity, the discharge period was short;
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide gas are small, there is no need to consider blocking the permeation of moisture and carbon dioxide gas as long as the oxygen supply rate is sufficient for battery performance. Therefore, under such conditions, excellent characteristics can be obtained even in the comparative example. On the other hand, in Examples 1 and 2 described above, discharge characteristics equivalent to those of the comparative example were obtained, indicating that the rate of oxygen permeating through the composite membrane sufficiently follows the rate of oxygen consumed by the discharge reaction. It shows.

一方、低負荷放電の場合は放電期間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過防止が優れた電池特
性を得るために重要となる。水分や炭酸ガスの透過阻止
機構を持たない比較例の電池は水分の枯渇、あるいは逆
に水分の過剰取り入れに起因した漏液による空気孔の閉
塞などにより、放電の途中で電圧が低下し、高負荷試験
で得られた放電容量の一部分に相当する容量が得られる
に過ぎない。また放電途中での漏液は実用面で致命的な
問題であることは言うまでもない。これに対し実施例は
いずれも極めて優れた性能を示し、これらは高負荷試験
の放電容量とほぼ等しい容量が得られている。これらの
傾向は試験雰囲気が高湿度、低湿度、いずれの場合とも
同様である。このことは、実施例の場合、複合膜の水分
の透過阻止効果が充分に発揮されていることを示してい
る。
On the other hand, in the case of low-load discharge, the discharge period is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are superior to moisture and carbon dioxide gas, especially moisture permeation prevention, rather than oxygen supply rate. becomes important. The comparative example battery, which does not have a mechanism to prevent the permeation of moisture and carbon dioxide gas, has a voltage drop during discharge due to depletion of moisture or, conversely, blockage of the air holes due to leakage caused by excessive intake of moisture. The capacity obtained is only a portion of the discharge capacity obtained in the load test. It goes without saying that leakage during discharge is a fatal problem in practical terms. On the other hand, all of the examples showed extremely excellent performance, and in these examples, a capacity almost equal to the discharge capacity in the high load test was obtained. These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that in the case of the example, the moisture permeation blocking effect of the composite membrane was sufficiently exhibited.

以上を総合して、微多孔質膜上の表面にコバルトポルフ
ィリン錯体膜を形成した複合膜およびさらにコバルトポ
ルフィリン錯体とポリトリメチルシリルプロピンの混合
膜を用いた試作電池は、高負荷特性、低負荷特性ともに
優れ、外部雰囲気の変化も良好である。特に耐アルカリ
性の微多孔質膜を支持体に用いた場合に優れた電池を提
供できることが結論できる。さらに実施例に示した複合
膜を支持する微多孔質膜は、他のアルカリ性を有する微
多孔膜、例えばナイロン製微多孔膜でも同様の効果が得
られる。また、実施例では支持体が微多孔膜とポリプロ
ピレン製の不織布と一体化した複合層とした場合を説明
したが、前記不織布がポリエチレン、ナイロン等の他の
耐アルカリ性のある素材であれば同様の効果か得られる
Taking all of the above into account, the prototype battery using a composite membrane in which a cobalt porphyrin complex film is formed on the surface of a microporous membrane and a mixed membrane of a cobalt porphyrin complex and polytrimethylsilylpropyne has high load characteristics and low load characteristics. Both are excellent, and the change in external atmosphere is also good. It can be concluded that an excellent battery can be provided especially when an alkali-resistant microporous membrane is used as a support. Furthermore, the same effect can be obtained with the microporous membrane supporting the composite membrane shown in the Examples with other alkaline microporous membranes, such as microporous nylon membranes. In addition, in the examples, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene are integrated is explained, but if the nonwoven fabric is made of other alkali-resistant material such as polyethylene or nylon, a similar method can be used. You can get some effect.

なお、いずれの実施例の場合でも複合膜の薄膜側を空気
取り入れ孔側に当接させた場合でもほぼ同一の結果とな
ることを確認している。
In addition, in any of the examples, it has been confirmed that almost the same results are obtained even when the thin film side of the composite membrane is brought into contact with the air intake hole side.

また、上言己実施例では本発明の複合膜を電池容器との
間に空気拡散用の多孔体を介して設置したが、本発明の
複合膜は微多孔膜、場合によってはさらに不織布を一体
化した支持体より構成されており、前記空気拡散用の多
孔体を除いても電池特性の差異はない。但し、複合膜の
強度が充分でなく複合膜が空気取り入れ孔側に変形する
ような場合には、多孔体を設置することにより複合膜が
安定形状を保つ。さらに、上記実施例では本発明の複合
膜を酸素極との間に酸素極を支持する多孔膜を介して設
置したが、酸素極の強度が充分であれば前記多孔膜は不
用であり、除いても電池特性は変わらない。また塩化ア
ンモニウム、塩化亜鉛などの中性塩の水溶液を電解液に
用いた空気電池に対しても、実施例で示したアルカリ性
の電解液を用いた電池と同様の効果があることも確認し
ており、実施例と同様の理由で本発明の詳細な説明でき
る。
In addition, in the above examples, the composite membrane of the present invention was installed between the battery container and the porous material for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. There is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the strength of the composite membrane is insufficient and the composite membrane deforms toward the air intake hole, the composite membrane maintains a stable shape by installing a porous body. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane was unnecessary and could be removed. However, the battery characteristics remain unchanged. It was also confirmed that air batteries using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as the electrolyte had the same effect as the battery using an alkaline electrolyte shown in the example. Therefore, the present invention can be explained in detail for the same reason as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の高負荷から低負荷にわたる優れた実用
性能と、優れた耐漏液性長期貯蔵性を具備させることが
できるという効果が得られる。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance over a range from high load to low load for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. The effect of providing leakage resistance and long-term storage properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

1− 酸t& 第2図 1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取り入れ孔、4・・・・・・多
孔膜、5,6・・・・・・セパレータ、7・・・・・・
負極亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガスケット、10・・・・・・正極容器、11・・・
・・・複合膜。
1- Acid t & Figure 2 1...Oxygen electrode (air electrode), 2...Water repellent film, 3...Air intake hole, 4... Porous membrane, 5, 6...Separator, 7...
Negative electrode zinc, 8... Negative electrode container, 9... Insulating gasket, 10... Positive electrode container, 11...
...Composite membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取り入れ孔を有する電池容器を備え、前記ガス拡
散電極の空気取り入れ側と前記電池容器の内面との間に
コバルトポルフィリン錯体膜を設けたことを特徴とする
電池。
(1) A gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air are provided, and a cobalt porphyrin complex film is provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery characterized by:
(2)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取り入れ孔を有する電池容器を備え、前記ガス拡
散電極の空気取り入れ側と前記電池容器の内面との間に
コバルトポルフィリン錯体とポリトリメチルシリルプロ
ピンの混合膜を設けたことを特徴とする電池。
(2) A battery container having a gas diffusion electrode containing oxygen as an active material and an air intake hole communicating with the outside air, and a cobalt porphyrin complex and polyamide are provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery characterized by having a mixed film of trimethylsilylpropyne.
JP2101988A 1990-04-18 1990-04-18 Battery Expired - Fee Related JP2817343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101988A JP2817343B2 (en) 1990-04-18 1990-04-18 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101988A JP2817343B2 (en) 1990-04-18 1990-04-18 Battery

Publications (2)

Publication Number Publication Date
JPH042046A true JPH042046A (en) 1992-01-07
JP2817343B2 JP2817343B2 (en) 1998-10-30

Family

ID=14315223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101988A Expired - Fee Related JP2817343B2 (en) 1990-04-18 1990-04-18 Battery

Country Status (1)

Country Link
JP (1) JP2817343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033721A (en) * 2011-07-06 2013-02-14 Ngk Insulators Ltd Selective oxygen permeable substrate, positive electrode for air cell, air cell, and selective oxygen permeable film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033721A (en) * 2011-07-06 2013-02-14 Ngk Insulators Ltd Selective oxygen permeable substrate, positive electrode for air cell, air cell, and selective oxygen permeable film

Also Published As

Publication number Publication date
JP2817343B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JP2782837B2 (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JP2817343B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH042067A (en) Battery
JP2822485B2 (en) Battery
JPH04312771A (en) Air battery
JP2743574B2 (en) Battery
JP2782911B2 (en) Battery
JP2757383B2 (en) Battery
JPH09274936A (en) Air cell
JPH04162374A (en) Battery
JPH03108258A (en) Battery
JPH01267974A (en) Battery
JP2778078B2 (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH01267971A (en) Battery
JPH01267972A (en) Battery
JPH01267973A (en) Battery
JPH0475253A (en) Manufacture of battery
JP2734057B2 (en) Battery manufacturing method
JPH03108257A (en) Battery
JPH0287459A (en) Battery
JPH03108254A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees