JPH04198278A - Method of surface treatment of inorganic particle, and thermosetting resin composition - Google Patents

Method of surface treatment of inorganic particle, and thermosetting resin composition

Info

Publication number
JPH04198278A
JPH04198278A JP32144590A JP32144590A JPH04198278A JP H04198278 A JPH04198278 A JP H04198278A JP 32144590 A JP32144590 A JP 32144590A JP 32144590 A JP32144590 A JP 32144590A JP H04198278 A JPH04198278 A JP H04198278A
Authority
JP
Japan
Prior art keywords
surface treatment
particles
inorganic particles
agent
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32144590A
Other languages
Japanese (ja)
Other versions
JP3060530B2 (en
Inventor
Toshio Shiobara
利夫 塩原
Takashi Tsuchiya
貴史 土屋
Hatsuji Shiraishi
白石 初二
Tatsuro Hirano
平野 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TATSUMORI KK
Shin Etsu Chemical Co Ltd
Original Assignee
TATSUMORI KK
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18132639&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04198278(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TATSUMORI KK, Shin Etsu Chemical Co Ltd filed Critical TATSUMORI KK
Priority to JP2321445A priority Critical patent/JP3060530B2/en
Publication of JPH04198278A publication Critical patent/JPH04198278A/en
Application granted granted Critical
Publication of JP3060530B2 publication Critical patent/JP3060530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To ensure surface treatment easily by adding a surface treating agent to inorganic particles while grinding them by an external pressure to thereby treat the surfaces of the ground particles. CONSTITUTION:While inorganic particles (e.g. fused silica) having a mean particle diameter of 3-30mum are ground by an external pressure, a surface treating agent (e.g. silane coupling agent) is added thereto, if necessary in the presence of an aqueous medium, a reaction accelerator, etc., to treat the surfaces of the ground particles.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シリカ、アルミナなどの無機質粒子をシラン
カップリング剤などの表面処理剤で表面処理する方法及
びこれによって得られた表面処理無機質粒子を配合した
エポキシ樹脂組成物などの熱硬化性樹脂組成物に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for surface treating inorganic particles such as silica and alumina with a surface treatment agent such as a silane coupling agent, and the surface treated inorganic particles obtained thereby. It relates to a thermosetting resin composition such as an epoxy resin composition containing the following.

[従来の技術及び発明が解決しようとする課題]エポキ
シ樹脂及びこれに無機質充填剤を配合したエポキシ樹脂
組成物は、一般に他の熱硬化性樹脂に比べて、成形性、
接着性、電気特性1機械特性、耐湿性等に優れているた
め、各種成形材料、電気絶縁材料などとして広く利用さ
れ、特に最近では半導体の封止材として注目されている
[Prior art and problems to be solved by the invention] Epoxy resins and epoxy resin compositions containing inorganic fillers generally have better moldability and better moldability than other thermosetting resins.
Because it has excellent adhesive properties, electrical properties (1) mechanical properties, moisture resistance, etc., it is widely used as various molding materials, electrical insulating materials, etc., and has recently attracted particular attention as a semiconductor encapsulating material.

しかしながら、最近ではパッケージが益々小型化、薄型
化されると共に、基盤への実装方法も表面実装方式が主
流となり、従来のエポキシ樹脂組成物では十分な信頼性
を維持できなくなってきた。例えばパッケージが吸湿し
た状態で半田付けするとパッケージにラックが発生する
問題や、クラックが発生しないまでも耐湿性が低下して
しまうといった不具合が生じている。これらの不具合の
原因はパッケージ材料が吸湿することである。このため
吸湿性の少ないエポキシ樹脂、硬化剤等を見い出すべく
種々検討されているが、実用に供するものはまだ開発は
されていない。従って、吸湿性の少ないエポキシ樹脂組
成物が強く要望されている。
However, recently, as packages have become increasingly smaller and thinner, surface mounting has become the mainstream method for mounting on substrates, and conventional epoxy resin compositions are no longer able to maintain sufficient reliability. For example, if the package is soldered when it has absorbed moisture, there are problems such as racks occurring in the package, and even if no cracks occur, the moisture resistance decreases. The cause of these problems is moisture absorption by the packaging material. For this reason, various studies have been made to find epoxy resins, curing agents, etc. that have low hygroscopicity, but none have yet been developed for practical use. Therefore, there is a strong demand for epoxy resin compositions with low hygroscopicity.

一方、無機質充填剤は、エポキシ樹脂組成物等の熱硬化
性樹脂組成物に配合する場合、無機質充填剤をシランカ
ップリング剤、チタネート類等の表面処理剤で表面処理
したものを配合することが行われているが、これらの処
理方法としては単に無機質充填剤とこれらの処理剤を高
速撹拌装置中撹拌処理する方法か、処理剤を溶剤に溶解
し、これに無機質充填剤を添加した後、溶剤を除去する
方法で行われていた。しかし、前者の方法では容易に処
理できるというメリットがあるが、無機質充填剤の表面
を確実に処理することができず、不十分な処理となって
しまう。一方、後者の方法は確実に処理することができ
るが、溶剤を多量に使用する必要があり、しかも使用し
た溶剤を除去しなければならないことから工業化が困難
である。
On the other hand, when an inorganic filler is blended into a thermosetting resin composition such as an epoxy resin composition, the inorganic filler may be surface-treated with a surface treatment agent such as a silane coupling agent or titanate. However, these processing methods include simply stirring the inorganic filler and these processing agents in a high-speed stirring device, or dissolving the processing agent in a solvent and adding the inorganic filler to it. This was done by removing the solvent. However, although the former method has the advantage of being easy to treat, it cannot reliably treat the surface of the inorganic filler, resulting in insufficient treatment. On the other hand, although the latter method can be used reliably, it is difficult to industrialize because it requires the use of a large amount of solvent and the used solvent must be removed.

このため、無機質充填剤を容易かつ確実に表面処理する
方法の開発が望まれている。
Therefore, it is desired to develop a method for easily and reliably surface treating inorganic fillers.

[課題を解決するための手段及び作用]本発明者らは、
上記要望に応えるため鋭意検討を行った結果、無機質粒
子を表面処理剤で表面処理する場合、無機質粒子に外部
から押圧力を加えながら水系媒体存在下または非存在下
で粒子同士を摩砕する際に表面処理剤を加えて粒子の表
面を処理することにより、無機質粒子が確実にしがも容
易に処理されることを知見した。即ち、粒子に外部から
押圧力を加えながら粒子を摩砕する方法は既に知られて
いる(特開昭64−62362号)。この方法によれば
、破砕状微粉末シリカに外部から抑圧力を加えながら粒
子を摩砕することにより、シリカの角を取り丸くするこ
とができるが、本発明者らは、この摩砕により発生する
新鮮な破砕面に着目し、破砕と同時に表面処理を行うこ
とで表面処理剤を強固に無機質粒子表面に結合させるこ
とができることを見い出したものである。
[Means and effects for solving the problem] The present inventors
As a result of intensive studies to meet the above demands, we found that when inorganic particles are surface treated with a surface treatment agent, when the particles are ground together in the presence or absence of an aqueous medium while applying external pressure to the inorganic particles. It has been found that inorganic particles can be reliably and easily treated by adding a surface treatment agent to the surface of the particles. That is, a method of grinding particles while applying a pressing force to the particles from the outside is already known (Japanese Patent Application Laid-open No. 62362/1983). According to this method, the corners of the silica can be rounded by grinding the crushed fine powder silica particles while applying a suppressing force from the outside. By paying attention to the freshly crushed surface of the inorganic particles and performing surface treatment at the same time as crushing, it was discovered that the surface treatment agent could be firmly bonded to the surface of the inorganic particles.

しかも、本発明者らはパッケージの吸湿性を小さくする
ため鋭意検討した結果、無機質充填剤と熱硬化性樹脂の
界面を確実に結合させることにより熱硬化性樹脂組成物
の吸湿性を大幅に低下させ得ることを見い出すと共に、
上記処理方法で表面処理した無機質粒子を熱硬化性樹脂
に配合することにより無機質粒子と樹脂の界面での結合
を強固にし、界面に侵入する水分の量を低減し、かつ耐
湿性、即ち吸湿した状態での機械強度及び耐衝撃性が優
れた組成物を可能とすることを知見し、本発明をなすに
至ったものである。
Moreover, as a result of intensive studies by the present inventors to reduce the hygroscopicity of the package, the hygroscopicity of the thermosetting resin composition was significantly reduced by reliably bonding the interface between the inorganic filler and the thermosetting resin. As well as discovering what can be done,
By blending the inorganic particles surface-treated with the above treatment method into the thermosetting resin, the bond at the interface between the inorganic particles and the resin is strengthened, the amount of moisture that enters the interface is reduced, and moisture resistance, that is, moisture absorption, is achieved. The inventors discovered that it is possible to create a composition that has excellent mechanical strength and impact resistance in a state where the material is not in use, and this led to the present invention.

従って、本発明は、無機質粒子に表面処理剤を添加し、
該粒子表面を該表面処理剤で表面処理する方法において
、上記粒子に外部から押圧力を与えて該粒子を摩砕する
と共に、該摩砕時に表面処理剤を加え、摩砕粒子表面を
該表面処理剤で表面処理することを特徴とする無機質粒
子を簡単かつ確実に表面処理する方法を提供する。
Therefore, the present invention adds a surface treatment agent to inorganic particles,
In the method of surface treating the surface of the particles with the surface treatment agent, a pressing force is applied to the particles from the outside to grind the particles, a surface treatment agent is added during the grinding, and the surface of the ground particles is treated with the surface treatment agent. To provide a method for simply and surely surface treating inorganic particles, which is characterized by surface treating with a treating agent.

また、本発明は、上記表面処理により得られた表面処理
無機質粒子を配合したことを特徴とする耐湿性に優れた
熱硬化性樹脂組成物を提供する。
Further, the present invention provides a thermosetting resin composition having excellent moisture resistance, which is characterized in that it contains surface-treated inorganic particles obtained by the above-mentioned surface treatment.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の無機質粒子の表面処理方法において、無機質粒
子としては結晶性シリカ、溶融シリカ、アルミナ、窒化
ケイ素、タルク、カオリン、窒化アルミ等を代表的なも
のとして挙げることができる。また、粒子の形状として
は破砕状あるいは球状のいずれのものも使用可能である
。粒子の平均粒径は特に限定されないが、充填剤として
の用途の場合、3〜30ミクロン、望ましくは5〜15
ミクロンである。これらの無機質粒子はそれぞれ単独で
、あるいは二種以上を混合して用いても同等問題はない
In the method for surface treatment of inorganic particles of the present invention, typical inorganic particles include crystalline silica, fused silica, alumina, silicon nitride, talc, kaolin, aluminum nitride, and the like. In addition, as for the shape of the particles, either crushed or spherical particles can be used. The average particle size of the particles is not particularly limited, but in the case of use as a filler, it is 3 to 30 microns, preferably 5 to 15 microns.
It is micron. These inorganic particles may be used alone or in combination of two or more without any problem.

これらの無機質粒子の表面処理剤としては、公知のもの
を使用することができ、例えば有機珪素化合物、チタネ
ート類、有機アルミニウム類等が代表的なものである。
As the surface treatment agent for these inorganic particles, known agents can be used, and representative examples thereof include organic silicon compounds, titanates, organic aluminums, and the like.

これらの中でも有機珪素化合物は無機物との親和性に優
れていることから特に好ましいものである。有機珪素化
合物にはシリコーンゴム、シリコーンレジン等の高分子
状、あるいは三次元化したものからシラン類と種々のも
のがあるが、とりわけアルコキシ基、アミノ基、エポキ
シ基を有する下記のものが好適であり、中でもシランカ
ップリング剤が最も好ましく用いられる。
Among these, organic silicon compounds are particularly preferred because they have excellent affinity with inorganic substances. There are various organosilicon compounds, including polymers such as silicone rubber and silicone resin, or three-dimensional ones, and silanes, but the following compounds having an alkoxy group, an amino group, or an epoxy group are particularly suitable. Of these, silane coupling agents are most preferably used.

5HCH2CH2CH2Si (OCH,)2 、 C
H,Si (OCH3)、 、 C,H,Si (OC
Hs)s(CH3)3SiOCH,、CH8CH2(C
H2)6Si (OCHs)3゜本発明の表面処理方法
において、その一方法として、前記した無機質粒子に外
部から押圧力を加えながら水系媒体存在下で粒子同士を
摩砕する際に、水系媒体中に処理剤を溶解乃至乳化した
ものを加えながら、あるいは摩砕中外部から表面処理剤
を加えなから摩砕と表面処理を同時に行う方法を採用し
得る。この場合、水系媒体は、摩砕の際に押圧力を粒子
に円滑に伝達し、摩砕の効率を高めるために使用され、
通常無機質粒子に対し0.5〜20%(重量%、以下同
じ)、より望ましくは5〜15%である。使用する水系
媒体としては水、アルコール類がコスト取り扱い易さ1
分離除去のし易さから好適に用いられる。
5HCH2CH2CH2Si (OCH,)2, C
H, Si (OCH3), , C, H, Si (OC
Hs)s(CH3)3SiOCH,,CH8CH2(C
H2) 6Si (OCHs) 3゜In the surface treatment method of the present invention, as one method, when grinding the particles together in the presence of an aqueous medium while applying a pressing force to the above-mentioned inorganic particles from the outside, It is possible to adopt a method in which grinding and surface treatment are carried out simultaneously while adding a dissolved or emulsified treatment agent to the surface treatment agent, or by not adding a surface treatment agent from outside during the grinding. In this case, the aqueous medium is used to smoothly transmit the pressing force to the particles during attrition and increase the efficiency of attrition,
It is usually 0.5 to 20% (weight %, same hereinafter) based on the inorganic particles, and more preferably 5 to 15%. As for the aqueous medium used, water and alcohol are cost-effective and easy to handle.
It is preferably used because it can be easily separated and removed.

ここで、これらの水系媒体中に前述した表面処理剤を溶
解、あるいは乳化させた状態で摩砕を行うに際し、シラ
ン類を表面処理剤とする場合、水またはメタノール、エ
タノール等の単独あるいは混合溶剤に溶剤100重量部
に対しシラン類を0.1〜100重量部、望ましくは1
〜150重量部溶解することが好ましい。0.1重量部
未満では処理剤の量が少なすぎ、確実に表面を処理しよ
うとすると多量の水系媒体を使用しなければならず、処
理時間が長くなるという不利がある場合が生じ、10重
量部を越えると処理剤の量が多すぎて粒子表面の処理剤
の被覆層が厚くなり特性が低下することがある。
When grinding is performed with the above-mentioned surface treatment agent dissolved or emulsified in these aqueous media, if silanes are used as the surface treatment agent, water or a single or mixed solvent such as methanol or ethanol may be used. 0.1 to 100 parts by weight, preferably 1 part by weight of silanes per 100 parts by weight of solvent.
It is preferable to dissolve up to 150 parts by weight. If the amount is less than 0.1 part by weight, the amount of the treatment agent is too small, and in order to reliably treat the surface, a large amount of aqueous medium must be used, which may have the disadvantage of prolonging the treatment time. If the amount of the treating agent exceeds 100%, the amount of the treating agent is too large, and the coating layer of the treating agent on the particle surface becomes thick, which may deteriorate the properties.

一方、シリコーンオイル、シリコーンレジン等の高重合
度のポリマーで表面処理を行う場合、これらポリマーを
溶解する溶剤に溶解した後、水と十分に混合し乳化させ
た状態やポリマーそのものを水に乳化させて行う方法が
好適である。この場合、溶剤としてはトルエン、ベンゼ
ン、キシレン等の芳香族訓導体、アセトン、メチルイソ
ブチルケトンなどのケトン類、トリクロルエチレン、四
塩化炭素などの塩素系溶剤、トリフロロエタンなどのフ
ッ素系溶剤等が代表的なものである。これら溶剤に溶解
したポリマーあるいは未溶解のポリマーを水に乳化させ
るため、ポリエーテル系、ノニオン系あるいはカチオン
系の界面活性剤を使用することもできる。
On the other hand, when performing surface treatment with polymers with a high degree of polymerization such as silicone oil and silicone resin, these polymers are dissolved in a solvent that dissolves them, and then thoroughly mixed with water to emulsify them, or the polymer itself is emulsified in water. It is preferable to use the method of In this case, solvents include aromatic conductors such as toluene, benzene, and xylene, ketones such as acetone and methyl isobutyl ketone, chlorinated solvents such as trichlorethylene and carbon tetrachloride, and fluorinated solvents such as trifluoroethane. It is representative. Polyether, nonionic or cationic surfactants can also be used to emulsify the polymers dissolved in these solvents or undissolved in water.

なお、これらの表面処理剤はそのままの状態で摩砕して
いる装置中に適宜添加しながら表面処理をしても良い。
Incidentally, these surface treatment agents may be added as appropriate to the grinding device as they are for surface treatment.

また、表面処理剤の量が多い場合、十分に押圧力が無機
質粒子に伝達されるため、水系媒体を使用しな(とも良
い。
Further, when the amount of the surface treatment agent is large, the pressing force is sufficiently transmitted to the inorganic particles, so it is preferable not to use an aqueous medium.

この表面処理の際、無機質粒子表面と表面処理剤との反
応を速めるため反応促進剤を使用しても良い。反応促進
剤としてはアミン類、ホスフィン類。
During this surface treatment, a reaction accelerator may be used to accelerate the reaction between the surface of the inorganic particles and the surface treatment agent. Amines and phosphines are used as reaction accelerators.

イミダゾール類、シクロアミジン類等が挙げられる。Examples include imidazoles and cycloamidines.

これらの反応促進剤は微量で効果を発揮するものである
ことから表面処理剤100重量部に対し0.01〜5重
量部添加すれば良い。望ましくは0.1〜3重量部であ
る。0.01重量部未満では反応促進効果が不十分とな
る場合があり、5重量部より多いと反応性を持った表面
処理剤の場合、反応が速すぎて水に溶解した段階で反応
し、ゲル化するおそれがある。
Since these reaction accelerators are effective in small amounts, they may be added in an amount of 0.01 to 5 parts by weight per 100 parts by weight of the surface treatment agent. The amount is preferably 0.1 to 3 parts by weight. If it is less than 0.01 part by weight, the reaction promoting effect may be insufficient, and if it is more than 5 parts by weight, the reaction will be too fast in the case of a reactive surface treatment agent, and it will react when it is dissolved in water. There is a risk of gelation.

粒子の押圧力を与えて粒子同士を摩砕する方法には種々
の方法があるが、強いエネルギーを用いて行った場合、
表面処理剤がメカノケミカルな反応により分解し、表面
改質効果による特性の維持ができなくなる場合があるた
め適切なエネルギー、具体的には20〜250 k g
 f / c m 、特に50〜150kgf/am程
度の押圧力を与えて摩砕を行うことが好ましい。この場
合、押圧力を与える装置としては、ローラミルが好適に
用いられる。
There are various methods of grinding particles together by applying pressure to them, but when strong energy is used,
The surface treatment agent may decompose due to mechanochemical reactions, making it impossible to maintain the properties due to the surface modification effect, so use appropriate energy, specifically 20 to 250 kg.
It is preferable to perform the grinding by applying a pressing force of f/cm, particularly about 50 to 150 kgf/am. In this case, a roller mill is suitably used as the device for applying the pressing force.

なお、処理温度は室温で良(、処理時間は通常10〜2
00分であるが、無機質粒子を摩砕しながら処理するた
め望ましくは60〜150分程度処理することが好まし
い。このような処理をすることで摩砕処理後の平均粒径
は、処理前の粒径に比べて、破砕した無機質粒子の場合
は5〜30%程度、球状無機質粒子の場合O〜5%程度
小さくしたものとすることが確実に表面処理をするのに
望ましい。
In addition, the processing temperature is good at room temperature (and the processing time is usually 10 to 2
However, since the inorganic particles are processed while being ground, it is preferable to perform the processing for about 60 to 150 minutes. By performing such treatment, the average particle size after grinding is approximately 5 to 30% for crushed inorganic particles, and approximately 0 to 5% for spherical inorganic particles, compared to the particle size before treatment. A small size is desirable to ensure surface treatment.

上述したようにして表面処理した無機質粒子を充填剤と
して成形材料、粉体塗装用材料、半導体封止材等として
用いられるエポキシ樹脂組成物、注型用エポキシ樹脂組
成物、構造材料としてのフェノール樹脂組成物やポリエ
ステル樹脂組成物、あるいはシリコーン樹脂組成物など
の熱硬化性樹脂組成物に配合することができ、特に半導
体封止用エポキシ樹脂組成物の充填剤として用いること
が好適であり、上記表面処理無機質粒子の配合により耐
湿性、耐衝撃性を大幅に改善することができる。
Epoxy resin compositions using inorganic particles surface-treated as described above as fillers, used as molding materials, powder coating materials, semiconductor sealing materials, etc., epoxy resin compositions for casting, and phenolic resins as structural materials. It can be blended into thermosetting resin compositions such as compositions, polyester resin compositions, or silicone resin compositions, and is particularly suitable for use as a filler in epoxy resin compositions for semiconductor encapsulation. Moisture resistance and impact resistance can be significantly improved by incorporating treated inorganic particles.

ここで、エポキシ樹脂組成物は、エポキシ樹脂及び硬化
剤を含有するが、エポキシ樹脂は1分子中に2個以上の
エポキシ基を有するものであれば特に制限はな(、例え
ばオルンクレゾールノボラック型エポキシ樹脂、フェノ
ールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、
ビスフェノール型エポキシ樹脂、置換または非置換のト
リフエノールアルカン型エポキシ樹脂、上記エポキシ樹
脂のハロゲン化物等を挙げることができ、これらの1種
または2種以上が適宜選択して使用される。
Here, the epoxy resin composition contains an epoxy resin and a curing agent, but there is no particular restriction on the epoxy resin as long as it has two or more epoxy groups in one molecule (for example, an orn cresol novolac type epoxy resin, phenol novolak type epoxy resin, alicyclic epoxy resin,
Examples include bisphenol-type epoxy resins, substituted or unsubstituted triphenolalkane-type epoxy resins, and halides of the above-mentioned epoxy resins, and one or more of these may be appropriately selected and used.

硬化剤はエポキシ樹脂に応じたものが使用され、°例え
ばアミン系硬化剤、酸無水物系硬化剤、フェノールノボ
ラック型硬化剤等を用いることができるが、中でもフェ
ノールノボラック型硬化剤が組成物の成形性、耐湿性と
いった面でより望ましい。なお、フェノールノボラック
型硬化剤として、具体的にはフェノールノボラック樹脂
、クレゾールのボラック樹脂が例示される。
The curing agent used is appropriate for the epoxy resin; for example, amine-based curing agents, acid anhydride-based curing agents, phenol novolac-type curing agents, etc. can be used, but among them, phenol-novolac-type curing agents are suitable for the composition. More desirable in terms of moldability and moisture resistance. In addition, specific examples of the phenol novolak type curing agent include phenol novolak resin and cresol borac resin.

ここで、硬化剤の配合量は別に制限されないが、フェノ
ールノボラック型硬化剤を使用する場合は、エポキシ樹
脂中のエポキシ基と硬化剤中のフェノール性水酸基との
モル比を0.5〜1.5の範囲とすることが好適である
Here, the amount of the curing agent is not particularly limited, but when using a phenol novolak type curing agent, the molar ratio of the epoxy group in the epoxy resin to the phenolic hydroxyl group in the curing agent is 0.5 to 1. A range of 5 is preferable.

更に、エポキシ樹脂と硬化剤との反応を促進させるため
に硬化促進剤を配合することができる。硬化促進剤とし
てはイミダゾール化合物、1.8−ジアザビシクロ(5
,4,0)ウンデセン(DBU)等のシクロアミジン銹
導体、トリフェニルホスフィン等のホスフィン誘導体、
三級アミン類等の1種または2種以上が用いられる。な
お、硬化促進剤の使用量は特に制限されず、エポキシ樹
脂とフェノール樹脂の合計量に対し0.01〜5重量部
、望ましくは0.2〜3重量部である。
Furthermore, a curing accelerator may be added to promote the reaction between the epoxy resin and the curing agent. As a curing accelerator, imidazole compound, 1,8-diazabicyclo(5
,4,0) cycloamidine conductors such as undecene (DBU), phosphine derivatives such as triphenylphosphine,
One or more types of tertiary amines are used. The amount of the curing accelerator used is not particularly limited, and is 0.01 to 5 parts by weight, preferably 0.2 to 3 parts by weight, based on the total amount of the epoxy resin and phenol resin.

また、エポキシ樹脂組成物には応力を低下させる目的で
シリコーン系ポリマーや熱可塑性ポリマーを配合するこ
とができ、これらのポリマーの添−加により、熱衝撃テ
ストにおけるパッケージクラックの発生を著しく低下さ
せることが出来る。
Additionally, silicone polymers and thermoplastic polymers can be added to epoxy resin compositions for the purpose of reducing stress, and the addition of these polymers can significantly reduce the occurrence of package cracks in thermal shock tests. I can do it.

シリコーン系ポリマーとしては、例えばエポキシ基、ア
ミノ基、カルボキシル基、水酸基、ヒドロシリル基、ビ
ニル基等を有するシリコーンオイル、シリコーンレジン
、またはシリコーンゴム、更にはこれらシリコーンポリ
マーとフェノールノボラック樹脂。
Examples of silicone-based polymers include silicone oils, silicone resins, or silicone rubbers having epoxy groups, amino groups, carboxyl groups, hydroxyl groups, hydrosilyl groups, vinyl groups, etc., and furthermore, these silicone polymers and phenol novolac resins.

エポキ°ジフェノールノボラック樹脂等の有機重合体と
の共重合体を用いることが出来る。またシリコーンゴム
やゲルの微粉末も使用可能である。
Copolymers with organic polymers such as epoxy diphenol novolac resins can be used. Further, fine powder of silicone rubber or gel can also be used.

熱可塑性樹脂としてはMBS樹脂、ブチラール樹脂、芳
香族ポリエステル樹脂等が代表的なものである。
Typical thermoplastic resins include MBS resin, butyral resin, and aromatic polyester resin.

なお、これら樹脂の配合量は、エポキシ樹脂と硬化剤の
合計量100重量部をご対し1〜50重量部とすること
が好ましい。
The blending amount of these resins is preferably 1 to 50 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and curing agent.

かかるエポキシ樹脂組成物に上記表面処理無機質粒子を
充填剤として配合し得るが、その配合量はエポキシ樹脂
と硬化剤との合計量100重量部に対し表面処理無機質
充填剤を50〜800重量部、望ましくは100〜65
0重量部とすることが好ましく、50重量部未満では、
内部応力を十分に低下させることが出来ない場合があり
、また、800重量部を越えると樹脂の流動性が著しく
低下し、成形出来なくなる場合がある。
The above-mentioned surface-treated inorganic particles may be blended as a filler into such an epoxy resin composition, and the blending amount is 50 to 800 parts by weight of the surface-treated inorganic filler per 100 parts by weight of the total amount of the epoxy resin and curing agent. Desirably 100-65
It is preferable to set it as 0 parts by weight, and if it is less than 50 parts by weight,
It may not be possible to reduce the internal stress sufficiently, and if it exceeds 800 parts by weight, the fluidity of the resin will drop significantly and molding may not be possible.

なお、上記組成物には更に上記した表面処理した無機質
充填剤のほかに、他の充填剤を添加しても良い。これら
充填剤としては未処理の溶融シリカ、結晶シリカ、アル
ミナ、タルク、カオリン、チッ化珪素、窒化アルミ、ボ
ロンナイトライド、ガラス繊維等が代表的なものである
。また、カップリング剤。
In addition to the surface-treated inorganic filler described above, other fillers may be added to the composition. Typical examples of these fillers include untreated fused silica, crystalline silica, alumina, talc, kaolin, silicon nitride, aluminum nitride, boron nitride, and glass fiber. Also a coupling agent.

着色剤、IIII型剤、ハロゲントラップ剤等を適宜配
合しても良い。
A coloring agent, type III agent, halogen trap agent, etc. may be added as appropriate.

これら組成物の混練方法としては、通常ニーダ。The kneading method for these compositions is usually a kneader.

ロールミル、連続混練機を用いれば良く、組成物の成形
法、硬化条件等も常法によることが出来る。
A roll mill or a continuous kneader may be used, and the molding method, curing conditions, etc. of the composition may be conventional methods.

[発明の効果] 本発明の無機質粒子の表面処理方法によれば、無機質粒
子を簡単かつ確実に表面処理することが出来ると共に、
得られた表面処理無機質粒子は熱硬化性樹脂組成物に配
合した場合、優れた耐水性を与えることが出来るもので
ある。
[Effects of the Invention] According to the method for surface treatment of inorganic particles of the present invention, inorganic particles can be easily and reliably surface treated, and
The obtained surface-treated inorganic particles can provide excellent water resistance when incorporated into a thermosetting resin composition.

以下、実施例と比較例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1] 平均粒径13ミクロン、比表面積2.8m2/gの破砕
溶融シリカ15kgをフレットミル(MPV−1,5型
 松本鋳造鉄工断裂)に仕込み、ローラの押圧力を10
6Kg/cm (線圧)、ローラの回転数を31 rp
mに設定し、同時にKBM403 (シランカップリン
グ剤、信越化学工業株式会社製)を23重量%含有する
純水155gを30分毎に添加し、90分間かけて表面
処理した。得られた表面処理品を乾燥し、表面処理シリ
カとした。
[Example 1] 15 kg of crushed fused silica with an average particle size of 13 microns and a specific surface area of 2.8 m2/g was charged into a fret mill (MPV-1, 5 type Matsumoto Cast Iron Works), and the pressing force of the roller was set to 10
6Kg/cm (linear pressure), roller rotation speed 31 rp
At the same time, 155 g of pure water containing 23% by weight of KBM403 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) was added every 30 minutes, and the surface was treated for 90 minutes. The obtained surface-treated product was dried to obtain surface-treated silica.

この表面処理シリカの平均粒径は11ミクロンであり、
ここで得られたシリカの処理度とカップリング剤の付着
強度を確認するため、表面処理後のカーボン量とアセト
ン洗浄後のカーボン量を測定した。その結果は、いずれ
も0.25%であった。また、表面処理シリカLogを
採り、純水50gで抽出した際の抽出水pHは5.1で
あった。
The average particle size of this surface-treated silica is 11 microns,
In order to confirm the degree of treatment of the silica obtained here and the adhesion strength of the coupling agent, the amount of carbon after surface treatment and the amount of carbon after washing with acetone were measured. The results were all 0.25%. Further, the surface-treated silica Log was taken, and when extracted with 50 g of pure water, the pH of the extracted water was 5.1.

なお、KBM403は下記式で示されるγ−グリシドキ
シプロピルトリメトキシシランである。
Note that KBM403 is γ-glycidoxypropyltrimethoxysilane represented by the following formula.

[実施例2〜8] 実施例1と同様の方法で無機質粒子と表面処理剤を表1
で示されるものに変えて表面処理を行った。
[Examples 2 to 8] Inorganic particles and surface treatment agents were prepared in the same manner as in Example 1 as shown in Table 1.
Surface treatment was performed instead of that shown in .

得られた表面処理シリカの平均粒径、カーボン量。Average particle size and carbon content of the surface-treated silica obtained.

抽出水pHを表2に示す。Table 2 shows the pH of the extracted water.

表  I * l :  KBM403    上掲KBM603
 (信越化学工業株式会社製)N H2CH2CH2N
 HCH2CH2CH2S 1 (OCH3)sKMB
103 (信越化学工業株式会社製)KBM13 (信
越化学工業株式会社製)CH,Si (OCH3)3 エポキシシリコーン EP828 (ユカシェルエポキシ社製)エビビスタイ
プエポキシ樹脂 KBM3103 (信越化学工業株式会社製)CHs 
(CH2)7 S i (OCHs )s*2  A:
表面処理剤を水に溶解させた後、処理した。
Table I*l: KBM403 Above KBM603
(Manufactured by Shin-Etsu Chemical Co., Ltd.) N H2CH2CH2N
HCH2CH2CH2S 1 (OCH3)sKMB
103 (manufactured by Shin-Etsu Chemical Co., Ltd.) KBM13 (manufactured by Shin-Etsu Chemical Co., Ltd.) CH, Si (OCH3)3 Epoxy silicone EP828 (manufactured by Yuka Shell Epoxy Co., Ltd.) Ebivis type epoxy resin KBM3103 (manufactured by Shin-Etsu Chemical Co., Ltd.) CHs
(CH2)7 S i (OCHs)s*2 A:
The surface treatment agent was dissolved in water and then treated.

B:表面処理剤と水とを個別に添加して処理した。B: Treatment was performed by adding a surface treatment agent and water separately.

C:水を使用せず、表面処理剤のみを添加して処理した
C: Treatment was performed by adding only a surface treatment agent without using water.

表  2 [比較例1] 平均粒径13ミクロン、比表面積2 、8 m2/ g
の破砕溶融シリカ4Kgを高速撹拌装置(ヘンシェルミ
キサー)に投入し、回転数4000rpmで混合させな
がらスプレーノズルよりKBM403を28g(対シリ
カ0.7重量%)を噴霧、表面処理を行った。ここで得
られた表面処理シリカを実施例1と同じ方法で評価した
。抽出水pHは5.2であった。表面処理後のカーボン
量は0.25%であったが、アセトン洗浄後の測定では
0,18%となった。このことはカップリング剤とシリ
カ表面の結合が不十分であることを示している。
Table 2 [Comparative Example 1] Average particle size 13 microns, specific surface area 2, 8 m2/g
4 kg of crushed fused silica was put into a high-speed stirring device (Henschel mixer), and while mixing at a rotational speed of 4000 rpm, 28 g of KBM403 (0.7% by weight of silica) was sprayed from a spray nozzle to perform surface treatment. The surface-treated silica obtained here was evaluated in the same manner as in Example 1. The pH of the extracted water was 5.2. The amount of carbon after surface treatment was 0.25%, but it was 0.18% when measured after cleaning with acetone. This indicates that the bond between the coupling agent and the silica surface is insufficient.

[比較例2] 平均粒径13ミクロン、比表面積2.8m27gの破砕
溶融シリカIKgをトルエンが2リットル入った容器に
投入し、これにKMB403を30重量%が含有する純
水23gを添加した後、共沸脱水により水を除き、次い
で、トルエンを除去した。トルエン除去後のシリカは凝
集しており、このままでは使用できず、再粉砕が必要な
ものであった。
[Comparative Example 2] Ikg of crushed fused silica with an average particle size of 13 microns and a specific surface area of 2.8m27g was put into a container containing 2 liters of toluene, and 23g of pure water containing 30% by weight of KMB403 was added thereto. , water was removed by azeotropic dehydration, and then toluene was removed. The silica after toluene removal was agglomerated and could not be used as it was, requiring re-pulverization.

[比較例3] 平均粒径13ミクロン、比表面積2.8m2/gの破砕
溶融シリカ10Kgをボールミルに仕込み、KBM40
3を70g添加し、60分ボールミル中で表面処理した
[Comparative Example 3] 10 kg of crushed fused silica with an average particle size of 13 microns and a specific surface area of 2.8 m2/g was charged into a ball mill, and KBM40
70g of No. 3 was added, and the surface was treated in a ball mill for 60 minutes.

処理後シリカを採り出して抽出水pHを測定したら3.
0と酸性を示した。酸性の原因を調査したところ、KB
M403のグリシジル基がメカノケミカル分解し、ギ酸
などの有機酸となっていた。
After the treatment, the silica was taken out and the pH of the extracted water was measured.3.
0, indicating acidity. When investigating the cause of acidity, KB
The glycidyl group of M403 was mechanochemically decomposed to form an organic acid such as formic acid.

[実施例9〜12.比較例4] エポキシ当量200.軟化点65℃のエポキシ化クレゾ
ールノボラック樹脂58部、エポキシ当量280の臭素
化エポキシ化フェノールノボラック樹脂6部、フェノー
ル当fillo、軟化点800Cのフェノールノボラッ
ク樹脂36部、トリフェニルホスフィン0.7部、三酸
化アンチモン10部、カルナバワックス1.5部、γ−
グリシドキシプロピルトリメトキシシラン1.6部、カ
ーボンブラック1部をベースとして使用し、このベース
に表3に示す表面処理無機質充填剤を350部配配合、
80℃のミキシングロールで5分間溶融混合した後、シ
ート状に採り出して冷却し、粉砕してエポキシ樹脂組成
物を作成した。
[Examples 9-12. Comparative Example 4] Epoxy equivalent: 200. 58 parts of epoxidized cresol novolak resin with a softening point of 65°C, 6 parts of brominated epoxidized phenol novolak resin with an epoxy equivalent weight of 280, 36 parts of a phenol novolak resin with a softening point of 800C, 0.7 parts of triphenylphosphine, 10 parts of antimony oxide, 1.5 parts of carnauba wax, γ-
Using 1.6 parts of glycidoxypropyltrimethoxysilane and 1 part of carbon black as a base, 350 parts of the surface-treated inorganic filler shown in Table 3 was added to this base.
After melt-mixing for 5 minutes using a mixing roll at 80° C., the mixture was taken out into a sheet, cooled, and pulverized to prepare an epoxy resin composition.

得られた組成物について、以下の諸試験を行った。結果
を表3に示す。
The following tests were conducted on the obtained composition. The results are shown in Table 3.

(1)スパイラルフロー EMMI規格に準じた金型を使用して175°C,70
Kg/ c m”の条件で測定した。
(1) Using a mold that complies with the spiral flow EMMI standard, the temperature is 175°C, 70°C.
Measured under the condition of "Kg/cm".

(2)曲げ強さ L二L111I JIS  K6911に準じて175°C,70Kg/
c m2.成形条件2分の条件で試験片を作成し、18
0’C/ 4 Hrポストキュアーしたものについて測
定した。
(2) Bending strength L2 L111I 175°C, 70Kg/according to JIS K6911
c m2. A test piece was prepared under the molding conditions of 2 minutes, and
Measurements were made on those post-cured at 0'C/4 Hr.

L二」−豆jULl止 2−1で作成し、ポストキュアーした試験片をPCT(
プレッシャークツ力)中に100時間放置した後、測定
した。
PCT (
Measurements were taken after the test pieces were left in a pressure bath for 100 hours.

(3)吸湿後の半田クラック 175°C、70K g / c m2.成形時間2分
の条件で厚さ2 、7 m mのQFPを成形し、18
0°Cで4時間ポストキュアーした。このパッケージを
35°C/85%RHの雰囲気に24時間放置して吸湿
処理を行った後、これを210°Cの半田浴に10秒浸
せきした。この時に発生するパッケージのクラック発生
不良率を調べた。
(3) Solder crack after moisture absorption 175°C, 70K g/cm2. A QFP with a thickness of 2.7 mm was molded under conditions of a molding time of 2 minutes, and
Post-cure was performed at 0°C for 4 hours. This package was left in an atmosphere of 35°C/85% RH for 24 hours to perform moisture absorption treatment, and then immersed in a solder bath at 210°C for 10 seconds. The defective rate of cracks in the package that occurs at this time was investigated.

表3 表3の結果より、本発明の表面処理法に従って得られた
無機質充填剤を配合したエポキシ樹脂組成物は、吸湿性
が少なく、半田耐クラツク性に優れていることが知見さ
れた。
Table 3 From the results in Table 3, it was found that the epoxy resin composition blended with an inorganic filler obtained according to the surface treatment method of the present invention has low hygroscopicity and excellent solder crack resistance.

Claims (1)

【特許請求の範囲】 1、無機質粒子に表面処理剤を添加し、該粒子表面を該
表面処理剤で表面処理する方法において、上記粒子に外
部から押圧力を与えて該粒子を摩砕すると共に、該摩砕
時に表面処理剤を加え、摩砕粒子表面を該表面処理剤で
表面処理することを特徴とする無機質粒子の表面処理方
法。 2、請求項1で得られた表面処理無機質粒子を配合して
なる熱硬化性樹脂組成物。
[Claims] 1. In a method of adding a surface treatment agent to inorganic particles and treating the surface of the particles with the surface treatment agent, a pressing force is applied to the particles from the outside to grind the particles, and . A method for surface treatment of inorganic particles, which comprises adding a surface treatment agent during the grinding, and treating the surface of the ground particles with the surface treatment agent. 2. A thermosetting resin composition containing the surface-treated inorganic particles obtained in claim 1.
JP2321445A 1990-11-26 1990-11-26 Surface treatment method of inorganic particles and thermosetting resin composition Expired - Fee Related JP3060530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321445A JP3060530B2 (en) 1990-11-26 1990-11-26 Surface treatment method of inorganic particles and thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321445A JP3060530B2 (en) 1990-11-26 1990-11-26 Surface treatment method of inorganic particles and thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPH04198278A true JPH04198278A (en) 1992-07-17
JP3060530B2 JP3060530B2 (en) 2000-07-10

Family

ID=18132639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321445A Expired - Fee Related JP3060530B2 (en) 1990-11-26 1990-11-26 Surface treatment method of inorganic particles and thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP3060530B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228457A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Method for modifying surface of inorganic material, resin composition for molding material and production of silicic polymer therefor
JPH083451A (en) * 1994-06-16 1996-01-09 Tatsumori:Kk Composition containing silica and silicone rubber and its production
JPH0881543A (en) * 1994-09-14 1996-03-26 Toshiba Chem Corp Epoxy resin composition and semiconductor device sealed therewith
JPH0881542A (en) * 1994-09-13 1996-03-26 Toshiba Chem Corp Epoxy resin composition and semiconductor device sealed therewith
JPH08283604A (en) * 1995-04-10 1996-10-29 Merck Japan Kk Surface treating agent, surface-treated flaky pigment and its production
JPH09502466A (en) * 1993-07-06 1997-03-11 ビーエーエスエフ ラッケ ウント ファルベン アクチエンゲゼルシャフト Powder lacquer, outer coating method for metal tubes and use of said powder lacquer for single-layer outer coating of metal tubes
JPH09255849A (en) * 1996-03-26 1997-09-30 Shiaru:Kk Epoxy resin composition for sealing semiconductor
JP2005171208A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Filler and resin composition
JP2005171199A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Slightly basic alumina powdery material, method for producing the same and resin composition
JP2006520258A (en) * 2003-02-06 2006-09-07 ビューラー パルテック ゲーエムベーハー Chemomechanical production of functional colloids
JP2011508809A (en) * 2007-12-26 2011-03-17 スリーエム イノベイティブ プロパティズ カンパニー Removable anti-fog coating, article, coating composition and method
CN103265826A (en) * 2013-06-13 2013-08-28 苏州新区华士达工程塑胶有限公司 Inorganic flame retardant surface modification method
CN103613956A (en) * 2013-11-25 2014-03-05 连云港东海硅微粉有限责任公司 Preparation method of mechanochemical modified silica micropowder
JP2019528326A (en) * 2016-06-14 2019-10-10 中国科学院理化技術研究所 Method for producing hydrophobic inorganic powder material
JP2020117625A (en) * 2019-01-24 2020-08-06 株式会社Adeka Composition and cured product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977641B (en) * 2012-11-09 2014-05-28 河南理工大学 Method for preparing coal slime powder material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228457A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Method for modifying surface of inorganic material, resin composition for molding material and production of silicic polymer therefor
JPH09502466A (en) * 1993-07-06 1997-03-11 ビーエーエスエフ ラッケ ウント ファルベン アクチエンゲゼルシャフト Powder lacquer, outer coating method for metal tubes and use of said powder lacquer for single-layer outer coating of metal tubes
JPH083451A (en) * 1994-06-16 1996-01-09 Tatsumori:Kk Composition containing silica and silicone rubber and its production
JPH0881542A (en) * 1994-09-13 1996-03-26 Toshiba Chem Corp Epoxy resin composition and semiconductor device sealed therewith
JPH0881543A (en) * 1994-09-14 1996-03-26 Toshiba Chem Corp Epoxy resin composition and semiconductor device sealed therewith
JPH08283604A (en) * 1995-04-10 1996-10-29 Merck Japan Kk Surface treating agent, surface-treated flaky pigment and its production
JPH09255849A (en) * 1996-03-26 1997-09-30 Shiaru:Kk Epoxy resin composition for sealing semiconductor
JP2006520258A (en) * 2003-02-06 2006-09-07 ビューラー パルテック ゲーエムベーハー Chemomechanical production of functional colloids
US7989504B2 (en) 2003-02-06 2011-08-02 Buhler Partec Gmbh Chemomechanical production of functional colloids
JP2005171199A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Slightly basic alumina powdery material, method for producing the same and resin composition
JP2005171208A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Filler and resin composition
JP2011508809A (en) * 2007-12-26 2011-03-17 スリーエム イノベイティブ プロパティズ カンパニー Removable anti-fog coating, article, coating composition and method
US10316212B2 (en) 2007-12-26 2019-06-11 3M Innovative Properties Company Removable antifogging coatings, articles, coating compositions, and methods
CN103265826A (en) * 2013-06-13 2013-08-28 苏州新区华士达工程塑胶有限公司 Inorganic flame retardant surface modification method
CN103613956A (en) * 2013-11-25 2014-03-05 连云港东海硅微粉有限责任公司 Preparation method of mechanochemical modified silica micropowder
CN103613956B (en) * 2013-11-25 2016-02-03 江苏联瑞新材料股份有限公司 The preparation method of mechanical-chemical modification silicon powder
JP2019528326A (en) * 2016-06-14 2019-10-10 中国科学院理化技術研究所 Method for producing hydrophobic inorganic powder material
JP2020117625A (en) * 2019-01-24 2020-08-06 株式会社Adeka Composition and cured product

Also Published As

Publication number Publication date
JP3060530B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
EP0685508B1 (en) Curable resin compositions containing silica-coated microparticles of a cured organosiloxane composition
JPH04198278A (en) Method of surface treatment of inorganic particle, and thermosetting resin composition
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
EP0384774B1 (en) Semiconductor device encapsulant
JP4053152B2 (en) Thermosetting resin composition and semiconductor device thereof
JP2006233149A (en) Resin composition for sealing low-dielectric film forming element and semiconductor apparatus
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4066174B2 (en) Liquid epoxy resin composition, flip chip type semiconductor device and sealing method thereof
JP4264991B2 (en) Thermosetting resin composition and semiconductor device
US6372839B1 (en) Flip-chip type semiconductor device underfill
JPH06345847A (en) Epoxy resin composition and semiconductor device
JP2005171206A (en) Powdery mixture for blending with resin, and resin composition
JP3111819B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JP4557148B2 (en) Liquid epoxy resin composition and semiconductor device
JP2010111747A (en) Underfill agent composition
JP3451732B2 (en) Resin composition
US20050152773A1 (en) Liquid epoxy resin composition and semiconductor device
JP5354721B2 (en) Underfill agent composition
JPH0496929A (en) Epoxy resin composition and semiconductor device
JP3674675B2 (en) Underfill material for flip chip type semiconductor devices
JP4729778B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JPS59197421A (en) Curable epoxy resin composition
JP2006143775A (en) Liquid epoxy resin composition and semiconductor device having low- dielectric constant interlaminar electrical insulation film
JP2008222961A (en) Liquid epoxy resin composition and flip-chip semiconductor device
JP4618407B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees