JPH04196255A - Semiconductor chip carrier - Google Patents

Semiconductor chip carrier

Info

Publication number
JPH04196255A
JPH04196255A JP2326754A JP32675490A JPH04196255A JP H04196255 A JPH04196255 A JP H04196255A JP 2326754 A JP2326754 A JP 2326754A JP 32675490 A JP32675490 A JP 32675490A JP H04196255 A JPH04196255 A JP H04196255A
Authority
JP
Japan
Prior art keywords
heat
insulating substrate
heat dissipation
semiconductor chip
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2326754A
Other languages
Japanese (ja)
Other versions
JPH06103724B2 (en
Inventor
Koji Minami
浩司 南
Akitsugu Maeda
晃嗣 前田
Masaharu Ishikawa
正治 石川
Takeshi Kano
武司 加納
Toru Higuchi
徹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2326754A priority Critical patent/JPH06103724B2/en
Publication of JPH04196255A publication Critical patent/JPH04196255A/en
Publication of JPH06103724B2 publication Critical patent/JPH06103724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable the heat generated by a semiconductor chip to be efficiently dissipated by a heat dissipating layer by a method wherein a heat dissipating recession 5 is perforated into an insulating substrate from the surface thereof to a metallic plate so as to form the heat transfer layers on the periphery of the heat dissipating recession as well as a heat dissipating layer connecting to the heat transfer layers on the surface of the insulating substrate. CONSTITUTION:A heat dissipating recession 5 is perforated into an insulating substrate 1 from the surface thereof to a metallic plate 2 so as to form the heat transfer layers 6 on the inner periphery of the heat dissipating recession 5 as well as a heat dissipating layer 7 connecting to the heat transfer layers 6. Accordingly, the heat absorbed from a semiconductor chip 4 can be transferred from the heat transfer layers 6 in the heat dissipating recession 5 to the heat dissipating layer 7 on the surface of the insulating substrate 1 to be dissipated by the heat dissipating layer 7. Through these procedures, the title semiconductor chip carrier having excellent heat dissipating capacity can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、熱放散型の半導体チップキャリアに関するも
のである。
The present invention relates to a heat-dissipating semiconductor chip carrier.

【従来の技術】[Conventional technology]

半導体の高密度化や高出力化などに伴って、半導体チッ
プからの発熱が高くなっており、半導体チップを実装す
る半導体チップキャリアとして、半導体チップの発熱を
放熱することができるものが要求されている。 このために、基体となる絶縁基板内に金属板を埋め込ん
で設け、半導体チップから発生する熱をこの金属板に吸
熱させ、そして金属板から放熱させるようにした熱放散
型の半導体チップキャリアが各種提供されている。
As semiconductors become more dense and output, the amount of heat generated from semiconductor chips is increasing, and there is a need for semiconductor chip carriers that can radiate the heat generated by semiconductor chips. There is. To this end, there are various heat dissipation type semiconductor chip carriers in which a metal plate is embedded in an insulating substrate that serves as a base, and the heat generated from the semiconductor chip is absorbed by the metal plate and then radiated from the metal plate. provided.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし絶縁基板内に金属板を埋め込んで形成される半導
体チップキャリアにあって、金属板は絶縁基板内に設け
られているために金属板から熱を効率良く放散させるこ
とが困難であるという問題があった。 本発明は上記の点に鑑みて為されたものであり、放熱を
効率良くおこなわせることができる半導体チップキャリ
アを提供することを目的とするものである。
However, semiconductor chip carriers that are formed by embedding a metal plate within an insulating substrate have a problem in that it is difficult to efficiently dissipate heat from the metal plate because the metal plate is provided within the insulating substrate. there were. The present invention has been made in view of the above points, and it is an object of the present invention to provide a semiconductor chip carrier that can efficiently dissipate heat.

【課題を解決するための手段】[Means to solve the problem]

本発明に係る半導体チップキャリアは、絶縁基板1内に
金属板2を埋設し、絶縁基板1に金属板2が底面となる
キャビティ凹所3を設けてこのキャビティ凹所3に半導
体チップ4を実装し、絶縁基板1に表面から金属板2に
至る放熱四部5を穿設し、放熱凹部5の内周に伝熱層6
を形成すると共に絶縁基板1の表面に伝熱層6と連続す
る放熱層7を形成して成ることを特徴とするものである
The semiconductor chip carrier according to the present invention includes a metal plate 2 buried in an insulating substrate 1, a cavity recess 3 whose bottom surface is the metal plate 2, and a semiconductor chip 4 mounted in the cavity recess 3. Four heat dissipating parts 5 are formed in the insulating substrate 1 from the surface to the metal plate 2, and a heat transfer layer 6 is provided on the inner periphery of the heat dissipating recess 5.
It is characterized by forming a heat dissipation layer 7 continuous with the heat transfer layer 6 on the surface of the insulating substrate 1.

【作 用】[For use]

本発明にあっては、絶縁基板1に表面から金属板2に至
る放熱凹部5を穿設し、放熱凹部5の内周に伝熱層6を
形成すると共に絶縁基板1の表面に伝熱層6と連続する
放熱層7を形成するようにしているために、半導体チッ
プ4から金属板2に吸収された熱は放熱凹部5の伝熱層
6から絶縁基板1の表面の放熱層7に伝導され、放熱層
7から放熱される。
In the present invention, a heat dissipation recess 5 is formed in the insulating substrate 1 from the surface to the metal plate 2, and a heat transfer layer 6 is formed on the inner periphery of the heat dissipation recess 5. Since the heat dissipation layer 7 is formed continuous with the heat dissipation layer 6, the heat absorbed from the semiconductor chip 4 into the metal plate 2 is conducted from the heat transfer layer 6 of the heat dissipation recess 5 to the heat dissipation layer 7 on the surface of the insulating substrate 1. The heat is dissipated from the heat dissipation layer 7.

【実施例】【Example】

以下本発明を実施例によって詳述する。 絶縁基板1は、銅箔を積層したエポキシ樹脂積層板など
の銅張り積層板を加工して得られるプリント配線板等に
よって作成されるものであり、第1図(a)に示すよう
に絶縁基板1内にはアルミニウムや銅など熱伝導性の良
好な金属板2が埋設しである。この金属板2は絶縁基板
1を構成する積層板を成形する際に同時に埋入させるこ
とができる。この絶縁基板1の下面には金属板2の面積
よりも小さい面積でキャビティ凹所3が設けてあり、キ
ャビティ凹所3の底面は金属板2によって形成されるよ
うにしである。また絶縁基板1の下面にはキャビティ凹
所3を中心に放射状に複数本の回路く図示省略)が銅箔
のエツチング加工などで作成しである。ICチップなど
半導体チップ4はキャビティ凹所3内において金属板2
の表面に実装されるものであり、半導体チップ4の外部
接続端子部と回路の一端部との間に金線などのワイヤー
11をボンディングして半導体チップ4を回路に接続し
である。絶縁基板1にはさらに複数本の端子12.12
・・・がその下面から突出するように基部を絶縁基板1
に埋入して取り付けてあって、各端子12は回路の他端
部に接続してあり、半導体チップ4は回路を介して端子
12に接続されるようにしである。 一方、絶縁基板1の上面にはドリル加工や座ぐり加工な
どで細孔形状に放熱凹部5,5・・・が穿設しである。 各放熱凹部5,5・・・は下端が金属板2に至るように
形成されるものであり、第1図(b)に示すように縦横
に配列して多数段けである。放熱凹部5は縦断面形状を
第2図(a)のように矩形にしたり、第2図(b Hc
 )のように楔形にしたり、第2図(d)のように半円
形にしたりして形成することができる。そして各放熱凹
部5,5・・・の内周には金属板2の表面も含めて伝熱
層6が形成してあり、また絶縁基板1の放熱凹部5を設
けた側の表面に放熱層7が形成してあり、この伝熱層6
と放熱層7とは一体に連続するように形成しである。放
熱層7は絶縁基板1の表面(放熱層7を形成した面)の
面積の30%以上の面積で形成するのが好ましい、上限
は特にないが、実用的には95%である。これら伝熱層
6や放熱ffl7は銅などの金属をメツキしたりして形
成することができる上記のようにして作成される半導体
チップキャリアにあって、半導体チップ4から発熱され
た熱は金属板2に吸熱され、さらに金属板2から放熱凹
部の伝熱層6を伝って絶縁基板1の表面の放熱層7に伝
熱され、放熱層7から外部に放熱されるものである。ま
た放熱層7の表面にヒートシンク13を接合して取り付
けて、放熱層7からさらにヒートシンク13に伝熱して
ヒートシンク]3から放熱させるようにすることも可能
である。 第3図は本発明の他の実施例を示すものであり、金属板
2を絶縁基板1のほぼ全面に埋設するようにしであるに
のものでは金属板2と端子12との間の絶縁を確保する
ために、金属板2に貫通孔14を設けてこの貫通孔14
内に端子12が通されるようにしである。 第4図(a Hb )の実施例では、放熱凹部5を環状
の渭5aとして形成してあり、放熱層7は絶縁基板1の
上面のほぼ全面に亙るように形成しである。第5図の実
施例では放熱凹部5を細長い渭5bとして形成しである
。また上記各実施例では、半導体チップ4を実装するキ
ャビティ凹所3を設けた側と反対側の面において絶縁基
板1に放熱凹部5を形成すると共に伝熱層6と放熱層7
とを形成するようにしたが、第6図に示すように、キャ
ビティ凹所3を設けた側の面において絶縁基板1に放熱
凹部5を形成すると共に伝熱層6と放熱層7とを形成す
るようにすることもできる。 上記各実施例における半導体チップキャリアはPGAタ
イプであるが、第7図(a )(b )に示す実施例や
第8図に示す実施例のようにQFPタイプに形成するこ
ともできる。 さらに、放熱凹部5を第9図(a )(b )のように
広い面積で形成することも可能である。しかしこの場合
には放熱四部5が広過ぎてヒートシンク13を取り付け
ることができない場合がある。また第10図のように、
金属板2に伝熱用金属板15を熱伝導性接着剤16で貼
り付けることによって放熱凹部5が形成されるようにす
ることもできる。しかしこの場合は製造コストが問題に
なる。 次ぎに具体例で放熱効果を実証する。 ニー例」2 第1図に示す半導体チップキャリアにおいて、放熱凹部
5を孔径Q、6mm、個数52個に設定して設け、放熱
層7をその面積を絶縁基板1の外形面積の30%に設定
して設け、キャビティ凹所3に2SD−1580パワー
トランジスタ(ローム社製)を実装して液状エポキシ樹
脂で封止した二輿l 放熱凹部5を孔径0.8mm、個数40個に設定して設
けた他は例1と同じ。 二叢ユ 放熱凹部5を孔径1.2mm、個数24個に設定して設
けた他は例1と同し。 一桝A 放熱凹部5を孔径1.2mm、個数24個に設定して設
け、放熱層7をその面積を絶縁基板1の外形面積の90
%に設定して設けた他は例1と同じ。 二鮭旦 第9図に示す半導体チップキャリアにおいて、放熱凹部
5を15mmX15mmの平面大きさて設け、例1と同
様にパワートランジスタを実装した。 I−凹j 第10図に示す半導体チップキャリアにおいて、金属板
2に15mmX15mmX0.3mmの銅の伝熱用金属
板15を接着し、例1と同様にパワートランジスタを実
装した。 上記例1〜例6の半導体チップキャリアを無風状態、風
速l m / s 、風速3m/s、風速5m/Sの状
態に置いて、パワートランジスタにIWの電力をかけ続
けて発熱させ、一定温度に飽和したところで熱抵抗測定
機(Kuwano E!ectrical Instr
uments社製)によって熱抵抗値を測定した。結果
を次表に示す。 表にみられるように、第1図の半導体チップキャリアに
係る例1〜例4のものにおいて特に良好な結果が得られ
る。
The present invention will be explained in detail below with reference to Examples. The insulating substrate 1 is made of a printed wiring board or the like obtained by processing a copper-clad laminate such as an epoxy resin laminate laminated with copper foil, and as shown in FIG. A metal plate 2 having good thermal conductivity, such as aluminum or copper, is buried in the interior of the metal plate 1 . This metal plate 2 can be embedded simultaneously when forming the laminated plate constituting the insulating substrate 1. A cavity recess 3 is provided on the lower surface of the insulating substrate 1 with an area smaller than the area of the metal plate 2, and the bottom surface of the cavity recess 3 is formed by the metal plate 2. Further, on the lower surface of the insulating substrate 1, a plurality of circuits (not shown) are formed radially around the cavity recess 3 by etching copper foil. A semiconductor chip 4 such as an IC chip is placed in the metal plate 2 in the cavity recess 3.
The semiconductor chip 4 is connected to the circuit by bonding a wire 11 such as a gold wire between the external connection terminal portion of the semiconductor chip 4 and one end of the circuit. The insulating substrate 1 further includes a plurality of terminals 12.12.
... is protruded from the bottom surface of the insulating substrate 1.
Each terminal 12 is connected to the other end of the circuit, and the semiconductor chip 4 is connected to the terminal 12 via the circuit. On the other hand, on the upper surface of the insulating substrate 1, heat dissipation recesses 5, 5, . Each of the heat dissipation recesses 5, 5, . . . is formed so that its lower end reaches the metal plate 2, and as shown in FIG. 1(b), it is arranged vertically and horizontally in multiple stages. The heat dissipation recess 5 may have a rectangular longitudinal cross-sectional shape as shown in FIG.
It can be formed into a wedge shape as shown in ) or a semicircle as shown in FIG. 2(d). A heat transfer layer 6 is formed on the inner periphery of each heat dissipation recess 5, 5, etc., including the surface of the metal plate 2, and a heat dissipation layer 6 is formed on the surface of the insulating substrate 1 on the side where the heat dissipation recess 5 is provided. 7 is formed, and this heat transfer layer 6
and the heat dissipation layer 7 are formed so as to be integral and continuous. The heat dissipation layer 7 is preferably formed in an area that is 30% or more of the area of the surface of the insulating substrate 1 (the surface on which the heat dissipation layer 7 is formed). Although there is no particular upper limit, it is practically 95%. These heat transfer layer 6 and heat dissipation ffl7 can be formed by plating metal such as copper. 2, the heat is further transferred from the metal plate 2 through the heat transfer layer 6 of the heat dissipation recess to the heat dissipation layer 7 on the surface of the insulating substrate 1, and the heat is radiated to the outside from the heat dissipation layer 7. It is also possible to bond and attach a heat sink 13 to the surface of the heat dissipation layer 7 so that heat is further transferred from the heat dissipation layer 7 to the heat sink 13 and radiated from the heat sink 3. FIG. 3 shows another embodiment of the present invention, in which the metal plate 2 is embedded almost over the entire surface of the insulating substrate 1, in which the insulation between the metal plate 2 and the terminal 12 is removed. In order to ensure this, a through hole 14 is provided in the metal plate 2.
The terminal 12 is passed through the inside. In the embodiment shown in FIG. 4 (a Hb ), the heat dissipation recess 5 is formed as an annular edge 5a, and the heat dissipation layer 7 is formed to cover almost the entire upper surface of the insulating substrate 1. In the embodiment shown in FIG. 5, the heat radiation recess 5 is formed as an elongated arm 5b. Further, in each of the above embodiments, the heat dissipation recess 5 is formed in the insulating substrate 1 on the side opposite to the side where the cavity recess 3 for mounting the semiconductor chip 4 is provided, and the heat transfer layer 6 and the heat dissipation layer 7 are formed in the insulating substrate 1.
However, as shown in FIG. 6, a heat dissipation recess 5 is formed in the insulating substrate 1 on the side where the cavity recess 3 is provided, and a heat transfer layer 6 and a heat dissipation layer 7 are formed. You can also do this. Although the semiconductor chip carrier in each of the above embodiments is of the PGA type, it can also be formed of the QFP type as in the embodiment shown in FIGS. 7(a) and 8(b) and the embodiment shown in FIG. Furthermore, it is also possible to form the heat dissipation recess 5 with a wide area as shown in FIGS. 9(a) and 9(b). However, in this case, the heat sink 13 may not be able to be attached because the heat dissipating portion 5 is too wide. Also, as shown in Figure 10,
The heat dissipation recess 5 can also be formed by attaching the heat transfer metal plate 15 to the metal plate 2 with a thermally conductive adhesive 16. However, in this case, manufacturing cost becomes an issue. Next, the heat dissipation effect will be demonstrated with a specific example. Knee Example 2 In the semiconductor chip carrier shown in FIG. 1, heat dissipation recesses 5 are provided with a hole diameter Q of 6 mm and a number of 52, and the area of the heat dissipation layer 7 is set to 30% of the external area of the insulating substrate 1. A 2SD-1580 power transistor (manufactured by ROHM Co., Ltd.) was mounted in the cavity recess 3 and sealed with liquid epoxy resin.The heat dissipation recess 5 was set to have a hole diameter of 0.8 mm and a number of 40 pieces. The rest is the same as Example 1. The same as Example 1 except that the two-row heat dissipation recesses 5 were provided with a hole diameter of 1.2 mm and a number of 24 pieces. One square A Heat dissipation recesses 5 with a hole diameter of 1.2 mm and a number of 24 are provided, and the heat dissipation layer 7 has an area of 90% of the external area of the insulating substrate 1.
It is the same as Example 1 except that it is set to %. In the semiconductor chip carrier shown in FIG. 9, a heat dissipation recess 5 was provided with a planar size of 15 mm x 15 mm, and a power transistor was mounted in the same manner as in Example 1. I-Concave j In the semiconductor chip carrier shown in FIG. 10, a 15 mm x 15 mm x 0.3 mm copper heat transfer metal plate 15 was adhered to the metal plate 2, and a power transistor was mounted in the same manner as in Example 1. The semiconductor chip carriers of Examples 1 to 6 above were placed in a state of no wind, a wind speed of 1 m/s, a wind speed of 3 m/s, and a wind speed of 5 m/s, and the power transistor was continuously applied with IW power to generate heat to maintain a constant temperature. When the temperature is saturated, the thermal resistance measuring machine (Kuwano E! electrical Instr.
The thermal resistance value was measured using a method (manufactured by Uments Co., Ltd.). The results are shown in the table below. As seen in the table, particularly good results are obtained in Examples 1 to 4 of the semiconductor chip carrier shown in FIG.

【発明の効果】【Effect of the invention】

上述のように本発明にあっては、絶縁基板に表面から金
属板に至る放熱凹部を穿設し、放熱凹部の内周に伝熱層
を形成すると共に絶縁基板の表面に伝熱層と連続する放
熱層を形成するようにしたので、半導体チップから金属
板に吸収された熱は放熱凹部の伝熱層から絶縁基板の表
面の放熱層に伝導されることになり、絶縁基板の表面に
おいて放熱層から良好に放熱させることができるもので
ある。
As described above, in the present invention, a heat dissipation recess is formed in the insulating substrate from the surface to the metal plate, a heat transfer layer is formed on the inner periphery of the heat dissipation recess, and a heat transfer layer is formed on the surface of the insulating substrate that is continuous with the heat transfer layer. As a result, the heat absorbed from the semiconductor chip into the metal plate is conducted from the heat transfer layer in the heat radiation recess to the heat radiation layer on the surface of the insulating substrate, and the heat is radiated on the surface of the insulating substrate. This allows for good heat dissipation from the layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a Hb )は本発明の一実施例の断面図と平
面図、第2図(a)乃至(d)は同上の一部の拡大した
断面図、第3図は同上の他の実施例の断面図、第4図(
a )(b )は同上のさらに他の実施例の断面図と平
面図、第5図はさらに他の実施例の平面図、第6図はさ
らに他の実施例の断面図、第7図(a )(b )はさ
らに他の実施例の断面図と平面図、第8図はさらに他の
実施例の断面図、第9図(a>(b)はさらに他例の断
面図と平面図、第10図はさらに他例の断面図である。 1は絶縁基板、2は金属板、3はキャビティ凹所、4は
半導体チップ、5は放熱凹部、6は伝熱層、7は放熱層
である。
FIG. 1 (a Hb) is a sectional view and a plan view of one embodiment of the present invention, FIGS. 2 (a) to (d) are enlarged sectional views of a part of the same, and FIG. Cross-sectional view of the embodiment, Fig. 4 (
a) and (b) are a sectional view and a plan view of still another embodiment same as the above, FIG. 5 is a plan view of still another embodiment, FIG. 6 is a sectional view of still another embodiment, and FIG. a) and (b) are a cross-sectional view and a plan view of yet another embodiment, FIG. 8 is a cross-sectional view of yet another embodiment, and FIG. 9 (a>(b) is a cross-sectional view and a plan view of yet another embodiment). , FIG. 10 is a sectional view of still another example. 1 is an insulating substrate, 2 is a metal plate, 3 is a cavity recess, 4 is a semiconductor chip, 5 is a heat dissipation recess, 6 is a heat transfer layer, and 7 is a heat dissipation layer. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板内に金属板を埋設し、絶縁基板に金属板
が底面となるキャビティ凹所を設けてこのキャビティ凹
所に半導体チップを実装し、絶縁基板に表面から金属板
に至る放熱凹部を穿設し、放熱凹部の内周に伝熱層を形
成すると共に絶縁基板の表面に伝熱層と連続する放熱層
を形成して成ることを特徴とする半導体チップキャリア
。(2)放熱凹部を細孔状に形成すると共に絶縁基板に
多数個設けることを特徴とする請求項1に記載の半導体
チップキャリア。
(1) A metal plate is buried in an insulating substrate, a cavity recess is provided in the insulating substrate with the metal plate as the bottom surface, a semiconductor chip is mounted in this cavity recess, and a heat dissipation recess is formed in the insulating substrate from the surface to the metal plate. 1. A semiconductor chip carrier characterized in that a heat transfer layer is formed on the inner periphery of a heat dissipation recess, and a heat dissipation layer continuous with the heat transfer layer is formed on the surface of an insulating substrate. (2) The semiconductor chip carrier according to claim 1, wherein the heat dissipation recesses are formed in the shape of pores and a plurality of heat dissipation recesses are provided on the insulating substrate.
JP2326754A 1990-11-27 1990-11-27 Semiconductor chip carrier Expired - Lifetime JPH06103724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326754A JPH06103724B2 (en) 1990-11-27 1990-11-27 Semiconductor chip carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326754A JPH06103724B2 (en) 1990-11-27 1990-11-27 Semiconductor chip carrier

Publications (2)

Publication Number Publication Date
JPH04196255A true JPH04196255A (en) 1992-07-16
JPH06103724B2 JPH06103724B2 (en) 1994-12-14

Family

ID=18191314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326754A Expired - Lifetime JPH06103724B2 (en) 1990-11-27 1990-11-27 Semiconductor chip carrier

Country Status (1)

Country Link
JP (1) JPH06103724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295877A (en) * 2008-06-06 2009-12-17 Koa Corp Resistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210851A (en) * 1989-02-10 1990-08-22 Matsushita Electric Works Ltd Semiconductor chip carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210851A (en) * 1989-02-10 1990-08-22 Matsushita Electric Works Ltd Semiconductor chip carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295877A (en) * 2008-06-06 2009-12-17 Koa Corp Resistor

Also Published As

Publication number Publication date
JPH06103724B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US9911715B2 (en) Three-dimensional package structure and the method to fabricate thereof
US5650662A (en) Direct bonded heat spreader
US6002169A (en) Thermally enhanced tape ball grid array package
EP1374305B1 (en) Enhanced die-down ball grid array and method for making the same
USRE42653E1 (en) Semiconductor package with heat dissipating structure
US6201300B1 (en) Printed circuit board with thermal conductive structure
US5598031A (en) Electrically and thermally enhanced package using a separate silicon substrate
EP3051584A1 (en) Heat spreader with down set leg attachment feature
JPH0917919A (en) Semiconductor device
JPH08139477A (en) Printed-wiring board device
JP2770947B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
US6437984B1 (en) Thermally enhanced chip scale package
US6057594A (en) High power dissipating tape ball grid array package
JPH03174749A (en) Semiconductor device
CN210379025U (en) Power device packaging structure
JPH04196255A (en) Semiconductor chip carrier
JPS61287194A (en) Chip carrier for electronic element
JPS6239032A (en) Chip carrier for electronic element
JPH05343607A (en) Hybrid integrated circuit device
KR20010057046A (en) Package substrate having cavity
JPH0555398A (en) Semiconductor device
JP2001028410A (en) Semiconductor package and semiconductor device
JPH08172142A (en) Semiconductor package, its manufacturing method, and semiconductor device
JPH0878616A (en) Multi-chip module
JPH04124860A (en) Semiconductor package