JPH0417806B2 - - Google Patents

Info

Publication number
JPH0417806B2
JPH0417806B2 JP59252178A JP25217884A JPH0417806B2 JP H0417806 B2 JPH0417806 B2 JP H0417806B2 JP 59252178 A JP59252178 A JP 59252178A JP 25217884 A JP25217884 A JP 25217884A JP H0417806 B2 JPH0417806 B2 JP H0417806B2
Authority
JP
Japan
Prior art keywords
wheel
slip ratio
wheels
driving force
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59252178A
Other languages
Japanese (ja)
Other versions
JPS61132421A (en
Inventor
Masaji Oowada
Shuji Torii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59252178A priority Critical patent/JPS61132421A/en
Publication of JPS61132421A publication Critical patent/JPS61132421A/en
Publication of JPH0417806B2 publication Critical patent/JPH0417806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は機関により前輪および後輪の双方が
駆動可能な前後輪駆動車の駆動力制御装置に係
り、詳しくは、クラツチ手段を介して動力伝達さ
れる車輪に対する直接的に動力伝達される車輪の
スリツプ比が目標値(目標スリツプ比)になるよ
う前輪または後輪への伝達トルクを制御して大き
な駆動力を得る駆動力制御装置に関する。
Detailed Description of the Invention (Industrial Application Field) This invention relates to a drive force control device for a front and rear wheel drive vehicle in which both front and rear wheels can be driven by an engine. The present invention relates to a driving force control device that obtains a large driving force by controlling the transmission torque to a front wheel or a rear wheel so that the slip ratio of a wheel to which power is directly transmitted to a wheel to which power is directly transmitted becomes a target value (target slip ratio).

(従来の技術) 車両は、その全体として得ることができる駆動
力(全駆動力)が各駆動車輪が発揮する駆動力の
総和である。このため、前輪および後輪の双方を
機関により駆動して走行することができる作業車
あるいは4輪駆動車等の前後輪駆動車にあつて
は、発進あるいは加速時等の大きな駆動力を必要
とする場合に、前輪あるいは後輪の一方を駆動し
て走行する少数輪駆動走行から前輪および後輪の
双方を駆動して走行する多数輪駆動走行へ移行さ
せて大きな駆動力を得るものがあり、従来、この
ような前後輪駆動車の駆動力制御装置として、特
開昭55−148622号公報、特開昭58−56919号公報
および特開昭58−56921号公報等に記載されたよ
うなものが知られている。
(Prior Art) The driving force (total driving force) that can be obtained as a whole of a vehicle is the sum of the driving forces exerted by each drive wheel. For this reason, front and rear wheel drive vehicles such as work vehicles or four-wheel drive vehicles that can drive both the front and rear wheels by an engine require large driving force when starting or accelerating. When doing so, there are some vehicles that obtain a large driving force by shifting from a small number wheel drive running by driving one of the front wheels or the rear wheels to a multi wheel drive running by driving both the front wheels and the rear wheels. Conventionally, as a driving force control device for such a front and rear wheel drive vehicle, devices such as those described in JP-A-55-148622, JP-A-58-56919, JP-A-58-56921, etc. It has been known.

例えば、特開昭55−148622号公報に記載された
前後輪駆動車の駆動力制御装置は、少数の車輪を
駆動して走行する小数輪駆動走行時に駆動車輪が
対地スリツプを生じると、より多数の車輪を駆動
して走行する多数輪駆動走行へ移行させて大きな
駆動力を得るものであり、また、特開昭58−
56919号公報に記載された前後輪駆動車の駆動力
制御装置は、4輪駆動車に適用されるものであつ
て、車両の停止時や発進時に所定の時間が経過す
るまで車輪および後輪を駆動する4輪駆動走行を
維持し、発進時に大きな駆動力を得るものであ
る。
For example, the driving force control device for a front and rear wheel drive vehicle described in Japanese Patent Application Laid-Open No. 55-148622 is designed to control the driving force of a front and rear wheel drive vehicle. This system obtains a large driving force by shifting to multi-wheel drive, in which the wheels of the vehicle are driven.
The driving force control device for a front and rear wheel drive vehicle described in Publication No. 56919 is applied to a four-wheel drive vehicle, and controls the wheels and rear wheels until a predetermined time elapses when the vehicle is stopped or started. It maintains four-wheel drive driving and obtains a large driving force when starting.

(この発明が解決しようとする問題点) しかしながら、このような従来の前後輪駆動車
の駆動力制御装置にあつては、発進時等の大きな
駆動力を必要とする場合に、小数輪駆動走行から
多数輪駆動走行へ単に移行させるにすぎず、機関
の出力と駆動車輪のグリツプ力との関係を考慮し
ていないため、走行路面の摩擦係数μ等によつて
は必ずしも大きな駆動力を得ることができないと
いう問題点があつた。すなわち、車両が得ること
のできる全駆動力は当然に機関の出力トルクおよ
び駆動車輪のグリツプ力に制約されるが、例えば
一般的な4輪駆動車による乾燥コンクリート路面
等の高摩擦係数(μ=0.8、程度)の路面上での
走行を想定して機関の出力トルクTEを2輪駆動
走行時のグリツプ力G2と4輪駆動走行時のグリ
ツプ力G4と比較すると、次式のような関係で表
される。
(Problems to be Solved by the Invention) However, in the case of such a conventional driving force control device for a front and rear wheel drive vehicle, when a large driving force is required such as at the time of starting, it is difficult to control the driving force when driving in small wheel drive. It simply transitions from to multi-wheel drive driving, and does not take into account the relationship between the engine output and the grip force of the drive wheels, so it may not necessarily be possible to obtain a large driving force depending on the friction coefficient μ of the road surface, etc. There was a problem that it was not possible. In other words, the total driving force that a vehicle can obtain is naturally limited by the output torque of the engine and the grip force of the drive wheels. Assuming that the engine is running on a road surface with a speed of 0.8 , approximately It is expressed as a relationship.

G4>TE>G2 このため、車両は、発進あるいは加速時等の大
きな駆動力を必要とする場合に、機関を出力トル
クTEが最大となる回転数に維持しても、4輪駆
動走行へ移行する際に4輪のグリツプ力G4が機
関の過大な負荷となつて機関の出力が低下するこ
とがあり、結果的に大きな全駆動力を得ることが
できない。
G 4 > T E > G 2 Therefore, when a vehicle requires a large driving force such as when starting or accelerating, even if the engine is maintained at the rotation speed that maximizes the output torque T E , the four wheels When shifting to drive running, the grip force G4 of the four wheels may become an excessive load on the engine, resulting in a decrease in engine output, and as a result, a large total driving force cannot be obtained.

一方、上述のような場合に、車両が2輪駆動走
行を継続すれば、機関の出力トルクTEを増大さ
せると車両の全駆動力は駆動する2輪のグリツプ
力G2を超えて、駆動する2輪がスピン(高速空
転)と称せられる対地スリツプを発生してしま
う。
On the other hand, in the case described above, if the vehicle continues to run in two-wheel drive, increasing the output torque T E of the engine will cause the vehicle's total driving force to exceed the grip force G 2 of the two driving wheels. This causes the two wheels to slip on the ground, which is called spin (high-speed spinning).

(問題点を解決するための手段) この発明にかかる前後輪駆動車の駆動力制御装
置は、上述した従来の問題点を鑑みてなされたも
ので、第1図に示すように、機関11と前輪12
との間の動力伝達系及び機関11と後輪13との
間の動力伝達系の内、一方は直接的に動力伝達
し、他方は伝達トルクを変更可能なクラツチ手段
14を介して動力伝達する様に設定した前後輪駆
動車において、前輪12の回転速度を検出する前
輪回転速度検知器15と、後輪13の回転速度を
検出する後輪回転速度検知器16と、前輪回転速
度検知器15と後輪回転速度検知器16の出力信
号に基づいてクラツチ手段14を介して動力伝達
される車輪例えば前輪12に対する直接的に動力
伝達される車輪例えば後輪13のスリツプ比を算
出するスリツプ比算出手段17と、直接的に動力
伝達される車輪例えば後輪13の駆動力係数が最
大値近辺領域となる目標スリツプ比を決定する目
標スリツプ比決定手段18と、スリツプ比算出手
段17と目標スリツプ比決定手段18の出力信号
に基づいてクラツチ手段14を制御し、クラツチ
手段14を介して動力伝達される車輪例えば前輪
12に対する直接的に動力伝達される車輪例えば
後輪13のスリツプ比が目標スリツプ比になるよ
うクラツチ手段14の伝達トルクを変更する制御
手段19と、を有している。
(Means for Solving the Problems) The driving force control device for a front and rear wheel drive vehicle according to the present invention has been made in view of the above-mentioned conventional problems, and as shown in FIG. front wheel 12
Of the power transmission system between the engine 11 and the rear wheel 13, one transmits power directly, and the other transmits power through a clutch means 14 that can change the transmission torque. In a front and rear wheel drive vehicle set as shown in FIG. and a slip ratio calculation for calculating the slip ratio of a wheel to which power is directly transmitted, for example, the rear wheel 13, to a wheel, for example, the front wheel 12, to which power is transmitted via the clutch means 14, based on the output signal of the rear wheel rotational speed detector 16. means 17, target slip ratio determining means 18 for determining a target slip ratio at which the driving force coefficient of a wheel to which power is directly transmitted, such as the rear wheel 13, is in the vicinity of the maximum value, slip ratio calculating means 17, and target slip ratio. The clutch means 14 is controlled based on the output signal of the determining means 18, and the slip ratio of the wheel to which power is directly transmitted, for example, the rear wheel 13, to the wheel, for example, the front wheel 12, to which power is transmitted via the clutch means 14 is set to the target slip ratio. control means 19 for changing the transmission torque of the clutch means 14 so that

(作用) この発明にかかる前後輪駆動車の駆動力制御装
置によれば、伝達トルクの変更が可能な車輪例え
ば前輪12に対する機関に直結した車輪例えば後
輪13のスリツプ比が適正な値である目標スリツ
プ比になるよう例えば前輪12への伝達トルクを
制御するため、前輪12あるいは後輪13の一方
のみを駆動して走行する場合のように、機関11
の出力トルクが駆動する一方の前輪グリツプ力に
対して過大となつて該車輪がスピンを発生するよ
うなことも無くなり、さらに、前輪11および後
輪12の双方を駆動する場合にあつても、その双
方車輪のグリツプ力が機関11に過大な負荷とし
て作用して機関11の出力を低下させるようなこ
とも無く、大きな駆動力を得ることができる。
(Function) According to the driving force control device for a front and rear wheel drive vehicle according to the present invention, the slip ratio of the wheel directly connected to the engine, such as the rear wheel 13, with respect to the wheel whose transmission torque can be changed, such as the front wheel 12, is an appropriate value. For example, in order to control the torque transmitted to the front wheels 12 so that the target slip ratio is achieved, the engine 11 is
This eliminates the possibility that the output torque of the front wheel becomes excessive with respect to the grip force of one of the front wheels and causes that wheel to spin.Furthermore, even when driving both the front wheel 11 and the rear wheel 12, The grip forces of both wheels do not act as an excessive load on the engine 11 and reduce the output of the engine 11, and a large driving force can be obtained.

(実施例) 以下、この発明の実施例を図面に基づいて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第2図から第6図は、この発明の一実施例を輪
駆動車に適用して示す図である。
2 to 6 are diagrams showing an embodiment of the present invention applied to a wheel drive vehicle.

まず、構成を説明すると、第2図において、2
1はエンジン(機関)、22はエンジン21と一
体に組み付けられたトランスミツシヨンであり、
トランスミツシヨン22の出力軸は2輪−4輪切
換用のトランスフア(クラツチ手段)23を介し
て後輪プロペラシヤフト24Rおよび前輪プロペ
ラシヤフト24Fに連結されている。後輪プロペ
ラシヤフト24Rは、後輪差動装置25Rおよび左
右のアクスル26RL,26RRを介して左右の後輪
27RL,27RRに連結され、同様に、前輪プロペ
ラシヤフト24Fは、前輪差動装置25Fおよび左
右のアクスル26FL,26FRを介して左右の前輪
27FL,27FRに連結されている。
First, to explain the configuration, in Fig. 2, 2
1 is an engine (engine), 22 is a transmission assembled integrally with the engine 21,
The output shaft of the transmission 22 is connected to a rear propeller shaft 24R and a front propeller shaft 24F via a transfer (clutch means) 23 for switching between two wheels and four wheels. The rear propeller shaft 24 R is connected to left and right rear wheels 27 RL and 27 RR via a rear wheel differential 25 R and left and right axles 26 RL and 26 RR , and similarly, the front propeller shaft 24 F is connected to left and right rear wheels 27 RL and 27 RR. It is connected to left and right front wheels 27 FL and 27 FR via a front wheel differential 25 F and left and right axles 26 FL and 26 FR .

トランスフア23は、第3図に示すように、2
つの部材28a,28bをボルト29により接合
して成るトランスフアケース28内に、トランス
ミツシヨン22の出力軸と連結した入力軸30が
回転自在に収納され、また、後輪プロペラシヤフ
ト24Rと連結した後輪出力軸31がベアリング
32により回転自在に支持されている。これら入
力軸30と後輪出力軸31とは、それぞれが同軸
的に継手部材33とスプライン結合して、該継手
部材33により一体回転するよう接続されてい
る。継手部材33は、入力軸30と後輪出力軸3
1とがスプライン結合した略円筒形状のボス部3
3aと、該ボス部33aから一体的に放射方向外
方へ延出したフランジ部33bと、を有してい
る。継手部材33のフランジ部33bには、後述
する油圧式の摩擦多板クラツチ34が設けられ、
また、ボス部33aには摩擦多板クラツチ34へ
油圧を供給する油路35aが形成されている。な
お、36はトランスフアケース28内に嵌着され
ベアリング37により後輪出力軸31を回転自在
に支持するベアリングホルダであり、ベアリング
ホルダ36には、トランスフアケース28の部材
28bに形成されて後述する制御装置に接続され
た油圧ポート35cと継手部材33のボス部33
aに形成された油路35aとを連通する油路35
bが形成されている。
As shown in FIG.
An input shaft 30 connected to the output shaft of the transmission 22 is rotatably housed in a transfer case 28 formed by joining two members 28a and 28b with bolts 29, and is also connected to the rear propeller shaft 24R . A rear wheel output shaft 31 is rotatably supported by a bearing 32. The input shaft 30 and the rear wheel output shaft 31 are each coaxially spline-coupled to a joint member 33 and connected to rotate integrally through the joint member 33. The joint member 33 connects the input shaft 30 and the rear wheel output shaft 3.
1 and a substantially cylindrical boss portion 3 spline-coupled with each other.
3a, and a flange portion 33b integrally extending radially outward from the boss portion 33a. The flange portion 33b of the joint member 33 is provided with a hydraulic multi-plate friction clutch 34, which will be described later.
Further, an oil passage 35a for supplying hydraulic pressure to the friction multi-plate clutch 34 is formed in the boss portion 33a. A bearing holder 36 is fitted into the transfer case 28 and rotatably supports the rear wheel output shaft 31 by means of a bearing 37. The hydraulic port 35c connected to the control device and the boss portion 33 of the joint member 33
An oil passage 35 communicating with an oil passage 35a formed in a
b is formed.

38は入力軸30が同軸的かつ回転自在に挿通
された第1中空軸、同様に、39は入力軸30が
同軸的かつ回転自在に挿通された第2中空軸であ
り、これら第1中空軸38と第2中空軸39とは
一体回転するようにスプライン結合している。第
1中空軸38は、その外周上にカウンタギア40
aと噛合したドライブギア38aが一体に形成さ
れている。カウンタギア40aはトランスフアケ
ース28にベアリング41を介し回転自在に支持
されたカウンタシヤフト40に一体に形成され、
図示しない前輪出力軸に設けられたドリブンギア
42と噛合している。また、第2中空軸39は、
入力軸30にスラストベアリング43を介して回
転自在に係合したボス部39aと、該ボス部39
aと一体のドラム部39bとを有し、該ドラム部
39bと前述した継手部材33のフランジ部33
bとの間に油圧式の摩擦多板クラツチ34が取り
付けられている。
38 is a first hollow shaft through which the input shaft 30 is coaxially and rotatably inserted; similarly, 39 is a second hollow shaft through which the input shaft 30 is coaxially and rotatably inserted; 38 and the second hollow shaft 39 are spline-coupled to rotate together. The first hollow shaft 38 has a counter gear 40 on its outer periphery.
A drive gear 38a meshing with the drive gear 38a is integrally formed with the drive gear 38a. The counter gear 40a is integrally formed with a counter shaft 40 rotatably supported by the transfer case 28 via a bearing 41.
It meshes with a driven gear 42 provided on a front wheel output shaft (not shown). Further, the second hollow shaft 39 is
A boss portion 39a rotatably engaged with the input shaft 30 via a thrust bearing 43;
a and a drum portion 39b integral with the drum portion 39b and the flange portion 33 of the aforementioned joint member 33.
A hydraulic multi-plate friction clutch 34 is installed between the clutch 34 and b.

摩擦多板クラツチ34は、継手部材33のフラ
ンジ部33bに嵌着されたクラツチドラム44の
内周壁にスプライン結合した複数のドライブプレ
ート45と、第2中空軸39のドラム部39bの
外周壁にスプライン結合してドライブプレート4
5と軸方向に交互に配置された複数のドリブンプ
レート46と、継手部材33のボス部33aとフ
ランジ部33bとの間の略環状空間に軸方向の移
動可能に収納されて油路35aと連通した油室4
7を画成する略環状のピストン48と、ピストン
48と継手部材33のボス部33aに取り付けら
れたリテーナ49との間に縮装されてピストン4
8を図中右方へ付勢するリターンスプリング50
と、を備えている。この摩擦多板クラツチ34
は、後述する制御装置から油圧ポート35cおよ
び油路35b,35aを介し油室47に高圧の油
圧が供給されると、ピストン48が図中左動して
ドライブプレート45とドリブンプレート46と
を圧接させ、継手部材33と第2中空軸39との
間すなわち入力軸30と前輪出力軸との間を供給
される油圧に応じたトルクで接続する。
The friction multi-plate clutch 34 includes a plurality of drive plates 45 spline-coupled to the inner circumferential wall of a clutch drum 44 fitted to the flange portion 33b of the joint member 33, and a plurality of drive plates 45 spline-coupled to the outer circumferential wall of the drum portion 39b of the second hollow shaft 39. Combine and drive plate 4
5 and a plurality of driven plates 46 arranged alternately in the axial direction, and a substantially annular space between the boss portion 33a and the flange portion 33b of the joint member 33 so as to be movable in the axial direction and communicate with the oil passage 35a. oil chamber 4
7 and a retainer 49 attached to the boss portion 33a of the joint member 33.
A return spring 50 that urges 8 to the right in the figure.
It is equipped with. This friction multi-plate clutch 34
When high-pressure oil pressure is supplied to the oil chamber 47 from the later-described control device through the oil pressure port 35c and oil passages 35b and 35a, the piston 48 moves to the left in the figure to press the drive plate 45 and the driven plate 46 together. and connects between the joint member 33 and the second hollow shaft 39, that is, between the input shaft 30 and the front wheel output shaft, with a torque corresponding to the supplied oil pressure.

再び第2図において、51は制御装置であり、
制御装置51には、トランスフア23の後輪出力
軸31の回転速度すなわち後輪27RL,27RR
回転速度ωRを検出する後輪回転速度センサ(後
輪回転速度検知器)52Rと前輪出力軸の回転速
度すなわち前輪27FL,27FRの回転速度ωFを検
出する前輪回転速度センサ(前輪回転速度検知
器)52Fとが結線されている。これら回転速度
センサ52R,52Fは検出した回転速度ωR,ωF
に対応した周波数の検知信号を制御装置51に出
力する。この制御装置51は、後述する第4図お
よび第5図に示すように、摩擦多板クラツチ34
の油室47に油圧を供給する油圧駆動回路53
と、油圧回路53が発生する油圧を回転速度セン
サ52R,52Fの出力信号に基づいて制御する電
気制御回路54と、を有している。
Referring again to FIG. 2, 51 is a control device;
The control device 51 includes a rear wheel rotation speed sensor (rear wheel rotation speed detector) 52 R that detects the rotation speed of the rear wheel output shaft 31 of the transfer shaft 23 , that is, the rotation speed ω R of the rear wheels 27 RL and 27 RR . A front wheel rotation speed sensor (front wheel rotation speed detector) 52F that detects the rotation speed of the front wheel output shaft, that is, the rotation speed ω F of the front wheels 27 FL and 27 FR , is connected. These rotational speed sensors 52 R and 52 F detect rotational speeds ω R and ω F
A detection signal with a frequency corresponding to the frequency is output to the control device 51. This control device 51 includes a friction multi-plate clutch 34, as shown in FIGS. 4 and 5, which will be described later.
Hydraulic drive circuit 53 that supplies hydraulic pressure to the oil chamber 47 of
and an electric control circuit 54 that controls the hydraulic pressure generated by the hydraulic circuit 53 based on the output signals of the rotational speed sensors 52 R and 52 F.

油圧駆動回路53を第4図に基づいて説明する
と、同図において、34は前述の摩擦多板クラツ
チを示し、摩擦多板クラツチ34は、逆止弁55
を介してポンプ56と接続され、また、方向切換
弁57を介してリザーバタンク58と接続されて
いる。ポンプ56は、制御回路54に結線された
モータ59により駆動され、リザーバタンク58
内の油を加圧して吐出する。方向切換弁57は、
制御回路54に結線されたソレノイド57aを備
え、ソレノイド57aが通電されない時摩擦多板
クラツチ34の油室47をリザーバタンク58に
開放する第1切換位置(図示位置)を採り、ソ
レノイド57aが通電されると油室47をリザー
バタンク58から遮断してポンプ56のみに連通
する第2切換位置を採る。この方向切換弁57
は、後述するように、制御回路54からソレノイ
ド57aに断続電流が通電され(チヨツパ制御)、
この断続電流の衝撃比に応じて第1切換位置と
第2切換位置とを採る時間の割合を変化させ、
摩擦多板クラツチ34の油室47へ供給する油圧
を変更する。なお、60は圧力調整弁、61は絞
りである。
The hydraulic drive circuit 53 will be explained based on FIG.
It is connected to a pump 56 via a directional control valve 57, and is also connected to a reservoir tank 58 via a directional switching valve 57. The pump 56 is driven by a motor 59 connected to the control circuit 54, and is driven by a reservoir tank 58.
The oil inside is pressurized and discharged. The directional control valve 57 is
A solenoid 57a is connected to the control circuit 54, and when the solenoid 57a is not energized, it assumes a first switching position (position shown) in which the oil chamber 47 of the friction multi-plate clutch 34 is opened to the reservoir tank 58, and when the solenoid 57a is energized. Then, a second switching position is adopted in which the oil chamber 47 is isolated from the reservoir tank 58 and communicated only with the pump 56. This directional control valve 57
As will be described later, an intermittent current is supplied from the control circuit 54 to the solenoid 57a (chopper control),
The ratio of time spent in the first switching position and the second switching position is changed according to the impact ratio of this intermittent current,
The oil pressure supplied to the oil chamber 47 of the friction multi-plate clutch 34 is changed. Note that 60 is a pressure regulating valve, and 61 is a throttle.

制御回路54は、第5図に示すように、前輪回
転速度センサ52Fが出力する回転速度ωFに対応
した周波数の信号を周波数に対応した電位の信号
に変換する第1F−Vコンバータ63と、後輪回
転速度センサ52Rが出力する回転速度ωRに対応
した周波数の信号を周波数に対応した電位の信号
に変換する第2F−Vコンバータ64と、第1F−
Vコンバータ63および第2F−Vコンバータ6
4の出力信号に基づいて下式に示すスリツプ比S
を算出する演算回路(スリツプ比算出手段)65
と、目標スリツプ比Stに対応する所定電位の基準
信号(目標スリツプ比に対応)を出力する定電圧
発生器(目標スリツプ比決定手段)66と、演算
回路65の出力信号と定電発生器66の出力信号
とを比較し演算回路65の出力信号が定電圧発生
器66の出力信号より大きい時に駆動信号を出力
する比較器67と、比較器67から駆動信号が入
力すると所定衝撃比の継続電流を方向切換弁57
のソレノイド57aに出力する駆動回路68と、
を有している。
As shown in FIG. 5, the control circuit 54 includes a first F-V converter 63 that converts a signal with a frequency corresponding to the rotational speed ω F outputted by the front wheel rotational speed sensor 52 F into a signal with a potential corresponding to the frequency. , a second F-V converter 64 that converts a signal with a frequency corresponding to the rotational speed ω R outputted by the rear wheel rotational speed sensor 52 R into a signal with a potential corresponding to the frequency, and a first F-V converter 64 .
V converter 63 and second F-V converter 6
Based on the output signal of 4, the slip ratio S shown in the following formula is
Arithmetic circuit (slip ratio calculation means) 65 for calculating
, a constant voltage generator (target slip ratio determining means) 66 that outputs a reference signal of a predetermined potential (corresponding to the target slip ratio) corresponding to the target slip ratio St, and an output signal of the arithmetic circuit 65 and the constant voltage generator 66 A comparator 67 compares the output signal of the arithmetic circuit 65 with the output signal of the constant voltage generator 66 and outputs a drive signal when the output signal of the arithmetic circuit 65 is larger than the output signal of the constant voltage generator 66. Directional switching valve 57
a drive circuit 68 that outputs to the solenoid 57a;
have.

S=(r・ωF−r・ωR)/r・ωF 但し、r:タイヤ半径 すなわち、Sは、伝達トルクの変更が可能な前
輪27FL,27FRに対するエンジン21に直結し
た後輪27RL,27RRのスリツプ比を表す。
S = (r・ω F −r・ω R )/r・ω F However, r: Tire radius In other words, S is the rear wheel directly connected to the engine 21 with respect to the front wheels 27 FL and 27 FR whose transmission torque can be changed. It represents the slip ratio of 27 RL and 27 RR .

上記比較器67は、定電圧発生器66の出力信
号に基づいて2つの第1基準値と第2基準値とを
設定するヒステリシス回路が付加されたもので、
演算回路65の出力信号が第1基準値より大きく
なると駆動信号を駆動回路68へ出力し、また、
演算回路の出力信号が第2基準値より小さくなる
と駆動信号の出力を停止する。なお、定電圧発生
器66が出力する基準信号すなわち該基準信号に
基づいて比較器67により設定される第1基準値
と第2基準値は、大きな駆動力係数μtを得ること
ができる範囲の目標スリツプ比Stを設定する。す
なわちこの目標スリツプ比は、後輪27RL,27
RRの駆動力係数μtが最大値近辺領域となるスリツ
プ比の値である。例えば、前述した高摩擦係数の
走行路面においては、スリツプ比Sと駆動力係数
μtとが第6図に示すような関係を有するため、上
記第1基準値を第6図中のスリツプ比Snaxに対応
した値に定め、また、第2基準値をスリツプSnio
に対応した値に定める。
The comparator 67 is added with a hysteresis circuit that sets two first reference values and a second reference value based on the output signal of the constant voltage generator 66.
When the output signal of the arithmetic circuit 65 becomes larger than the first reference value, a drive signal is output to the drive circuit 68, and
When the output signal of the arithmetic circuit becomes smaller than the second reference value, the output of the drive signal is stopped. Note that the reference signal output by the constant voltage generator 66, that is, the first reference value and the second reference value set by the comparator 67 based on the reference signal, are within the range in which a large driving force coefficient μ t can be obtained. Set the target slip ratio St. In other words, this target slip ratio is for the rear wheels 27 RL , 27
This is the value of the slip ratio at which the driving force coefficient μ t of RR is in the vicinity of the maximum value. For example, on the above-mentioned running road surface with a high coefficient of friction, the slip ratio S and the driving force coefficient μt have a relationship as shown in FIG. In addition, the second reference value is set to a value corresponding to the slip S nio
Set to a value corresponding to

なお、上記第1基準値および第2基準値すなわ
ち定電圧発生器67が出力する基準信号は、走行
路面の摩擦係数等の車両の走行条件に応じて可変
としてもよい。
Note that the first reference value and the second reference value, that is, the reference signal output by the constant voltage generator 67, may be variable depending on the running conditions of the vehicle, such as the friction coefficient of the road surface.

次に、作用を説明する。 Next, the effect will be explained.

車両が大きな駆動力を必要とする場合の一例と
して加速時を説明する。
An example of a case where the vehicle requires a large driving force will be described when the vehicle is accelerating.

今、前輪27FL,27FRと後輪27RL,27RR
との間の回転数差すなわちトランスフア23の前
輪出力軸と後輪出力軸31との間の回転数差が零
であれば、制御回路54は油圧回路53の方向切
換弁57のソレノイド57aに駆動電流を出力す
ることは無く、トランスフア23の摩擦多板クラ
ツチ34の油室47はリザーバタンク58と連通
されている。このため、入力軸30と前輪出力軸
との間は遮断され、車両は後輪27RL,27RR
みをエンジン21により駆動して走行している。
Now, the front wheels are 27 FL , 27 FR and the rear wheels are 27 RL , 27 RR.
If the rotational speed difference between No driving current is output, and the oil chamber 47 of the friction multi-plate clutch 34 of the transfer 23 is communicated with the reservoir tank 58. Therefore, the input shaft 30 and the front wheel output shaft are cut off, and the vehicle runs with only the rear wheels 27 RL and 27 RR driven by the engine 21.

ここで、エンジン21の出力トルクが後輪27
RL,27RRのグリツプ力を超えると、後輪27RL
27RRは対地スリツプ(スピン)を発生して後輪
27RL,27RRと前輪27FL,27FRとの間すな
わち後輪出力軸31と前輪出力軸との間に回転数
差が生じ、この時のスリツプ比Sは前述した式に
より示される。そして、後輪27RL,27RRのス
ピンが激しくなると、スリツプ比Sが−1に近づ
き駆動力係数μtが低下して全駆動力も低下する
が、スリツプ比Sが制御回路54の比較器67に
より設定された第1基準値に対応したSnaxを超え
ると、比較器67が駆動信号を駆動回路68へ出
力して駆動回路68が所定衝撃比の断続電流を方
向切換弁57のソレノイド57aへ出力する。こ
のため、方向切換弁57は、ソレノイド57aへ
入力する断続電流の衝撃比に応じて第1切換位置
と第2切換位置を交互に採り、トランスフア
23の摩擦多板クラツチ34の油室47に衝撃比
に応じた油圧を供給する。この結果、トランスフ
ア23は、入力軸30と前輪出力軸との間が接続
され、車両は、後輪27RL,27RRとともに前輪
27FL,27FRもエンジン21により駆動して走
行する。すなわち、車両は前輪27FL,27FR
よび後輪27RL,27RRを駆動する4輪駆動走行
へ移行してスリツプ比Sが低下するため、第6図
に示すように、駆動力係数μtが増大して車両の全
体としての駆動力も増大する。
Here, the output torque of the engine 21 is
RL , 27 If the grip force of the RR is exceeded, the rear wheel 27 RL ,
27 RR generates ground slip (spin) and a difference in rotational speed occurs between the rear wheels 27 RL , 27 RR and the front wheels 27 FL , 27 FR , that is, between the rear wheel output shaft 31 and the front wheel output shaft. The slip ratio S at this time is expressed by the above-mentioned formula. As the spin of the rear wheels 27 RL and 27 RR increases, the slip ratio S approaches -1, the driving force coefficient μt decreases, and the total driving force also decreases. When S nax corresponding to the set first reference value is exceeded, the comparator 67 outputs a drive signal to the drive circuit 68, and the drive circuit 68 outputs an intermittent current with a predetermined impulse ratio to the solenoid 57a of the directional control valve 57. do. For this reason, the directional switching valve 57 alternately takes the first switching position and the second switching position according to the impact ratio of the intermittent current input to the solenoid 57a, and the directional switching valve 57 alternately takes the first switching position and the second switching position according to the impact ratio of the intermittent current input to the solenoid 57a. Supplies hydraulic pressure according to the impact ratio. As a result, the input shaft 30 and the front wheel output shaft of the transfer shaft 23 are connected, and the vehicle runs with the front wheels 27 FL and 27 FR driven by the engine 21 as well as the rear wheels 27 RL and 27 RR . In other words, the slip ratio S decreases as the vehicle shifts to four-wheel drive driving the front wheels 27 FL , 27 FR and the rear wheels 27 RL , 27 RR , so the driving force coefficient μt decreases as shown in FIG. As a result, the overall driving force of the vehicle also increases.

この後、車両が加速走行から定速走行に移行す
ると、後輪27RL,27RRの駆動力も低下し、上
述したスピンを発生することなく走行が可能とな
り、スリツプ比Sが制御回路54の比較器67に
より設定された第2基準値に対応したSnioより低
下すると、比較器67が駆動信号の出力を停止す
るため、駆動回路68も方向切換弁57のソレノ
イド57aへの断続電流の出力を停止する。した
がつて、摩擦多板クラツチ34は、油室47内の
油圧が低下して入力軸30と前輪出力軸との間を
遮断し、車両は後輪27RL,27RRのみを駆動す
る2輪駆動走行へ移行する。
After this, when the vehicle shifts from acceleration running to constant speed running, the driving force of the rear wheels 27 RL and 27 RR is also reduced, and it becomes possible to run without the above-mentioned spin, and the slip ratio S increases as compared with the control circuit 54. When S nio falls below the second reference value set by the comparator 67, the comparator 67 stops outputting the drive signal, so the drive circuit 68 also stops outputting the intermittent current to the solenoid 57a of the directional control valve 57. Stop. Therefore, the friction multi-plate clutch 34 cuts off between the input shaft 30 and the front wheel output shaft due to the decrease in the oil pressure in the oil chamber 47, and the vehicle becomes a two-wheel vehicle that drives only the rear wheels 27 RL and 27 RR . Shift to drive driving.

このように、この4輪駆動車の駆動力制御装置
にあつては、前輪27FL,27FRに対する後輪2
RL,27RRのスリツプ比Sが目標値である目標
スリツプ比になるよう前輪27FL,27FRへの伝
達トルクを制御するため、2輪駆動走行時にみら
れるような過大なスピンを後輪27RL,27RR
生じることもなく、また、4輪駆動走行への移行
時に4輪のクリツプ力G4がエンジン21への過
大な負荷となつてエンジン21の出力が低下する
ことも無くなり、車両は大きな駆動力係数μtを保
持して大きな駆動力を得ることができる。
In this way, in the driving force control device of this four-wheel drive vehicle, the rear wheels 27 FL and 27 FR are
In order to control the torque transmitted to the front wheels 27 FL and 27 FR so that the slip ratio S of 7 RL and 27 RR becomes the target slip ratio, the system prevents the rear wheels from excessive spin as seen when driving with two-wheel drive. 27 RL and 27 RR will not occur, and the output of the engine 21 will not decrease due to the clipping force G 4 of the four wheels becoming an excessive load on the engine 21 at the time of transition to four-wheel drive driving. The vehicle can maintain a large driving force coefficient μt and obtain a large driving force.

なお、上述した実施例は、後輪27RL,27RR
をエンジン21に直結して前輪27FL,27FR
の伝達トルクを変更可能な4輪駆動車に本発明を
適用したものを示すが、後輪27RL,27RRへの
伝達トルクを変更可能な4輪駆動車、あるいはよ
り多数の車輪を駆動可能な作業車等にも本発明が
適用できることは言うまでも無い。
In addition, in the above-mentioned embodiment, the rear wheels 27 RL and 27 RR
The present invention is applied to a four-wheel drive vehicle that is directly connected to the engine 21 and can change the torque transmitted to the front wheels 27 FL and 27 FR , but it is also possible to change the torque transmitted to the rear wheels 27 RL and 27 RR . Needless to say, the present invention can also be applied to four-wheel drive vehicles or work vehicles capable of driving a larger number of wheels.

(発明の効果) 以上説明してきたように、この発明にかかる前
後輪駆動車の駆動力制御装置にあつては、クラツ
チ手段を介して動力伝達される車輪に対する直接
的に動力伝達される車輪のスリツプ比が目標スリ
ツプ比になるようクラツチ手段の伝達トルクを変
更するので、前輪あるいは後輪の一方を駆動して
走行するような場合に駆動車輪が過大な対地スリ
ツプを発生することが無くなるとともに、前輪お
よび後輪の双方を駆動して走行するような場合に
駆動車輪のグリツプ力が機関の過大な負荷となつ
て機関の出力を低下させることも無くなり、車両
は大きな駆動力係数を維持して大きな駆動力を得
ることができるようになる。
(Effects of the Invention) As explained above, in the driving force control device for a front and rear wheel drive vehicle according to the present invention, the driving force control device for a front and rear wheel drive vehicle according to the present invention has the following advantages: Since the transmission torque of the clutch means is changed so that the slip ratio becomes the target slip ratio, when the vehicle is driven by driving either the front wheels or the rear wheels, the drive wheels do not generate excessive ground slip, and When driving by driving both the front and rear wheels, the grip force of the drive wheels does not become an excessive load on the engine and reduce the engine's output, and the vehicle maintains a large driving force coefficient. It becomes possible to obtain a large driving force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる前後輪駆動車の駆動
力制御装置の構成図である。第2図から第6図は
この発明の一実施例にかかる前後輪駆動車の駆動
力制御装置を示す図であり、第2図は全体概略
図、第3図は機構要部の断面図、第4図は油圧回
路図、第5図はブロツク図、第6図はスリツプ比
と駆動力係数との関係を示すグラフである。 11,21……機関(エンジン)、12,27F
,27FR……前輪、13,27RL,27RR……後
輪、14,23……クラツチ手段(トランスフ
ア)、15,52F……前輪回転速度検知器(前輪
回転速度センサ)、16,52R……後輪回転速度
検知器(後輪回転速度センサ)、17,65……
スリツプ比算出手段(演算回路)、18,66…
…目標スリツプ比決定手段(定電圧発生器)、1
9,67……制御手段(比較器)。
FIG. 1 is a configuration diagram of a driving force control device for a front and rear wheel drive vehicle according to the present invention. 2 to 6 are diagrams showing a driving force control device for a front and rear wheel drive vehicle according to an embodiment of the present invention, in which FIG. 2 is an overall schematic diagram, and FIG. 3 is a sectional view of main parts of the mechanism; FIG. 4 is a hydraulic circuit diagram, FIG. 5 is a block diagram, and FIG. 6 is a graph showing the relationship between slip ratio and driving force coefficient. 11, 21...Engine, 12, 27 F
L , 27 FR ...front wheel, 13,27 RL , 27 RR ...rear wheel, 14,23...clutch means (transfer), 15,52 F ...front wheel rotational speed detector (front wheel rotational speed sensor), 16,52 R ...Rear wheel rotation speed sensor (rear wheel rotation speed sensor), 17,65...
Slip ratio calculation means (arithmetic circuit), 18, 66...
...Target slip ratio determining means (constant voltage generator), 1
9, 67...Control means (comparator).

Claims (1)

【特許請求の範囲】[Claims] 1 機関と前輪との間の動力伝達系及び機関と後
輪との間の動力伝達系の内、一方は直接的に動力
伝達し、他方は伝達トルクを変更可能なクラツチ
手段を介して動力伝達する様に設定した前後輪駆
動車において、前輪の回転速度を検出する前輪回
転速度検知器と、後輪の回転速度を検出する後輪
回転速度検知器と、前輪回転速度検知器と後輪回
転速度検知器の出力信号に基づいて前記クラツチ
手段を介して動力伝達される車輪に対する直接的
に動力伝達される車輪のスリツプ比を算出するス
リツプ比算出手段と、前記直接的に動力伝達され
る車輪の駆動力係数が最大値近辺領域となる目標
スリツプ比を決定する目標スリツプ比決定手段
と、スリツプ比算出手段と目標スリツプ比決定手
段の出力信号に基づいてクラツチ手段を制御し、
クラツチ手段を介して動力伝達される車輪に対す
る直接的に動力伝達される車輪のスリツプ比が目
標スリツプ比になるようクラツチ手段の伝達トル
クを変更する制御手段と、を有することを特徴と
する前後輪駆動車の駆動力制御装置。
1 Of the power transmission system between the engine and the front wheels and the power transmission system between the engine and the rear wheels, one transmits power directly, and the other transmits power through a clutch means that can change the transmitted torque. In front and rear wheel drive vehicles, the front wheel rotation speed detector detects the front wheel rotation speed, the rear wheel rotation speed detector detects the rear wheel rotation speed, and the slip ratio calculating means for calculating a slip ratio of a wheel to which power is directly transmitted relative to a wheel to which power is transmitted via the clutch means based on an output signal of a speed detector; and a wheel to which power is directly transmitted. controlling the clutch means based on the output signals of the slip ratio calculating means and the target slip ratio determining means;
Front and rear wheels characterized by comprising: control means for changing the transmission torque of the clutch means so that the slip ratio of the wheel to which power is directly transmitted to the wheel to which power is transmitted via the clutch means becomes a target slip ratio. Driving force control device for driving vehicles.
JP59252178A 1984-11-29 1984-11-29 Drive force control device in front and rear wheel drive vehicle Granted JPS61132421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252178A JPS61132421A (en) 1984-11-29 1984-11-29 Drive force control device in front and rear wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252178A JPS61132421A (en) 1984-11-29 1984-11-29 Drive force control device in front and rear wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS61132421A JPS61132421A (en) 1986-06-19
JPH0417806B2 true JPH0417806B2 (en) 1992-03-26

Family

ID=17233576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252178A Granted JPS61132421A (en) 1984-11-29 1984-11-29 Drive force control device in front and rear wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS61132421A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583910B2 (en) * 1987-10-20 1997-02-19 本田技研工業株式会社 Driving force distribution control method for front and rear wheel drive vehicles
US5132908A (en) * 1989-04-28 1992-07-21 Nissan Motor Co., Ltd. Driving force distribution control system for a fourwheel drive vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820521A (en) * 1981-07-25 1983-02-07 Fuji Heavy Ind Ltd Avoiding mechanism of tight corner braking in 4-wheel driven car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820521A (en) * 1981-07-25 1983-02-07 Fuji Heavy Ind Ltd Avoiding mechanism of tight corner braking in 4-wheel driven car

Also Published As

Publication number Publication date
JPS61132421A (en) 1986-06-19

Similar Documents

Publication Publication Date Title
US4757870A (en) Four wheel drive system having driving force distribution control responsive to front and rear wheel speed difference
US6817434B1 (en) Active hydraulically actuated on-demand wheel end assembly
US7562947B2 (en) Apparatus for controlling driving force of vehicle
US4776424A (en) Driving force distribution control system for 4WD vehicle
US5332059A (en) Control system for a differential of a motor vehicle
US5168955A (en) Traction control system for four-wheel drive vehicle
US4966250A (en) Active driving force control for four-wheel drive vehicle
US5445574A (en) Multiple-disc clutch type electronically controlled differential limiting device with a torsional damper for each driver shaft
JPS61169326A (en) Driving force distribution controller for 4 wheel drive car
EP0395247B1 (en) Power transmission system for a four-wheel drive motor vehicle
EP0409529B1 (en) Torque distribution control system for a four-wheel drive motor vehicle
JPH0761779B2 (en) Front and rear wheel drive system
CN109969166B (en) Control device for four-wheel drive vehicle
EP1978284A2 (en) Vehicle limited slip differential
JP2005534881A (en) Fluid coupling with torque adjustment and locking capabilities that divides torque between transmission and driven axle
JPH0569010B2 (en)
JPS61155027A (en) Four wheel-drive vehicle
JPH0526687B2 (en)
JP3618901B2 (en) Vehicle propulsion device
JPH0417806B2 (en)
JPS626831A (en) Driving force distribution controller for four-wheel drive car
JPS6212422A (en) Drive power distribution device in four wheel drive vehicle
JP2598322B2 (en) Driving force control device for four-wheel drive vehicle
JPH0536249B2 (en)
JPH066407B2 (en) Drive force distribution controller for four-wheel drive vehicle