JPH0526687B2 - - Google Patents

Info

Publication number
JPH0526687B2
JPH0526687B2 JP60033286A JP3328685A JPH0526687B2 JP H0526687 B2 JPH0526687 B2 JP H0526687B2 JP 60033286 A JP60033286 A JP 60033286A JP 3328685 A JP3328685 A JP 3328685A JP H0526687 B2 JPH0526687 B2 JP H0526687B2
Authority
JP
Japan
Prior art keywords
clutch
rear wheels
rotational speed
driving force
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60033286A
Other languages
Japanese (ja)
Other versions
JPS61191431A (en
Inventor
Shuji Torii
Juji Kohari
Kyotaka Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3328685A priority Critical patent/JPS61191431A/en
Priority to DE19863605489 priority patent/DE3605489A1/en
Publication of JPS61191431A publication Critical patent/JPS61191431A/en
Publication of JPH0526687B2 publication Critical patent/JPH0526687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は前輪または後輪の一方へ機関から伝
達されるトルクをクラツチにより変えることで前
後輪の駆動力配分が変更可能な4輪駆動車の駆動
力配分制御装置に係り、特に、前後輪の回転速度
差に基づいて前後輪の駆動力配分を制御する駆動
力配分制御装置に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a four-wheel drive vehicle in which the distribution of driving force between the front and rear wheels can be changed by changing the torque transmitted from the engine to either the front wheels or the rear wheels using a clutch. The present invention relates to a driving force distribution control device, and particularly relates to a driving force distribution control device that controls driving force distribution between front and rear wheels based on a rotational speed difference between the front and rear wheels.

(従来の技術) 前輪および後輪の双方を駆動して走行する4輪
駆動走行が可能な4輪駆動車にあつては、4輪駆
動走行時に前輪および後輪の4輪に駆動力を分散
することができるため低摩擦係数路面においても
優れた走行性能を発揮するが、その反面、4輪駆
動走行時には前輪と後輪とが一体的に結合される
ため高摩擦係数路面上で旋回するとタイトコーナ
ーブレーキグ現象等の不都合が生じる。したがつ
て、近年においては、前輪または後輪の一方のみ
を駆動して走行する2輪駆動走行と上記4輪駆動
走行との切換を車両の走行条件等に応じて自動制
御する4輪駆動車が提案され、従来、実開昭58−
100132号公報、実開昭58−139266号公報、あるい
は特開昭58−56921号公報、特開昭58−180325号
公報に記載されたものが知られていた。
(Prior art) In the case of a four-wheel drive vehicle capable of driving in four-wheel drive, in which both the front wheels and the rear wheels are driven, the driving force is distributed to the front and rear wheels during four-wheel drive driving. This allows it to exhibit excellent driving performance even on low-friction coefficient roads.However, on the other hand, when driving in four-wheel drive, the front and rear wheels are integrally connected, making it difficult to turn on high-friction coefficient roads. Inconveniences such as corner braking phenomena occur. Therefore, in recent years, four-wheel drive vehicles have been developed that automatically control switching between two-wheel drive driving, in which only one of the front wheels or rear wheels is driven, and four-wheel drive driving, according to the driving conditions of the vehicle. was proposed, and conventionally,
Those described in JP-A-100132, JP-A-58-139266, JP-A-58-56921, and JP-A-58-180325 were known.

例えば、実開昭58−10013200号公報に記載され
たものは、降雨センサにより雨降りを検出し、降
雨により走行路面の摩擦係数が低下した時に2輪
駆動走行から4輪駆動走行へ切り換え、駆動車輪
の空転(スピン)を防止して駆動性能を向上を図
るものである。また、実開昭58−139226号公報に
記載されたものは、油圧式のパワーステアリング
装置の油圧により車両の大転舵旋回を検出し、こ
の大転舵旋回時に4輪駆動走行から2輪駆動走行
へ切り換え、タイトコーナーブレーキング現象が
発生することを阻止するものである。
For example, the system described in Japanese Utility Model Application Publication No. 58-10013200 detects rain with a rain sensor, and when the friction coefficient of the road surface decreases due to rain, the system switches from two-wheel drive to four-wheel drive. This is intended to improve drive performance by preventing spin. In addition, the system described in Japanese Utility Model Application Publication No. 58-139226 detects a large turning turn of the vehicle using the oil pressure of a hydraulic power steering device, and changes from 4-wheel drive to 2-wheel drive at the time of this large turning turn. This is to prevent tight corner braking from occurring when the vehicle switches to driving.

また、特開昭58−56921号公報に記載されたも
のは、前輪側と後輪側の回転センサと、アクセル
ペダルの踏込み等に応じた負荷センサとの出力信
号に基づいてトランスフアクラツチの係合状態を
制御するものであり、負荷の増大に伴いクラツチ
伝達トルクを複数段に増加させ、回転センサの検
出信号により大きいスリツプ率が算出されると、
クラツチを完全に係合させるものである。さらに
また、特開昭58−180325号公報に記載されたもの
は、検出した駆動輪の回転速度から回転角加速度
を算出し、回転角加速度が基準値よりも大きい場
合には、スリツプの発生と判断し、2輪駆動から
4輪駆動に自動切換えするシステムにおいて、車
速と負荷の変化に応じて基準値を補正して、スリ
ツプの発生を的確に判断するものである。
Furthermore, the system disclosed in Japanese Patent Application Laid-Open No. 58-56921 engages the transfer clutch based on output signals from rotation sensors on the front and rear wheels and a load sensor corresponding to depression of the accelerator pedal, etc. The clutch transmission torque is increased in multiple steps as the load increases, and when a large slip ratio is calculated from the detection signal of the rotation sensor,
This will fully engage the clutch. Furthermore, the method described in Japanese Patent Application Laid-open No. 180325/1983 calculates the rotational angular acceleration from the detected rotational speed of the drive wheel, and if the rotational angular acceleration is larger than a reference value, it is determined that slipping has occurred. In a system that automatically switches from two-wheel drive to four-wheel drive, the reference value is corrected according to changes in vehicle speed and load to accurately determine the occurrence of slippage.

(発明が解決しようとする問題点) しかしながら、上記実開昭58−100132号公報お
よび実開昭58−139226号公報記載のような従来の
4輪駆動車においては、2輪駆動走行と4輪駆動
走行を択一的に切換えるにすきないため、切換え
時に車両のステア特性が急変して操縦安定性が損
われるといつた問題点があつた。
(Problems to be Solved by the Invention) However, in conventional four-wheel drive vehicles as described in the above-mentioned Japanese Utility Model Application No. 58-100132 and Japanese Utility Model Application No. 58-139226, two-wheel drive driving and four-wheel drive Since it is not possible to selectively switch the driving mode, there is a problem in that the steering characteristics of the vehicle suddenly change when the drive mode is switched, resulting in a loss of steering stability.

また、特開昭58−56921号公報および特開昭58
−180325号公報のような従来の4輪駆動車におい
ては、スリツプ率の大小に応じて一義的にクラツ
チの伝達トルクを変えているため、車輪が対地ス
リツプを生じやすい低摩擦係数路面上では、頻繁
にクラツチの締結、解放が繰り返されハンチング
が発生するといつた問題点があつた。
In addition, JP-A-58-56921 and JP-A-58
In conventional four-wheel drive vehicles such as the one disclosed in Publication No. 180325, the transmission torque of the clutch is changed primarily depending on the slip rate. There was a problem in that hunting occurred due to frequent engagement and release of the clutch.

(問題点を解決するための手段) この発明は、上記問題点を解決することを目的
とするもので、第1図に示すように、前輪11ま
は後輪12の一方を機関13に直結するとともに
前輪11又は後輪12の他方をクラツチ14を介
して機関13に連結し、該クラツチ14の伝達ト
ルクを変えて前輪11の駆動力と後輪12の駆動
力との配分比率を変更する4輪駆動車の駆動力配
分制御装置において、前輪11の回転速度を検出
する前輪速度検知器15と、後輪12の回転速度
を検出する後輪速度検知器16と、走行路面の状
態を検出する路面検知器19と、前記速度検知器
15が検出した前輪11の回転速度と後輪速度検
知器16が検出した後輪12の回転速度とに基づ
いて前輪11と後輪12との回転速度差を算出す
る回転速度差算出手段17と、該回転速度差算出
手段17により算出された前輪11と後輪12と
の回転速度差を基にクラツチ14の伝達トルクを
変えて前輪11の駆動力と後輪12の駆動力との
配分比率を制御すると共に、前記路面検知器19
が検出した走行路面の状態に基づいて摩擦係数が
小さい時には前記回転速度差に対するクラツチの
伝達トルクの変化割合を低減させる締結力調節手
段18と、を設けたものである。
(Means for Solving the Problems) This invention aims to solve the above problems, and as shown in FIG. At the same time, the other of the front wheels 11 or the rear wheels 12 is connected to the engine 13 via the clutch 14, and the transmission torque of the clutch 14 is changed to change the distribution ratio between the driving force of the front wheels 11 and the driving force of the rear wheels 12. A driving force distribution control device for a four-wheel drive vehicle includes a front wheel speed detector 15 that detects the rotational speed of the front wheels 11, a rear wheel speed detector 16 that detects the rotational speed of the rear wheels 12, and a road surface condition. The rotation speed of the front wheels 11 and the rear wheels 12 is determined based on the rotation speed of the front wheels 11 detected by the speed detector 15 and the rotation speed of the rear wheels 12 detected by the rear wheel speed detector 16. A rotational speed difference calculating means 17 calculates the difference, and the driving force of the front wheels 11 is changed by changing the transmission torque of the clutch 14 based on the rotational speed difference between the front wheels 11 and the rear wheels 12 calculated by the rotational speed difference calculating means 17. and the driving force of the rear wheels 12 is controlled, and the road surface detector 19
A fastening force adjusting means 18 is provided which reduces the rate of change in the transmission torque of the clutch with respect to the rotational speed difference when the coefficient of friction is small based on the condition of the running road surface detected by the clutch.

(作用) この4輪駆動車の駆動力配分制御装置は、前輪
速度検知器15および後輪素度検知器16の各出
力信号を演算処理して前後輪11,12と回転速
度差を算出し、この前後輪11,12の回転速度
差に応じクラツチ14の伝達トルクを変更して前
後輪11,12の駆動力配分を制御すると共に、
路面検知器19により検出された走行路面の状態
に基づいて摩擦係数が小さい時には前記回転速度
差に対するクラツチの伝達トルクの変化割合を低
減させる。したがつて、駆動力配分の制御すなわ
ち2輪駆動走行と4輪駆動走行との切換が前後輪
11,12の回転速度差に応じてクラツチ14の
伝達トルクを変えることで徐々に行われるため、
ステア特性の急変が防止されて操縦安定性の低下
を妨げられると共に、低摩擦係数路面におけるハ
ンチングが防止されて低摩擦係数路面での操縦安
定性が向上する。
(Function) This driving force distribution control device for a four-wheel drive vehicle calculates the rotational speed difference between the front and rear wheels 11 and 12 by processing each output signal of the front wheel speed detector 15 and the rear wheel speed detector 16. , the transmission torque of the clutch 14 is changed according to the rotational speed difference between the front and rear wheels 11, 12 to control the driving force distribution between the front and rear wheels 11, 12,
When the coefficient of friction is small based on the condition of the road surface detected by the road surface sensor 19, the rate of change in the clutch transmission torque with respect to the rotational speed difference is reduced. Therefore, control of the driving force distribution, that is, switching between two-wheel drive driving and four-wheel drive driving, is performed gradually by changing the transmission torque of the clutch 14 according to the rotational speed difference between the front and rear wheels 11 and 12.
Sudden changes in steering characteristics are prevented, preventing deterioration of steering stability, and hunting on low friction coefficient road surfaces is prevented, improving steering stability on low friction coefficient roads.

(実施例) 以下、この発明の実施例を図面に基づいて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第2図から第6図は、この発明の一実施例を示
す図である。
FIGS. 2 to 6 are diagrams showing one embodiment of the present invention.

まず、第2図により4輪駆動車の概要を説明す
ると、同図において、21はエンジン(機関)、
22はエンジン21と一体に組み付けられたトラ
ンスミツシヨン(変速機)であり、トランスミツ
シヨン22の出力軸は2輪駆動−4輪駆動切換用
のトランスフア23を介して後輪プロペラシヤフ
ト24Rおよび前輪プロペラシヤフト24Fに連
結されている。後輪プロペラシヤフト24Rは、
後輪差動装置25Rおよび左右のアクスル26
RL,26RRを左右の後輪27RL、27RRに連
結され、同様に、前輪プロペラシヤフト24F
は、前輪差動装置25Fおよび左右のアクスル2
6FL,26FRを介して左右の前輪27FL,2
7FRに連結されている。
First, an overview of a four-wheel drive vehicle will be explained with reference to Fig. 2. In the figure, 21 is an engine (engine);
22 is a transmission (transmission) assembled integrally with the engine 21, and the output shaft of the transmission 22 is connected to the rear propeller shaft 24R and It is connected to the front wheel propeller shaft 24F. The rear propeller shaft 24R is
Rear wheel differential 25R and left and right axles 26
RL, 26RR are connected to the left and right rear wheels 27RL, 27RR, and similarly, the front wheel propeller shaft 24F
is the front wheel differential 25F and the left and right axles 2.
Left and right front wheels 27FL, 2 via 6FL, 26FR
Connected to 7FR.

トランスフア23は、第3図に示すように、2
つの部材28a,28bをボルト29により接合
して成るトランスフアケース28内に、トランス
ミツシヨン22の出力軸と連結した入力軸30が
回転自在に収納され、また、後輪プロペラシヤフ
ト24Rと連結した後輪出力軸31がベアリング
32により回転自在に支持されている。これら入
力軸30おおび後輪出力軸31は、それぞれが略
パイプ状の継手部材33に同軸的にスプライン結
合して、該継手部材33を介し一体回転するよう
接続している。継手部材33は、その外周部に後
述する油圧式の摩擦多板クラツチ49のドラム4
4が設けられ、また、トランスフアケース28に
ボルト34aにより固定された筒状のベアリング
ホルダ34に回転自在に挿通している。
As shown in FIG.
An input shaft 30 connected to the output shaft of the transmission 22 is rotatably housed in a transfer case 28 formed by joining two members 28a and 28b with bolts 29, and is also connected to the rear propeller shaft 24R. A rear wheel output shaft 31 is rotatably supported by a bearing 32. The input shaft 30 and the rear wheel output shaft 31 are each coaxially spline-coupled to a substantially pipe-shaped joint member 33 and connected to rotate integrally through the joint member 33. The joint member 33 has a drum 4 of a hydraulic multi-plate friction clutch 49, which will be described later, on its outer periphery.
4, and is rotatably inserted into a cylindrical bearing holder 34 fixed to the transfer case 28 with bolts 34a.

入力軸30には、図中左方に第1中空軸38が
回転自在に外挿し、また、図中右方に第1中空軸
38とスプライン結合した第2中空軸39がニー
ドルベアリング43を介して回転自在に外挿して
いる。第1中空軸38は、その外周上にカウンタ
ギア40aと噛合したドライブキア38aが一体
に形成されている。このカウンタギア40aは、
トランスフアケース28にベアリング41を介し
回転自在に支持されたカウンタシヤフト40に一
体に形成され、前輪プロペラシヤフト24Fと連
結した前輪出力軸に設けられたドリブンギア42
と噛合している。第2中空軸39は一体に形成さ
れて径方向外方へ突出するハブ39aを有し、こ
のハブ39aと前述したドラム44との間に摩擦
多板クラツチ49が取り付けられている。
A first hollow shaft 38 is rotatably inserted into the input shaft 30 on the left side of the figure, and a second hollow shaft 39 spline-coupled with the first hollow shaft 38 is attached on the right side of the figure via a needle bearing 43. It is rotated and extrapolated. A drive gear 38a that meshes with a counter gear 40a is integrally formed on the outer periphery of the first hollow shaft 38. This counter gear 40a is
A driven gear 42 is formed integrally with a countershaft 40 that is rotatably supported by the transfer case 28 via a bearing 41, and is provided on a front wheel output shaft connected to the front wheel propeller shaft 24F.
It meshes with. The second hollow shaft 39 has a hub 39a that is integrally formed and projects radially outward, and a friction multi-plate clutch 49 is mounted between the hub 39a and the drum 44 described above.

摩擦多板クラツチ49は、ドラム44の内周壁
にスプライン結合した複数のドライブプレート4
5と、第2中空軸39のハブ39aにスプライン
結合してドライブプレート45と軸方向交互に配
列された複数のドリブンプレート46と、ドラム
44および継手部材33にそれぞれ内外の両周面
が液密的かつ軸方向の摺動自在に摺接して油室4
7を画成する略環状のピストン48と、継手部材
33に取り付けられたリテーナ52とピストン4
8との間に縮装されてピストン48を油室47側
へ付勢するスプリング53と、を備えている。油
室47は、継手部材33に形成された第1油路
a、ベアリングホルダ34に形成された第2油路
35bおよびトランスフアケース28に形成され
た第3油路35cを介してトランスフアーケス2
8の油圧ポート35dに連通している。この摩擦
多板クラツチ49は、後述する制御措置51から
油圧ポート35dおよび第1、第2、第3油路3
5a,35b,35cを経て油室47に高圧の圧
油が供給されると、ピストン48がスプリング5
3の弾性力に抗し図中左動してドライブプレート
45とドリブンプレート46とを摩擦接触させ、
継手部材33と第2中空軸39との間すなわち入
力軸30と前輪出力軸との間を接続する。
The friction multi-plate clutch 49 includes a plurality of drive plates 4 spline-coupled to the inner peripheral wall of the drum 44.
5, a plurality of driven plates 46 spline-coupled to the hub 39a of the second hollow shaft 39 and arranged alternately in the axial direction with the drive plate 45, and both the inner and outer peripheral surfaces of the drum 44 and the joint member 33 are liquid-tight. The oil chamber 4 is slidably in contact with the target and axially.
7, a retainer 52 attached to the joint member 33, and the piston 4.
8 and a spring 53 that urges the piston 48 toward the oil chamber 47 side. The oil chamber 47 is connected to the transfer case via a first oil passage a formed in the joint member 33, a second oil passage 35b formed in the bearing holder 34, and a third oil passage 35c formed in the transfer case 28. 2
It communicates with the hydraulic port 35d of No.8. This friction multi-plate clutch 49 is connected to a hydraulic port 35d and first, second, and third oil passages 3 from a control device 51, which will be described later.
When high pressure oil is supplied to the oil chamber 47 via 5a, 35b, and 35c, the piston 48 is moved by the spring 5.
The drive plate 45 and the driven plate 46 are brought into frictional contact by moving to the left in the figure against the elastic force of 3.
A connection is made between the joint member 33 and the second hollow shaft 39, that is, between the input shaft 30 and the front wheel output shaft.

なお、30aは入力軸30に形成された第1潤
滑油路、31aは後輪出力軸31に形成された第
2潤滑油路、39bは第2中空軸39に形成され
た第1クラツチ潤滑油路、39cは第2中空軸3
9のハブ39aに形成された第2クラツチ潤滑油
路、44aはドラム44に形成された第3クラツ
チ潤滑油路であり、第1および第2潤滑油路30
a,31aはニードルベアリング43等へ潤滑油
を供給し、また、第1、第2および第3クラツチ
潤滑油路39b,39c,44aは摩擦多板クラ
ツチ49のドライブプレート45とドリブンプレ
ート46との摺接路へ潤滑油を供給する。また、
36は速度検知用のピニオンである。
In addition, 30a is a first lubricating oil passage formed in the input shaft 30, 31a is a second lubricating oil passage formed in the rear wheel output shaft 31, and 39b is a first clutch lubricating oil passage formed in the second hollow shaft 39. 39c is the second hollow shaft 3
9 is a second clutch lubricating oil passage formed in the hub 39a, 44a is a third clutch lubricating oil passage formed in the drum 44, and the first and second lubricating oil passage 30
a, 31a supply lubricating oil to the needle bearing 43, etc., and first, second and third clutch lubricating oil passages 39b, 39c, 44a connect the drive plate 45 and driven plate 46 of the friction multi-plate clutch 49. Supply lubricating oil to the sliding contact path. Also,
36 is a pinion for speed detection.

再び、第2図において、51は制御装置であ
り、この制御装置51は、前輪27FL,27FR
の回転速度を検出する前輪速度検知器54と、後
輪27RL,27RRの回転速度を検出する後輪速
度検知器55と、走行路面の状態を検出する路面
検知器70と、が結線されている。前輪速度検知
器54、前輪27FL,27FRの回転速度(回転
数)に対応した周波数のパルス信号を制御装置5
1に出力し、同様に、後輪速度検知器55は、後
輪27RL,27RRの回転速度(回転数)に対応
した周波数のパルス信号を制御装置51へ出力す
る。路面検知器70は例えば超音波センサから構
成され、走行路面の凹凸あるいは湿潤(雪)等の
有無の路面状態を表示する信号を制御装置51へ
出力する。なお、前輪速度検知器54は、トラン
スフア23の前輪出力軸あるいはカウンタシヤフ
ト40の回転速度を検出するように構成してもよ
く、同様に、後輪速度検知器55はトランスフア
23の後輪出力軸31の回転速度を検出するよう
構成することも可能である。また、路面検知器7
0はワイパースイツチの作動あるいは車体の上下
方向加速度を検出するよう構成することも可能で
ある。
Again, in FIG. 2, 51 is a control device, and this control device 51 controls the front wheels 27FL and 27FR.
A front wheel speed detector 54 that detects the rotation speed of the rear wheels 27RL and 27RR, a rear wheel speed detector 55 that detects the rotation speed of the rear wheels 27RL and 27RR, and a road surface detector 70 that detects the condition of the road surface are connected. . The front wheel speed detector 54 sends a pulse signal of a frequency corresponding to the rotation speed (rotation speed) of the front wheels 27FL and 27FR to the control device 5.
Similarly, the rear wheel speed detector 55 outputs to the control device 51 a pulse signal of a frequency corresponding to the rotational speed (number of rotations) of the rear wheels 27RL and 27RR. The road surface detector 70 is composed of, for example, an ultrasonic sensor, and outputs a signal to the control device 51 indicating the road surface condition, such as whether the road surface is uneven or wet (snow). Note that the front wheel speed detector 54 may be configured to detect the rotational speed of the front wheel output shaft of the transfer 23 or the countershaft 40 , and similarly, the rear wheel speed detector 55 may be configured to detect the rotation speed of the front wheel output shaft of the transfer 23 or the countershaft 40 . It is also possible to configure the rotational speed of the output shaft 31 to be detected. In addition, the road surface detector 7
0 can also be configured to detect the operation of a wiper switch or the vertical acceleration of the vehicle body.

制御装置51は、第4図に示すように、摩擦多
板クラツチ49の油室47へ圧油を供給する油圧
回路(締結力調節手段に相当)56と、この油圧
回路56が発生する油圧を制御する電気制御回路
(回転速度差算出手段に相当)57と、を備えて
いる。油圧回路56は、同図に示すように、リザ
ーバタンク58内の油を加圧して吐出するポンプ
59を有し、このポンプ59の吐出ポートが摩擦
多板クラツチ49の油室47に接続され、また電
磁弁60を介してリザーバタンク58に接続され
ている。電磁弁60は、そのソレノイド60aが
電気制御回路57に結線され、該電気制御回路5
7ソレノイド60aに通電する電流値に応じた開
度で油室47すなわちポンプ59の吐出ポートを
リザーバタンク58に連通し、油室47へ供給さ
れる油圧(クラツチ圧)を変更する。すなわち、
この電磁弁60は、例えばポンプ59の吐出圧と
ソレノイド60aの電磁力とに応動するスプール
を有し、第5図に示すような特性で油室47へ供
給されるクラツチ圧をソレノイド60aに通電さ
れる電流値に応じた値に維持する。
As shown in FIG. 4, the control device 51 includes a hydraulic circuit 56 (corresponding to a fastening force adjusting means) that supplies pressure oil to the oil chamber 47 of the friction multi-disc clutch 49, and controls the hydraulic pressure generated by the hydraulic circuit 56. An electric control circuit (corresponding to a rotational speed difference calculation means) 57 is provided. As shown in the figure, the hydraulic circuit 56 includes a pump 59 that pressurizes and discharges the oil in the reservoir tank 58, and a discharge port of the pump 59 is connected to the oil chamber 47 of the friction multi-disc clutch 49. It is also connected to the reservoir tank 58 via a solenoid valve 60. The solenoid 60a of the solenoid valve 60 is connected to the electric control circuit 57.
The hydraulic pressure (clutch pressure) supplied to the oil chamber 47 is changed by communicating the oil chamber 47, that is, the discharge port of the pump 59, with the reservoir tank 58 at an opening degree corresponding to the current value applied to the solenoid 60a. That is,
This solenoid valve 60 has a spool that responds to the discharge pressure of the pump 59 and the electromagnetic force of the solenoid 60a, for example, and energizes the solenoid 60a with the clutch pressure supplied to the oil chamber 47 with the characteristics shown in FIG. The current value is maintained at a value that corresponds to the current value.

電気制御回路57は、前輪速度検知器54が出
力するパルス信号を周波数に対応した電位の信号
Nfに変換する第1カウンタ61と、後輪速度検
知器55が出力するパルス信号を周波数に対応し
た電位の信号Nrに変換する第2カウンタ62と、
これら第1カウンタ61および第2カウンタ62
の各出力信号Nf、Nrを減算処理して前輪27
FL,27FRと後輪27RL,27RRとの回転速
度差を表示する信号ΔN(ΔN=Nf−Nr)を出力
する減算器63と、路面検知器70の出力信号に
基づいて次式の定数Kを変化させると共に、減算
器63の出力信号ΔNを次式により演算処理して
制御信号Vを出力する演算回路64と、該演算回
路64が出力する制御信号Vに対応した電流値I
の励磁電流を電磁弁60のソレノイド60aに出
力する駆動回路65と、を有している。
The electric control circuit 57 converts the pulse signal output from the front wheel speed detector 54 into a signal with a potential corresponding to the frequency.
a first counter 61 that converts the pulse signal to Nf; a second counter 62 that converts the pulse signal output from the rear wheel speed detector 55 to a signal Nr with a potential corresponding to the frequency;
These first counter 61 and second counter 62
The output signals Nf and Nr are subtracted and the front wheel 27 is
Based on the output signal of the road surface detector 70 and the subtracter 63 that outputs a signal ΔN (ΔN=Nf−Nr) that indicates the rotational speed difference between FL, 27FR and the rear wheels 27RL, 27RR, the constant K of the following equation is calculated. an arithmetic circuit 64 which outputs a control signal V by processing the output signal ΔN of the subtracter 63 according to the following equation; and a current value I corresponding to the control signal V output by the arithmetic circuit 64.
and a drive circuit 65 that outputs the excitation current to the solenoid 60a of the solenoid valve 60.

V−K・ΔN+V0 ……(式) 但し、K、V0;設定数で、ある。 V-K・ΔN+V0...(Formula) However, K and V0 are set numbers.

すなわち、この電気制御回路57は、前輪27
FL,27FRと後輪27RL,27RRとの回転速
度差ΔNおよび路面摩擦係数に対応した励磁電流
Iを電流弁60のソレノイド60aへ出力し、こ
の電磁弁60によりクラツチ圧Pが回転速度差
ΔNおよび路面摩擦係数に対して第6図の斜線領
域内で変化するように制御される。詳しくは、走
行路面に例えば積雪があつて路面摩擦係数が小さ
い場合、式の定数Kの絶対値を小さく、回転速度
差ΔNに対して摩擦多板クラツチ49のクラツチ
圧を例えば第6図中の実線Aに示すような特性で
制御する。
That is, this electric control circuit 57 controls the front wheel 27
An excitation current I corresponding to the rotational speed difference ΔN and road friction coefficient between FL, 27FR and the rear wheels 27RL, 27RR is output to the solenoid 60a of the current valve 60, and the clutch pressure P is controlled by the solenoid valve 60 according to the rotational speed difference ΔN and the road friction coefficient. The road surface friction coefficient is controlled to vary within the shaded area in FIG. 6. Specifically, when the road surface is covered with snow and the road surface friction coefficient is small, the absolute value of the constant K in the equation is made small, and the clutch pressure of the friction multi-plate clutch 49 is changed to the rotational speed difference ΔN, for example, as shown in FIG. Control is performed using the characteristics shown by solid line A.

次に作用を説明する。 Next, the effect will be explained.

この4輪駆動車の駆動力配分制御装置は、前輪
27FL,27FRと後輪27RL,27RRとの回
転速度差ΔNおよび路面摩擦係数に基づいてクラ
ツチ圧Pすなわち摩擦多板クラツチ49の伝達ト
ルクを第6図に示すような特性に制御し、その駆
動力配分比を制御しながら、路面摩擦係数が小さ
い場合には式の定数Kの絶対値を小さくして、回
転速度差ΔNに対する摩擦多板クラツチ49の伝
達トルクの変化割合を低減させている。したがつ
て、この駆動力配分制御装置は、走行時において
車輪のスピン、タイトコーナーブレーキング現象
あるいはステア特性の急変等が生じることを防止
しながら、低摩擦係数路面におけるハンチングが
防止される。
This driving force distribution control device for a four-wheel drive vehicle adjusts the clutch pressure P, that is, the transmission torque of the friction multi-plate clutch 49, based on the rotational speed difference ΔN between the front wheels 27FL, 27FR and the rear wheels 27RL, 27RR and the road surface friction coefficient. While controlling the characteristics as shown in Figure 6 and controlling the driving force distribution ratio, if the road surface friction coefficient is small, the absolute value of the constant K in the equation is reduced, and the friction multi-disc clutch is adjusted to the rotational speed difference ΔN. 49, the rate of change in transmitted torque is reduced. Therefore, this driving force distribution control device prevents wheel spin, tight corner braking, or sudden changes in steering characteristics from occurring during driving, while also preventing hunting on a road surface with a low friction coefficient.

以下、走行時を場合別に詳しく説明すると、ま
ず、低摩擦係数路面上を直進走行する場合、後輪
27R,27RRのみを駆動する2輪駆動走行の
状態で、後輪27RL,27RRが体地スリツプを
生じ後輪27RL,27RRと前輪27FL,27
FRとの間に回転速度差ΔNが発生すると、第6
図に示すようなクラツチ圧Pが摩擦多板クラツチ
49の油室47へ供給され、摩擦多板クラツチ4
9がクラツチ圧Pに対応した駆動力を前輪27
FL,27FRへ伝達する。すなわち、車両の駆動
力は、前輪27FL,27FRにも分散されるた
め、後輪27RL,27RRが対地スリツプ(スピ
ン)を生じることも無くなる。また、この状態に
おいて、さらに後輪27RL,27RRが対地スリ
ツプを生じた場合も、同様に前輪27RL,27
RRへ摩擦多板クラツチ49により第6図に対応
した駆動力が伝達されるため、後輪27RL,2
7RRの対地スリツプが防止される。
Below, we will explain in detail each case when driving. First, when driving straight on a road surface with a low friction coefficient, the rear wheels 27RL and 27RR will experience body slip in a two-wheel drive driving state where only the rear wheels 27R and 27RR are driven. Rear wheels 27RL, 27RR and front wheels 27FL, 27
When a rotational speed difference ΔN occurs between the FR and the 6th
A clutch pressure P as shown in the figure is supplied to the oil chamber 47 of the friction multi-plate clutch 49, and the friction multi-disc clutch 4
9 applies the driving force corresponding to the clutch pressure P to the front wheels 27.
Transmit to FL, 27FR. That is, since the driving force of the vehicle is also distributed to the front wheels 27FL and 27FR, the rear wheels 27RL and 27RR do not experience ground slip (spin). In addition, in this state, if the rear wheels 27RL and 27RR further slip on the ground, the same applies to the front wheels 27RL and 27RR.
Since the driving force corresponding to FIG. 6 is transmitted to the RR by the friction multi-plate clutch 49, the rear wheels 27RL, 2
7RR ground slip is prevented.

一方、摩擦多板クラツチ49により前輪27
FL,27FRがエンジン21に接続された4輪駆
動走行時に、高摩擦係数路面上で半径の小さな旋
回走行すると、車両の特性として前輪27FL,
27FRの旋回半径が大きいため、前輪27FL,
27FRの回転速度が大きくなつて前輪27RL,
27FRが対地スリツプが生じる。この結果、前
輪27FL,27FRと後輪27RL,27RRとの
間に回転速度差ΔNが発生し、第6図に示すよう
に回転速度差ΔNに対応してクラツチ圧Pが減少
し、摩擦多板クラツチ49の伝達トルクが小さく
なる。すなわち、前輪27FL,27FRと後輪2
7RL,27RRとの駆動力配分比が小さくなつて
車両が2輪駆動走行の側へ移行するため、前輪2
7FL,27FRの対地スリツプすなわちタイトコ
ーナーブレーキング現象が発生することも無くな
る。
On the other hand, the front wheel 27 is
During four-wheel drive driving with FL and 27FR connected to the engine 21, when turning with a small radius on a road surface with a high friction coefficient, the front wheels 27FL and 27FR are
Because the turning radius of 27FR is large, the front wheels are 27FL,
The rotation speed of 27FR increases and the front wheel 27RL,
Ground slip occurs on 27FR. As a result, a rotational speed difference ΔN occurs between the front wheels 27FL, 27FR and the rear wheels 27RL, 27RR, and as shown in FIG. The transmission torque of the clutch 49 becomes smaller. In other words, front wheels 27FL, 27FR and rear wheel 2
As the driving force distribution ratio between 7RL and 27RR becomes smaller and the vehicle shifts to two-wheel drive, the front wheels
The ground slip or tight corner braking phenomenon of 7FL and 27FR also disappears.

また、上述した各場合においても、摩擦多板ク
ラツチ49の伝達トルクすなわち前輪27FL,
27FRと後輪27RL,27RRとの駆動力配分
は第6図に示すように前輪27FL,27FRと後
輪27RL,27RRとの回転速度差ΔNに応じて
変化するため、ステア特性が急変することも無
い。
Also in each of the above cases, the transmission torque of the friction multi-plate clutch 49, that is, the front wheel 27FL,
As shown in Figure 6, the driving force distribution between the 27FR and the rear wheels 27RL, 27RR changes depending on the rotational speed difference ΔN between the front wheels 27FL, 27FR and the rear wheels 27RL, 27RR, so the steering characteristics may change suddenly. None.

さらに、上述した各場合においては、回転速度
差ΔNに対する摩擦多板クラツチ49の伝達トル
クの変化割合が低減されるように、路面検知器7
0からの信号に基づいて前記式の定数Kが変化す
るため、低摩擦計数路面におけるハンチングが防
止される。したがつて、車輪が対地スリツプを生
じやすい低摩擦係数路面上での駆動力配分が運転
者に違和感を与えること無く行なわれ、より安定
した良好な操縦性能を得ることができる。
Furthermore, in each of the above cases, the road surface detector 7
Since the constant K in the above equation changes based on the signal from 0, hunting on a low friction coefficient road surface is prevented. Therefore, the driving force can be distributed on a road surface with a low friction coefficient where the wheels tend to slip on the ground without giving the driver a sense of discomfort, and more stable and good handling performance can be obtained.

(発明の効果) 以上説明してきたように、この発明にかかる4
輪駆動車の駆動力配分制御装置によれば、前後輪
の駆動力配分を前後輪の回転速度差に基づいて制
御すると共に、路面摩擦係数が小さい時には、上
記回転速度差に対するクラツチの伝達トルクの変
化割合を低減するよう構成したため、車輪のスピ
ンあるいはタイトコーナーブレーキング現象等お
よびステア特性の急変を防止しながら、低摩擦係
数路面においてより安定した操縦性能を得ること
ができる。
(Effect of the invention) As explained above, the four effects of this invention are as follows.
According to a drive force distribution control device for a wheel drive vehicle, the drive force distribution between the front and rear wheels is controlled based on the rotational speed difference between the front and rear wheels, and when the road surface friction coefficient is small, the transmission torque of the clutch is controlled based on the rotational speed difference. Since the structure is configured to reduce the rate of change, it is possible to obtain more stable steering performance on a low friction coefficient road surface while preventing wheel spin, tight corner braking, etc., and sudden changes in steering characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる4輪駆動車の駆動力
配分制御装置の構成図である。第2図から第6図
はこの発明の一実施例にかかる4輪駆動車の駆動
力配分制御装置を示す図であり、第2図は全体概
略図、第3図は機構要部の断面図、第4図は制御
部の回路図、第5図は電磁弁のソレノイドへの励
磁電流に対するクラツチ圧を示す図、第6図は前
後輪の回転数差に対するクラツチ圧を示す図であ
る。 11,27FL,27FR、……前輪、12,2
7RL,27RR、……後輪、13,21……機
関、14,49……クラツチ、15,54……前
輪速度検知器、16,55……後輪速度検知器、
17……回転速度差算出手段、18……締結力調
節手段、19,70……路面検知器。
FIG. 1 is a configuration diagram of a driving force distribution control device for a four-wheel drive vehicle according to the present invention. 2 to 6 are diagrams showing a driving force distribution control device for a four-wheel drive vehicle according to an embodiment of the present invention, in which FIG. 2 is an overall schematic diagram and FIG. 3 is a sectional view of main parts of the mechanism. , FIG. 4 is a circuit diagram of the control section, FIG. 5 is a diagram showing the clutch pressure with respect to the excitation current to the solenoid of the electromagnetic valve, and FIG. 6 is a diagram showing the clutch pressure with respect to the rotational speed difference between the front and rear wheels. 11,27FL,27FR,...Front wheel, 12,2
7RL, 27RR,...Rear wheel, 13,21...Engine, 14,49...Clutch, 15,54...Front wheel speed detector, 16,55...Rear wheel speed detector,
17... Rotational speed difference calculation means, 18... Fastening force adjustment means, 19, 70... Road surface detector.

Claims (1)

【特許請求の範囲】 1 前輪または後輪の一方を機関に直結するとと
もに前輪または後輪の他方をクラツチを介して機
関に連結し、該クラツチの伝達トルクを変えて前
輪の駆動力と後輪の駆動力との配分比率を変更す
る4輪駆動連の駆動力配分制御装置において、前
輪の回転速度を検出する前輪速度検知器と、後輪
の回転速度を検出する後輪速度検知器と、走行路
面の状態を検出する路面検知器と、前輪速度検知
器が検出した前輪の回転速度と後輪速度検知器が
検出した後輪の回転速度とに基づいて前輪と後輪
との回転速度差を算出する回転速度差算出手段
と、該回転速度差算出手段により算出された前輪
と後輪との回転速度差を基にクラツチの伝達トル
クを変えて前輪の駆動力と後輪の駆動力との配分
比率を制御すると共に、前記路面検知器が検出し
た走行路面の状態に基づいて摩擦係数が小さい時
には前記回転速度差に対するクラツチの伝達トル
クの変化割合を低減させる締結力調節手段と、を
有することを特徴とする4輪駆動車の駆動力配分
制御装置。 2 前記締結力調節手段は、前記前輪をクラツチ
を介して機関に連結すると共に、後輪を機関に直
結し、該クラツチの伝達トルクを変えて前輪の駆
動力と後輪の駆動力との配分比率を変更し、前輪
の回転速度が後輪の回転速度より大きい時前記配
分比率が小さくなるようクラツチの伝達トルクを
変えるとともに、前輪の回転速度が後輪の回転速
度より小さい時前記配分比率が大きくなるようク
ラツチの伝達トルクを変えることを特徴とする特
許請求の範囲第1項記載の4輪駆動車の駆動力配
分制御装置。
[Claims] 1. One of the front wheels or the rear wheels is directly connected to the engine, and the other of the front wheels or the rear wheels is connected to the engine via a clutch, and the transmission torque of the clutch is changed to adjust the driving force of the front wheels and the rear wheels. A four-wheel drive chain driving force distribution control device that changes the distribution ratio of the driving force to the driving force, a front wheel speed detector that detects the rotational speed of the front wheels, a rear wheel speed detector that detects the rotational speed of the rear wheels, A road surface detector detects the condition of the road surface, and the rotational speed difference between the front and rear wheels is determined based on the rotational speed of the front wheels detected by the front wheel speed detector and the rotational speed of the rear wheels detected by the rear wheel speed detector. and a rotational speed difference calculation means for calculating the rotational speed difference calculation means, and a transmission torque of the clutch is changed based on the rotational speed difference between the front wheels and the rear wheels calculated by the rotational speed difference calculation means, and the driving force of the front wheels and the driving force of the rear wheels are changed. and a fastening force adjustment means for controlling the distribution ratio of the clutch and reducing the rate of change in the transmission torque of the clutch with respect to the rotational speed difference when the coefficient of friction is small based on the state of the road surface detected by the road surface sensor. A driving force distribution control device for a four-wheel drive vehicle, characterized by the following. 2. The fastening force adjusting means connects the front wheels to the engine via a clutch, connects the rear wheels directly to the engine, and changes the transmission torque of the clutch to distribute the driving force between the front wheels and the rear wheels. By changing the ratio, when the rotation speed of the front wheels is higher than the rotation speed of the rear wheels, the transmission torque of the clutch is changed so that the distribution ratio becomes smaller, and when the rotation speed of the front wheels is lower than the rotation speed of the rear wheels, the distribution ratio is The driving force distribution control device for a four-wheel drive vehicle according to claim 1, characterized in that the transmission torque of the clutch is changed so as to increase the transmission torque of the clutch.
JP3328685A 1985-02-20 1985-02-20 Driving force distribution control device for 4-wheel-drive vehicle Granted JPS61191431A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3328685A JPS61191431A (en) 1985-02-20 1985-02-20 Driving force distribution control device for 4-wheel-drive vehicle
DE19863605489 DE3605489A1 (en) 1985-02-20 1986-02-20 Four-wheel drive with control of the drive power distribution as a function of the speed differential between front and rear wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328685A JPS61191431A (en) 1985-02-20 1985-02-20 Driving force distribution control device for 4-wheel-drive vehicle

Publications (2)

Publication Number Publication Date
JPS61191431A JPS61191431A (en) 1986-08-26
JPH0526687B2 true JPH0526687B2 (en) 1993-04-16

Family

ID=12382287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328685A Granted JPS61191431A (en) 1985-02-20 1985-02-20 Driving force distribution control device for 4-wheel-drive vehicle

Country Status (2)

Country Link
JP (1) JPS61191431A (en)
DE (1) DE3605489A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3766386D1 (en) * 1986-03-11 1991-01-10 Porsche Ag ARRANGEMENT FOR CONTROLLING THE POWER TRANSMISSION OF A FOUR WHEEL-DRIVEN VEHICLE.
JP2531514B2 (en) * 1986-09-30 1996-09-04 富士重工業株式会社 Control device for four-wheel drive vehicle
JPH0635261B2 (en) * 1986-12-03 1994-05-11 日産自動車株式会社 Drive force distribution controller for four-wheel drive vehicle
JP2522777B2 (en) * 1987-01-09 1996-08-07 日産自動車株式会社 Drive system controller for four-wheel drive vehicle
JP2527204B2 (en) * 1987-10-09 1996-08-21 日産自動車株式会社 Drive force distribution controller for four-wheel drive vehicle
JPH0729555B2 (en) * 1987-10-14 1995-04-05 日産自動車株式会社 Drive force distribution controller for four-wheel drive vehicle
JP2528485B2 (en) * 1987-11-30 1996-08-28 日産自動車株式会社 Drive force distribution controller for four-wheel drive vehicle
DE4014842A1 (en) * 1990-05-09 1991-11-14 Daimler Benz Ag Electronic controller for hydraulic actuator of friction clutch - operates EM control and holding valves to block return line to fluid reservoir in specified conditions
DE102005022243A1 (en) * 2003-11-24 2006-11-16 Volkswagen Ag Torque transmitting arrangement, comprises second control signal superposing first signal
DE10355097A1 (en) * 2003-11-24 2005-08-04 Volkswagen Ag Torque transfer device
JP6412192B2 (en) 2017-03-17 2018-10-24 株式会社Subaru Vehicle control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car
JPS58180325A (en) * 1982-04-14 1983-10-21 Fuji Heavy Ind Ltd Selective controller of 4-wheel driven car

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577803A (en) * 1969-05-12 1971-05-04 Otto Mueller Variable torque transmission
US3627072A (en) * 1969-06-05 1971-12-14 Borg Warner Plural output path torque transmitting mechanism-hydraulic clutch for four wheel drive vehicles
US3748928A (en) * 1971-09-20 1973-07-31 Borg Warner Control system for mutiple driving axle vehicle
DE2164324C2 (en) * 1971-12-23 1984-08-16 Daimler-Benz Ag, 7000 Stuttgart Control device for a lockable differential gear for vehicles
DE3025282A1 (en) * 1980-07-04 1982-02-25 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Friction brake for self locking differential - has multiplate brake on one side of housing and thrust ring on other side
DE3040120C2 (en) * 1980-10-24 1983-06-23 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Lockable differential gear for vehicles
JPS58100132A (en) * 1981-12-10 1983-06-14 Nippon Kankoushi Kogyo Kk Screen pattern textile printing method
JPS58139226A (en) * 1982-02-12 1983-08-18 Nec Corp Setting system of initial value in large scale integrated circuit
DE3212495C2 (en) * 1982-04-03 1985-08-29 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Lockable differential gear for motor vehicles
DE3427725A1 (en) * 1984-02-14 1985-08-22 Volkswagenwerk Ag, 3180 Wolfsburg Arrangement for controlling the power transmission of a four-wheel drive motor vehicle with transfer box
DE3437436C2 (en) * 1984-10-12 1986-08-21 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Arrangement for controlling the power transmission of a four-wheel drive vehicle
DE3437435C2 (en) * 1984-10-12 1986-08-21 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Arrangement for controlling the power transmission of a four-wheel drive vehicle
JPS61101034U (en) * 1984-12-10 1986-06-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car
JPS58180325A (en) * 1982-04-14 1983-10-21 Fuji Heavy Ind Ltd Selective controller of 4-wheel driven car

Also Published As

Publication number Publication date
JPS61191431A (en) 1986-08-26
DE3605489C2 (en) 1990-01-04
DE3605489A1 (en) 1986-09-11

Similar Documents

Publication Publication Date Title
US4757870A (en) Four wheel drive system having driving force distribution control responsive to front and rear wheel speed difference
US4754834A (en) Four wheel drive system having driving force distribution control responsive to vehicle lateral acceleration
JP4267495B2 (en) Driving force control method for four-wheel drive vehicle
JP2548229B2 (en) Drive force distribution controller for four-wheel drive vehicle
US5740877A (en) Driving-torque distribution control system for four-wheel drive vehicles
JP2527204B2 (en) Drive force distribution controller for four-wheel drive vehicle
US7562947B2 (en) Apparatus for controlling driving force of vehicle
US6817434B1 (en) Active hydraulically actuated on-demand wheel end assembly
EP0396323B1 (en) Torque distribution control system for a four-wheel drive motor vehicle
JPH0577533B2 (en)
JP4554252B2 (en) Control method for four-wheel drive vehicle
JPH0526687B2 (en)
US4889204A (en) Drive force distribution control system for four-wheel drive motor vehicle
EP1978284A2 (en) Vehicle limited slip differential
JPH0620828B2 (en) 4-wheel drive vehicle
JP4417203B2 (en) Driving force control method for four-wheel drive vehicle
JPH03189241A (en) Four-wheel drive device
EP1582390B1 (en) Drive force control method for four-wheel drive vehicle
JPS626831A (en) Driving force distribution controller for four-wheel drive car
JPS61178232A (en) Driving force transmission for four-wheel drive vehicle
JP2005289161A (en) Driving force control method of 4-wheel drive vehicle
JPS61275028A (en) Driving force distribution controller for four-wheel drive vehicle
JP2646764B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2544295B2 (en) 4-wheel drive vehicle
JP4298564B2 (en) Driving force control method for four-wheel drive vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term