JPH0415961A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH0415961A
JPH0415961A JP2120785A JP12078590A JPH0415961A JP H0415961 A JPH0415961 A JP H0415961A JP 2120785 A JP2120785 A JP 2120785A JP 12078590 A JP12078590 A JP 12078590A JP H0415961 A JPH0415961 A JP H0415961A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
layer
mesa
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2120785A
Other languages
Japanese (ja)
Inventor
Tagahiko Ohara
大原 多賀彦
Muneharu Miyashita
宗治 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP2120785A priority Critical patent/JPH0415961A/en
Publication of JPH0415961A publication Critical patent/JPH0415961A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent cracks by forming a mesa groove, in which a semiconductor layer is etched to a substrate, below a surface electrode formed of a common electrode to which a collector electrode and a collector electrode which is electrically connected to the outside are linked. CONSTITUTION:A first conductive GaAs layer 2 is grown to a predetermined thickness on a first conductive Si substrate 1. Then, a second conductive GaAs layer 3 and a second conductive AlGaAs layer 4 are formed thereon. At this time, a GaAs layer is not selectively grown on mesa grooves 8a, 8b. A reflection prevention film 5 is formed on the second conductive AlGaAs layer 4 and the mesa grooves 8a, 8b. The reflection prevention film 5 is etched in all the mesa groove 8a. In the mesa groove 8b, the reflection prevention film 5 is etched so as for the mesa groove 8a to contact the second conductive GaAs layer 3. Then, surface electrodes 6, 6' and a rear surface electrode 7 are formed. As a result, cracks which occur inside the solar cell due to electrode stress can be prevented without decreasing efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は異種基板上に形成された太陽電池に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to a solar cell formed on a heterogeneous substrate.

[従来の技術] 第3図は、例えばSi基板上に形成されたGaAs太陽
電池の平面図(a)、及び断面側面図(b)である。図
において、■は第1の導電型のSi基板、2は第1の導
電型のGaAs層、3は第2の導電型のGaAs層、4
は第2の導電型のAj!GaAS層、5は反射防止膜、
6は表面電極、7は裏面電極である。また、8aは太陽
電池の外側となる部分を第1の導電型のSi基板1まで
エツチングを行ったメサ溝である。
[Prior Art] FIG. 3 is a plan view (a) and a cross-sectional side view (b) of a GaAs solar cell formed on, for example, a Si substrate. In the figure, ■ is the Si substrate of the first conductivity type, 2 is the GaAs layer of the first conductivity type, 3 is the GaAs layer of the second conductivity type, and 4 is the GaAs layer of the second conductivity type.
is the second conductivity type Aj! GaAS layer, 5 is an antireflection film,
6 is a front electrode, and 7 is a back electrode. Moreover, 8a is a mesa groove in which the portion that becomes the outer side of the solar cell is etched down to the first conductivity type Si substrate 1.

第3図において、第1の導電型のGaAs層2゜第2の
導電型のGaAs層3.第2の導電型のAlGaAs層
4は、MOCVD法等の結晶成長法により第1の導電型
のSi基板1上に形成される。
In FIG. 3, a first conductivity type GaAs layer 2, a second conductivity type GaAs layer 3. The second conductive type AlGaAs layer 4 is formed on the first conductive type Si substrate 1 by a crystal growth method such as MOCVD.

メサ溝8aは第1の導電型のGaAs層2が数μm成長
した後エツチングにより形成される。そして、反射防止
膜59表面電極6.裏面電極7が形成される。
The mesa groove 8a is formed by etching after the first conductivity type GaAs layer 2 has grown several micrometers. Then, the antireflection film 59 surface electrode 6. A back electrode 7 is formed.

また、太陽電池の外側となる部分を第1の導電型のSi
基板1までエツチングを行ってメサ溝8aを形成するの
は、太陽電池の内側のGaAs層2.3に発生するクラ
ンクを防止するためであり、クランクを防止することに
より電流リークを少なくし、高効率の太陽電池を得るこ
とができる。
In addition, the outer part of the solar cell is made of Si of the first conductivity type.
The reason why the mesa groove 8a is formed by etching up to the substrate 1 is to prevent cranks from occurring in the GaAs layer 2.3 inside the solar cell.By preventing cranks, current leakage is reduced and high You can get efficient solar cells.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、Si基板上に形成されたGaAs太陽電池は、
StとGaAsの熱膨張係数差に起因した内部ストレス
がGaAs層中に残留しており、クラックが発生しやす
く、クランクの発生により電流リークが起こり、太陽電
池特性が低下するという問題点があった。従来は、太陽
電池の外側となる部分にメサ溝を形成することにより太
陽電池の内側に発生するクランクを防止してきたが、セ
ルサイズの大型化により太陽電池の外側に形成するメサ
溝だけでは太陽電池の内側に発生するクランクを完全に
防止することが難しいという問題点が起こってきた。ま
た、表面電極の蒸着によるストレスも大きく、電極スト
レスによりクランクが発生するという問題点もあった。
Generally, a GaAs solar cell formed on a Si substrate is
Internal stress caused by the difference in thermal expansion coefficient between St and GaAs remains in the GaAs layer, which causes cracks to easily occur, causing current leakage due to the occurrence of cranks, resulting in a reduction in solar cell characteristics. . Conventionally, cranks that occur on the inside of solar cells have been prevented by forming mesa grooves on the outside of the solar cells, but due to the increase in cell size, the mesa grooves formed on the outside of the solar cells alone are insufficient to prevent solar A problem has arisen in that it is difficult to completely prevent cranks from occurring inside the battery. In addition, the stress caused by the deposition of the surface electrode is large, and there is also the problem that cranking occurs due to the electrode stress.

この発明は上記のような問題点を解消するためになされ
たもので、太陽電池の内側のCraAs層中にクランク
のないSil板上のGaAs太陽電池を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a GaAs solar cell on a Sil plate without a crank in the CraAs layer inside the solar cell.

C課題を解決するための手段〕 この発明に係るSi基板上のGaAs太陽電池は、太陽
電池の外側となる部分にメサ溝を形成するときに同時に
表面電極、即ち光電流を収集するための集電極であるグ
リッド電極、及び外部への電気的接続がなされる集電極
が連結された共通電極であるバス電極の両方、の下部と
なるところに電極より細いメサ溝を形成し、該メサ溝を
反射防止膜(絶縁膜)で覆い、その上に第2の導電型の
GaAs層とコンタクトがとれるように表面電極を形成
したものである。
Means for Solving Problem C] In the GaAs solar cell on a Si substrate according to the present invention, when a mesa groove is formed in the outer part of the solar cell, a surface electrode, that is, a collector for collecting photocurrent is formed at the same time. A mesa groove that is narrower than the electrode is formed at the bottom of both the grid electrode, which is an electrode, and the bus electrode, which is a common electrode to which a collector electrode is connected, which is electrically connected to the outside. It is covered with an antireflection film (insulating film), and a surface electrode is formed thereon so as to be in contact with the second conductivity type GaAs layer.

〔作用〕[Effect]

この発明におけるSi基板上のGaAs太陽電池は、太
陽電池の内側のGaAs層をメサ溝により小面積部分に
分割することにより、太陽電池の内側に発生するクラン
クを防止する。また、表面電極(グリッド電極、バス電
極の両方)の下部にメサ溝を形成することにより、電極
によるストレスを減少し、クラックを防止する。
The GaAs solar cell on a Si substrate according to the present invention prevents cranks from occurring inside the solar cell by dividing the GaAs layer inside the solar cell into small area portions using mesa grooves. Furthermore, by forming mesa grooves under the surface electrodes (both grid electrodes and bus electrodes), stress caused by the electrodes is reduced and cracks are prevented.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるSi基板上のGaA
s太陽電池の平面構造(a)、及び断面構造(b)を示
し、第2図はその製造工程に従った断面構造の変化を示
す、第1図において、1は第1の導電型のSi基板、2
は第1の導電型のGaAs層、3は第2の導電型のCa
As層、4は第2の導電型のAj2GaAs層、5は反
射防止膜、6は表面電極の1つであるグリッド電極、6
′は表面電極の他の1つであるバス電極、7は裏面電極
、8はメサ溝である。
FIG. 1 shows GaA on a Si substrate according to an embodiment of the present invention.
s A planar structure (a) and a cross-sectional structure (b) of the solar cell are shown, and FIG. 2 shows changes in the cross-sectional structure according to the manufacturing process. In FIG. Substrate, 2
3 is a GaAs layer of the first conductivity type, and 3 is a Ca layer of the second conductivity type.
4 is an As layer, 4 is a second conductivity type Aj2GaAs layer, 5 is an antireflection film, 6 is a grid electrode that is one of the surface electrodes, 6
' is a bus electrode which is another one of the front electrodes, 7 is a back electrode, and 8 is a mesa groove.

第2図(a)は第1の導電型のSi基板1上に第1の導
電型のGaAs層2を数μm成長した後、太陽電池の外
側(8a)と表面電極6,6′の下部となるところ(8
b)を第1の導電型のSi基板1までエツチングし、メ
サ溝8を形成したものである。
FIG. 2(a) shows the outer side of the solar cell (8a) and the lower part of the surface electrodes 6, 6' after a GaAs layer 2 of the first conductivity type is grown several μm thick on the Si substrate 1 of the first conductivity type. Where it becomes (8
b) is etched down to the first conductivity type Si substrate 1 to form a mesa groove 8.

この後、第2図b)に示すように第1の導電型のGaA
s層2を所定の厚さまで成長し、第2の導電型のGaA
s層3.第2の導電型のAI!、CaAs層4を形成す
る。このとき、メサ溝8には選択的にGaAs層は成長
されない。
After this, as shown in FIG. 2b), the first conductivity type GaA
The s-layer 2 is grown to a predetermined thickness, and the second conductivity type GaA is grown.
s layer 3. Second conductivity type AI! , a CaAs layer 4 is formed. At this time, the GaAs layer is not selectively grown in the mesa groove 8.

そして、第2図(C)に示すように第2の導電型のAl
GaAs層4とメサ溝8a、8b上に反射防止JII5
を形成し、第2図(d)に示すように、メサ溝8aにつ
いては反射防止膜5を全部、メサ溝8bについては第2
の導電型のGaAs層3とコンタクトがとれるように反
射防止膜5をエンチングし、次に表面電極6,6′、そ
して裏面電極7を形成して第1図に示した構造を得るこ
とができる。
Then, as shown in FIG. 2(C), a second conductivity type Al
Anti-reflection JII 5 on the GaAs layer 4 and mesa grooves 8a and 8b
As shown in FIG. 2(d), the entire anti-reflection film 5 is applied to the mesa groove 8a, and the second anti-reflection film 5 is applied to the mesa groove 8b.
The antireflection film 5 is etched so as to be in contact with the GaAs layer 3 of the conductivity type, and then the front electrodes 6, 6' and the back electrode 7 are formed to obtain the structure shown in FIG. .

上記実施例に示した構造(第1図)かられかるように、
この実施例においては、第1の導電型のSi基板1上の
太陽電池の内側のG a A s’ N 2 。
As can be seen from the structure shown in the above example (Fig. 1),
In this example, Ga As' N 2 inside the solar cell on the Si substrate 1 of the first conductivity type.

3がメサ溝8により小面積部分に分割されているため、
太陽電池の内側に発生するクラックを防止することがで
きる。また、表面電極6.6′の下部にメサ溝8を形成
しているため、電極によるストレスを減少し、クシツク
の発生を防止することができる。以上のことからクラン
ク番こよる電流す−クを防ぐことができ、信軌性の高い
高効率の太陽電池を得ることができる。
3 is divided into small area parts by the mesa groove 8,
It is possible to prevent cracks from occurring inside the solar cell. Further, since the mesa groove 8 is formed under the surface electrode 6, 6', the stress caused by the electrode can be reduced and the occurrence of wrinkles can be prevented. From the above, it is possible to prevent current leakage due to crank speed, and to obtain a highly reliable and highly efficient solar cell.

また、太陽電池の内側のメサ溝8を表面電極66′の下
部に形成したため、有効面積を減らすことなく上記の効
果を得ることができる。
Furthermore, since the mesa groove 8 inside the solar cell is formed below the surface electrode 66', the above effects can be obtained without reducing the effective area.

なお、上記実施例ではSi基板上のGaAs太陽電池に
ついて説明したが、他の熱膨張係数等、物性定数の異な
る異種基板上の太陽電池においても同様の効果が得られ
る。
In the above embodiment, a GaAs solar cell on a Si substrate was described, but similar effects can be obtained in a solar cell on a different type of substrate having different physical constants such as a coefficient of thermal expansion.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、第1の導電型のSi
基板上の太陽電池の内側のGaAs層が小面積部分に分
割されるように構成したので、太FI!tif池の内側
に発生するクランクを防止することができ、また表面電
極の下部にメサ溝を形成したので、効率を低下させるこ
となく電極ストレスによるクラックを防止することがで
きるという効果がある。
As described above, according to the present invention, the first conductivity type Si
Since the GaAs layer inside the solar cell on the substrate is divided into small area parts, a large FI! Cracks occurring inside the TIF pond can be prevented, and since mesa grooves are formed at the bottom of the surface electrode, cracks due to electrode stress can be prevented without reducing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例によるSi基板上の
GaAs太陽電池を示す平面図、第1図(b))はその
断面側面図、第2図はその製造工程に従った断面側面図
、第3図(a)は従来のSi基板上のGaAs太陽電池
を示す平面図、第3図由)はその断面側面図である。 1は第1の導電型のSi基板、2は第1の導電型のGa
As層、3は第2の導電型のG a A s層、4は第
2の導電型のAfGaAs層、5は反射防止膜、6は表
面電極(グリッド電極)、6′は表面電極(バス電極)
、7は裏面電極、8はメサ溝である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1(a) is a plan view showing a GaAs solar cell on a Si substrate according to an embodiment of the present invention, FIG. 1(b) is a cross-sectional side view thereof, and FIG. 2 is a cross-sectional view according to the manufacturing process. 3(a) is a plan view showing a conventional GaAs solar cell on a Si substrate, and FIG. 3(a) is a cross-sectional side view thereof. 1 is a Si substrate of the first conductivity type, 2 is a Ga substrate of the first conductivity type.
3 is a second conductivity type GaAs layer, 4 is a second conductivity type AfGaAs layer, 5 is an antireflection film, 6 is a surface electrode (grid electrode), and 6' is a surface electrode (bus electrode)
, 7 is a back electrode, and 8 is a mesa groove. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)第1の半導体からなる半導体基板上に、前記第1
の半導体と熱膨張係数等、物性定数の異なる第2の半導
体からなる層を形成して形成される太陽電池において、 集電極及び外部への電気的接続がなされる集電極が連結
された共通電極よりなる表面電極の下部に、上記第2の
半導体層が上記第1の半導体からなる基板までエッチン
グされてなるメサ溝が形成されていることを特徴とする
太陽電池。
(1) On a semiconductor substrate made of a first semiconductor, the first
In a solar cell formed by forming a layer consisting of a semiconductor and a second semiconductor having different physical property constants such as coefficient of thermal expansion, a collector electrode and a common electrode connected to the collector electrode that is electrically connected to the outside. A solar cell characterized in that a mesa groove is formed by etching the second semiconductor layer down to the substrate made of the first semiconductor at the bottom of the surface electrode made of the material.
JP2120785A 1990-05-09 1990-05-09 Solar cell Pending JPH0415961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120785A JPH0415961A (en) 1990-05-09 1990-05-09 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120785A JPH0415961A (en) 1990-05-09 1990-05-09 Solar cell

Publications (1)

Publication Number Publication Date
JPH0415961A true JPH0415961A (en) 1992-01-21

Family

ID=14794941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120785A Pending JPH0415961A (en) 1990-05-09 1990-05-09 Solar cell

Country Status (1)

Country Link
JP (1) JPH0415961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262975A (en) * 2009-04-30 2010-11-18 Sharp Corp Solar cell and method for manufacturing the same
US20110232733A1 (en) * 2010-03-29 2011-09-29 Astrium Gmbh Multi-Junction Solar Cell For Space Applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262975A (en) * 2009-04-30 2010-11-18 Sharp Corp Solar cell and method for manufacturing the same
US20110232733A1 (en) * 2010-03-29 2011-09-29 Astrium Gmbh Multi-Junction Solar Cell For Space Applications
US10312392B2 (en) * 2010-03-29 2019-06-04 Airbus Defence and Space GmbH Multi-junction solar cell for space applications

Similar Documents

Publication Publication Date Title
US5131933A (en) Solar cell
US4994879A (en) Photoelectric transducer with light path of increased length
US8421074B2 (en) Semiconductor device with heterojunctions and an interdigitated structure
US5100478A (en) Solar cell
EP0666602B1 (en) Method of manufacturing a GaAs solar cell on a Si substrate
JPH01501511A (en) Solar cell with improved front metallization
EP0987768A1 (en) Solar cell
JPH0231508B2 (en)
US4931412A (en) Method of producing a thin film solar cell having a n-i-p structure
US11316058B2 (en) Stacked multi-junction solar cell with a metallization comprising a multilayer system
JP2548820B2 (en) Compound semiconductor photoelectric conversion device on Si substrate
JP2878031B2 (en) Thin solar cell and manufacturing method
US20230361232A1 (en) Solar cells having hybrid architectures including differentiated p-type and n-type regions with offset contacts
JPH02260667A (en) Compound semiconductor solar cell on silicon substrate and manufacture thereof
US4956685A (en) Thin film solar cell having a concave n-i-p structure
JPH0415961A (en) Solar cell
EP0986108A1 (en) Solar cell
JP3085180B2 (en) Field effect solar cell
JPS6148798B2 (en)
JP3105999B2 (en) Solar cell manufacturing method
JP4115071B2 (en) Photovoltaic device
JP2001068709A (en) Thin-film solar battery
JP2892921B2 (en) Photovoltaic device
JPH11121774A (en) Gallium arsenide solar cell
JP2001068702A (en) Manufacture of silicon based thin film photoelectric conversion device