JPH04149008A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPH04149008A
JPH04149008A JP2273263A JP27326390A JPH04149008A JP H04149008 A JPH04149008 A JP H04149008A JP 2273263 A JP2273263 A JP 2273263A JP 27326390 A JP27326390 A JP 27326390A JP H04149008 A JPH04149008 A JP H04149008A
Authority
JP
Japan
Prior art keywords
thin film
substrate
gas pressure
film
initial stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2273263A
Other languages
Japanese (ja)
Inventor
Isanori Sato
功紀 佐藤
Nakahiro Harada
原田 中裕
Chikushi Hara
原 築志
Kiyoshi Okaniwa
岡庭 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2273263A priority Critical patent/JPH04149008A/en
Publication of JPH04149008A publication Critical patent/JPH04149008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin film comprising a superconducting material having high Jc by forming the thin film on a substrate in a manner that in the initial stage of film forming, a single layer of superconducting material is provided under lower gas pressure than the gas pressure used for the growth of the thin film. CONSTITUTION:A superconducting thin film is formed on a metal substrate such as Hastelloy by vapor phase method. In the initial stage of film formation (for <=50nm film thickness), a single layer of the superconducting material is formed on the whole surface of the substrate under the gas pressure is controlled lower than the gas pressure used to grow the film (the gas pressure in the initial stage is preferably from 1/3 to same as the proper gas pressure for film formation). Then the pressure is controlled to normal pressure and the thin film is made to grow.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気相法で堆積させる方法による超電導導体の
作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a superconducting conductor by a vapor phase deposition method.

[従来の技術およびその課題] 従来、超電導導体の作製方法として、可撓性基板上に直
接またはバッファ層を介して酸化物超電導体層を気相法
で堆積させる方法が行われている。
[Prior Art and its Problems] Conventionally, as a method for producing a superconducting conductor, a method has been used in which an oxide superconductor layer is deposited on a flexible substrate directly or via a buffer layer by a vapor phase method.

この方法は、一般に薄膜性線材化と呼ばれている。This method is generally called thin-film wire production.

しかしながら、可撓性の金属基板やバッファ層は、通常
いずれも多結晶体であるため、これらの上に酸化物超電
導体材料を被着した場合、得られる酸化物超電導体は、
多結晶体しか得られず、これは単結晶体の上に形成した
場合の酸化物超電導体よりも臨界電流密度CJ C)か
著しく低い。
However, since flexible metal substrates and buffer layers are usually polycrystalline, when an oxide superconductor material is deposited on them, the resulting oxide superconductor is
Only polycrystalline materials are obtained, which have significantly lower critical current densities (CJ C) than oxide superconductors when formed on single crystals.

このようなことから、可撓性の金属基板やバッファ層を
設けた基板上に高いJcを持つ酸化物超電導体を作製す
ることができる方法の開発が鋭意進められている。
For these reasons, efforts are being made to develop a method that can produce an oxide superconductor with a high Jc on a flexible metal substrate or a substrate provided with a buffer layer.

本発明はかかる点に鑑みてなされたものてあり、可撓性
金属基板やバッファ層上に高いJcを持つ酸化物超電導
体層を作製できる方法を提供することを目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a method for producing an oxide superconductor layer having a high Jc on a flexible metal substrate or a buffer layer.

[課題を解決するための手段] 一般に気相法による薄膜の成長過程は大体以下のよって
ある。まず、基板上に薄膜を構成する原子か飛来して付
着する。この薄膜構成原子は、運動エネルギーを有する
ので基板表面をマイグレーションする。このマイグレー
ションする薄膜構成原子は、基板表面の表面ポテンシャ
ルの低い部分に捕獲される。捕獲された薄膜構成原子が
、いわゆる結晶成長核となる。その後、薄膜構成原子が
基板上に次々と飛来するので、薄膜構成原子か基板上を
マイグレーションする自由度か減少する。
[Means for Solving the Problem] Generally, the process of growing a thin film by a vapor phase method is roughly as follows. First, the atoms that make up the thin film fly in and adhere to the substrate. The atoms constituting the thin film have kinetic energy and migrate over the substrate surface. These migrating atoms constituting the thin film are captured in a portion of the substrate surface where the surface potential is low. The captured thin film constituent atoms become so-called crystal growth nuclei. Thereafter, the thin film constituent atoms fly onto the substrate one after another, and the degree of freedom for the thin film constituent atoms to migrate on the substrate decreases.

そして、薄膜構成原子のマイグレーションが不可能にな
ると結晶成長核を中心として結晶成長が始まる。この結
晶成長の初期段階は、形成される薄膜の結晶性を支配す
る非常に重要な過程であると考えられる。
Then, when migration of the atoms constituting the thin film becomes impossible, crystal growth begins centered around the crystal growth nucleus. This initial stage of crystal growth is considered to be a very important process that controls the crystallinity of the formed thin film.

一方、多結晶体基板上に形成した酸化物超電導体薄膜は
、必ず多結晶体であり1.それにおいて高いJcを有す
る薄膜を得るためには、薄膜か緻密になるように結晶成
長させる必要がある。このためには、結晶成長初期段階
において酸化物超電導体を基板上に島状に成長させるの
ではなく、基板全面にわたって単層成長させることが必
要である。
On the other hand, an oxide superconductor thin film formed on a polycrystalline substrate is always polycrystalline; In order to obtain a thin film having a high Jc, it is necessary to grow crystals so that the thin film becomes dense. For this purpose, it is necessary to grow the oxide superconductor in a single layer over the entire surface of the substrate, rather than growing it in an island shape on the substrate at the initial stage of crystal growth.

酸化物超電導体を基板全面にわたって単層成長させるた
めには、基板の表面自由エネルギーか大きい方か良く、
それはすなわち、薄膜構成原子のエネルギーか大きい程
都合が良いことになる。この薄膜構成原子のエネルギー
を大きくする効果的な手段として、薄膜形成時のガス圧
を低くすることか挙げられる。また、特にYBCO系の
酸化物超電導体の場合、薄膜中に酸素をより多く取り込
んだ方か高いJc、Tcのものが得られる。この観点か
らは成膜中の酸素を含む反応ガスのガス圧は高い方か好
ましい。本発明は上記の点に着目し、研究を重ねた結果
確立したものである。
In order to grow a single layer of oxide superconductor over the entire surface of the substrate, it is better to have the surface free energy of the substrate, whichever is larger.
In other words, the higher the energy of the atoms constituting the thin film, the better. An effective means of increasing the energy of the atoms constituting the thin film is to lower the gas pressure during thin film formation. Moreover, especially in the case of YBCO-based oxide superconductors, higher Jc and Tc can be obtained by incorporating more oxygen into the thin film. From this point of view, it is preferable that the gas pressure of the oxygen-containing reactive gas during film formation be high. The present invention was established as a result of repeated research focusing on the above points.

(発明の構成) すなわち、本発明は、基板上に超電導体薄膜を気相法で
堆積させる方法において、成膜初期段階は膜成長時の反
応ガス圧より低いガス圧にて膜成長させることを特徴と
する超電導導体の作製方法である。
(Structure of the Invention) That is, the present invention provides a method for depositing a superconductor thin film on a substrate by a vapor phase method, in which the film is grown at a gas pressure lower than the reaction gas pressure during film growth in the initial stage of film formation. This is a method for producing a characteristic superconducting conductor.

ここで、超電導体材料としては、YB a CuO系、
B15rCaCuO系のような酸化物超電導体材料が挙
げられる。
Here, as the superconductor material, YB a CuO system,
Examples include oxide superconductor materials such as B15rCaCuO.

成膜初期段階での反応ガス圧は、適性な成膜ガス圧の約
1/3以上該適性な成膜ガス圧の範囲内となるように設
定することが好ましい。これは、成膜初期段階での反応
ガス圧が適性な成膜ガス圧の約1/3未満であると得ら
れる超電導体薄膜の組成にずれ等か生じるためである。
The reaction gas pressure at the initial stage of film formation is preferably set to be within the range of about 1/3 or more of the appropriate film formation gas pressure. This is because if the reaction gas pressure at the initial stage of film formation is less than about 1/3 of the appropriate film forming gas pressure, a deviation in the composition of the obtained superconductor thin film will occur.

成膜初期段階とは、膜厚か50na+以下の状態を指す
。この成膜初期段階における膜厚が50nαを超えると
結晶核か生成の段階を過ぎて結晶成長に至りこれか支配
的になるからである。
The initial stage of film formation refers to a state where the film thickness is 50 na+ or less. This is because if the film thickness at this initial stage of film formation exceeds 50 nα, the stage of crystal nucleation will pass and crystal growth will occur, which will become dominant.

基板の材料としては、ハステロイ等のような金属基板か
用いられる。このとき、第1図および第2図に示すよう
に、テープ状体のように基板の厚みが薄い可撓性を有す
る基板1を用いてもよい。
As the material of the substrate, a metal substrate such as Hastelloy is used. At this time, as shown in FIGS. 1 and 2, a thin flexible substrate 1 such as a tape-shaped substrate may be used.

また、基板]の上にバッファ層2としてY2O3を添加
したZrO2(イツトリア安定化ジルコニア、以下、Y
SZと呼ぶ)等を設けたものも用いられる。
In addition, ZrO2 (yttria stabilized zirconia, hereinafter referred to as Y
SZ) etc. are also used.

[作用] 本発明の超電導導体の作製方法は、成膜初期段階におい
て薄膜成長の際に使用されるガス圧よりも低いガス圧で
基板全面に超電導体材料からなる単層を設けた後、ガス
圧を通常の圧力に戻して単層上に超電導体材料からなる
薄膜を成長させるものである。
[Function] In the method for producing a superconducting conductor of the present invention, a single layer made of a superconducting material is provided on the entire surface of a substrate at a gas pressure lower than that used during thin film growth in the initial stage of film formation, and then a gas The pressure is returned to normal pressure and a thin film of superconductor material is grown on the monolayer.

基板上に成膜初期段階において薄膜成長の際に使用され
るガス圧よりも低いガス圧で超電導体材料からなる単層
を設けることにより、薄膜構成原子の表面自由エネルギ
ーを大きくすることができる。このため、この単層上に
通常のガス圧で成長させた超電導体薄膜は緻密になる。
By providing a single layer made of a superconductor material on a substrate at a gas pressure lower than that used during thin film growth in the initial stage of film formation, the surface free energy of the atoms forming the thin film can be increased. Therefore, a superconductor thin film grown on this single layer at normal gas pressure becomes dense.

その結果、高いJcを有する超電導体材料からなる薄膜
を得ることかできる。
As a result, a thin film made of a superconductor material having a high Jc can be obtained.

[実施例] 本発明の実施例を具体的に説明する。[Example] Examples of the present invention will be specifically described.

実施例1 まず、鏡面研磨処理を施したハステロイ基板上にRFマ
グネトロンスパッタリング法によりYSZをバッファ層
として厚さ500 nmて形成した。
Example 1 First, YSZ was formed as a buffer layer to a thickness of 500 nm by RF magnetron sputtering on a mirror-polished Hastelloy substrate.

このとき、RFスパッタリングの条件は、基板温度25
0℃、Arガス圧3 IITorrSRF印加電力20
0Wであり、ターゲットとしてY2O,を8 mo1%
添加したZrO2の焼結体ターゲットを使用した。
At this time, the conditions for RF sputtering are that the substrate temperature is 25
0°C, Ar gas pressure 3, IITorrSRF applied power 20
0W, 8 mo1% Y2O as the target
A sintered target with added ZrO2 was used.

次いて、YSZ層を形成したハステロイ基板を多元制御
真空蒸着装置に設置し、該バッファ層の上に厚さ300
 niのY B a 2 Cu 307−X  (以下
、YBCOと呼ぶ)超電導体薄膜を蒸着した。この蒸着
は、次のようにして行った。基板をあらかじめ700℃
に加熱し、一方それぞれの容器に収容すtLt:Y、 
B a、 Cuの各金属にそれぞれ電子線を照射して加
熱蒸発させた。このとき、各金属の蒸発速度は、基板上
で理想の組成になるように水晶式膜厚計により制御した
。形成する超電導体に酸素を有効に取りこませるために
、基板近傍に局所的に酸素ガスを吹き付けて基板近傍を
高酸素圧になるようにした。超電導体薄膜の形成は、最
初の25n信を形成する際の酸素圧を3 X 10−’
Torr、後の275rvを形成する際の酸素圧を5×
10Torrとした。このようにして、YBCO/YS
Z/ハステロイの構造の実施例1の導体を作製した。
Next, the Hastelloy substrate on which the YSZ layer was formed was placed in a multi-control vacuum evaporation apparatus, and a 300 mm thick layer was deposited on the buffer layer.
A YB a 2 Cu 307-X (hereinafter referred to as YBCO) superconductor thin film of ni was deposited. This vapor deposition was performed as follows. Preheat the substrate to 700℃
tLt:Y,
Each of the metals Ba and Cu was irradiated with an electron beam and heated to evaporate. At this time, the evaporation rate of each metal was controlled using a quartz crystal film thickness meter so that an ideal composition was obtained on the substrate. In order to effectively incorporate oxygen into the superconductor to be formed, oxygen gas was locally blown near the substrate to create a high oxygen pressure near the substrate. The superconductor thin film is formed by reducing the oxygen pressure during the formation of the first 25 nm to 3 x 10-'
Torr, the oxygen pressure when forming the later 275rv is 5x
It was set to 10 Torr. In this way, YBCO/YS
A conductor of Example 1 having a Z/Hastelloy structure was produced.

実施例2 実施例1と同様にしてハステロイ基板上に782層を形
成した。次に、782層を形成したハステロイ基板上に
RFマグネトロンスパッタリング法により厚さ300 
rvのYBCO薄膜を形成した。このとき、RFスパッ
タリングの条件は、基板温度680℃、混合ガス比Ar
102−1/1、印加電力200Wてあり、ターゲット
としてYBa2Cu、OXターゲットを使用した。
Example 2 In the same manner as in Example 1, 782 layers were formed on a Hastelloy substrate. Next, on the Hastelloy substrate on which 782 layers were formed, a thickness of 300 mm was applied by RF magnetron sputtering method.
A YBCO thin film of rv was formed. At this time, the conditions for RF sputtering were: substrate temperature 680°C, mixed gas ratio Ar
102-1/1, the applied power was 200 W, and YBa2Cu and OX targets were used as targets.

超電導体薄膜の形成は、最初の25niを形成する際の
A r / 02混合ガス全圧を50  mTorrs
後の275 nmを形成する際のA「10□混合ガス全
圧を160 1aTorrとした。このようにして、Y
BCO/YSZ/ハステロイの構造の実施例2の導体を
作製した。比較例I YBCO薄膜形成時の酸素圧を3 X 10 ””To
rr一定として300 nmのYBCO薄膜を形成した
以外は、実施例1と同様にしてYBCO/YSZ/ハス
テロイの構造の比較例1の導体を作製した。
The superconductor thin film was formed by reducing the total pressure of Ar/02 mixed gas to 50 mTorrs when forming the first 25ni.
When forming the 275 nm layer, the total pressure of the mixed gas was set at 160 1 Torr.
A conductor of Example 2 having a BCO/YSZ/Hastelloy structure was produced. Comparative Example I Oxygen pressure during YBCO thin film formation was 3 x 10""To
A conductor of Comparative Example 1 having a structure of YBCO/YSZ/Hastelloy was produced in the same manner as in Example 1 except that a YBCO thin film of 300 nm was formed with rr constant.

比較例2 YBCO薄膜形成時の酸素圧を5 X ]−0−’To
rr一定として300n1BのYBCO薄膜を形成した
以外は、実施例1と同様にしてYBCO/YSZ/ハス
テロイの構造の比較例2の導体を作製した。
Comparative Example 2 Oxygen pressure during YBCO thin film formation was set to 5X]-0-'To
A conductor of Comparative Example 2 having a structure of YBCO/YSZ/Hastelloy was produced in the same manner as in Example 1 except that a YBCO thin film of 300 n1B was formed with rr constant.

比較例3 YBCO薄膜形成において、薄膜の最初の1、 OOn
iを形成する際の酸素圧を3 X 10−4Torr、
後の200 nmを形成する際の酸素圧を5×10To
rrとしたこと以外は、実施例1と同様にしてYBCO
/YSZ/ハステロイの構造の比較例3の導体を作製し
た。
Comparative Example 3 In YBCO thin film formation, the first 1 of the thin film, OOn
The oxygen pressure when forming i is 3 X 10-4 Torr,
The oxygen pressure when forming the next 200 nm was set to 5×10To.
YBCO was prepared in the same manner as in Example 1 except that rr was used.
A conductor of Comparative Example 3 having a structure of /YSZ/Hastelloy was produced.

得られた実施例1,2、比較例1〜3の導体にそれぞれ
金電極を取り付けた後、直流4端子法によりそれそ°れ
の導体のTcおよびJcを測定した。
A gold electrode was attached to each of the conductors of Examples 1 and 2 and Comparative Examples 1 to 3 obtained, and then Tc and Jc of each conductor were measured by a DC four-terminal method.

その結果を下記第1表に示す。The results are shown in Table 1 below.

第   1   表 第1表から明らかなように、 本発明の方法によ り得られた超電導導体(実施例1.2)は、非常に高い
Jcを示した。これに対し、比較例1の超電導導体は、
酸素取り込みが不充分でありTcが低かった。また、比
較例2の超電導導体は、形成された薄膜か緻密でないの
でJcが著しく低かった。また、本発明の範囲外の厚さ
で単層を形成した超電導導体(比較例3)もJcが著し
く低がった。
Table 1 As is clear from Table 1, the superconducting conductor (Example 1.2) obtained by the method of the present invention showed a very high Jc. On the other hand, the superconducting conductor of Comparative Example 1 is
Oxygen uptake was insufficient and Tc was low. In addition, the superconducting conductor of Comparative Example 2 had a significantly low Jc because the formed thin film was not dense. Furthermore, the superconducting conductor (Comparative Example 3) in which a single layer was formed with a thickness outside the range of the present invention also had a significantly lower Jc.

[発明の効果] 以上説明した如く、本発明の超電導導体の作製方法によ
れば、可撓性金属基板やバッファ層上に高いJcを持つ
酸化物超電導体層を作製できる。
[Effects of the Invention] As explained above, according to the method for producing a superconducting conductor of the present invention, an oxide superconductor layer having a high Jc can be produced on a flexible metal substrate or a buffer layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により得られた超電導導体の一実
施例を示す説明図、第2図は本発明の方法により得られ
た超電導導体の他の実施例を示す説明図である。 1・・・超電導導体層、2・・・バッファ層、3・・可
撓性基板。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is an explanatory diagram showing one embodiment of a superconducting conductor obtained by the method of the present invention, and FIG. 2 is an explanatory diagram showing another embodiment of a superconducting conductor obtained by the method of the present invention. 1... Superconducting conductor layer, 2... Buffer layer, 3... Flexible substrate. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  基板上に超電導体薄膜を気相法で堆積させる方法にお
いて、成膜初期段階は膜成長時の反応ガス圧より低いガ
ス圧にて膜成長させることを特徴とする超電導導体の作
製方法。
A method for producing a superconducting conductor, which is characterized in that a superconducting thin film is deposited on a substrate by a vapor phase method, and the film is grown at a gas pressure lower than the reaction gas pressure during film growth in the initial stage of film formation.
JP2273263A 1990-10-15 1990-10-15 Production of superconducting material Pending JPH04149008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273263A JPH04149008A (en) 1990-10-15 1990-10-15 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273263A JPH04149008A (en) 1990-10-15 1990-10-15 Production of superconducting material

Publications (1)

Publication Number Publication Date
JPH04149008A true JPH04149008A (en) 1992-05-22

Family

ID=17525397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273263A Pending JPH04149008A (en) 1990-10-15 1990-10-15 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPH04149008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158448A (en) * 2002-10-23 2004-06-03 Nexans Superconductors Gmbh Superconducting cable conductor having rebco-coated conductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158448A (en) * 2002-10-23 2004-06-03 Nexans Superconductors Gmbh Superconducting cable conductor having rebco-coated conductor element

Similar Documents

Publication Publication Date Title
KR100418279B1 (en) Structures Having Enhanced Biaxial Texture and Method of Fabricating Same
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US7718574B2 (en) Biaxially-textured film deposition for superconductor coated tapes
JP2007019015A (en) Controlled conversion of metal oxyfluoride to superconductive oxide
JP2524827B2 (en) Laminated thin film body and manufacturing method thereof
CA2037481C (en) Method of preparing oxide superconducting film
WO2004088677A1 (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
WO2000063926A1 (en) Oxide superconductor, method of manufacture thereof, and base material of oxide superconductor
JPH04149008A (en) Production of superconducting material
JPH01167221A (en) Production of superconducting thin film
JPH01275434A (en) Production of high temperature superconducting oxide film
JPH01166419A (en) Manufacture of superconductive membrane
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH02107597A (en) Method for bonding oxide superconductor to substrate
JP2819743B2 (en) Preparation method of high temperature superconducting thin film
JPS63236794A (en) Production of superconductive thin film of oxide
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JPH01167218A (en) Production of superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH03261608A (en) Manufacture of high-temperature superconducting thin film
JPH01164727A (en) Formation of superconducting thin film