JPH01166419A - Manufacture of superconductive membrane - Google Patents

Manufacture of superconductive membrane

Info

Publication number
JPH01166419A
JPH01166419A JP62324704A JP32470487A JPH01166419A JP H01166419 A JPH01166419 A JP H01166419A JP 62324704 A JP62324704 A JP 62324704A JP 32470487 A JP32470487 A JP 32470487A JP H01166419 A JPH01166419 A JP H01166419A
Authority
JP
Japan
Prior art keywords
thin film
producing
superconducting thin
film according
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324704A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Kenjiro Higaki
檜垣 賢次郎
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62324704A priority Critical patent/JPH01166419A/en
Priority to KR1019880017018A priority patent/KR970005158B1/en
Priority to DE19883854493 priority patent/DE3854493T2/en
Priority to US07/286,860 priority patent/US5028583A/en
Priority to AU27099/88A priority patent/AU615014B2/en
Priority to CA 586516 priority patent/CA1339020C/en
Priority to EP19880403254 priority patent/EP0322306B1/en
Publication of JPH01166419A publication Critical patent/JPH01166419A/en
Priority to US07/648,964 priority patent/US5252543A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the critical current of a complex oxide superconductive membrane with a high superconductive critical temperature by carrying out a physical evaporation at a membrane forming speed within 0.05 to 1Angstrom /sec. CONSTITUTION:When a complex oxide superconductor membrane including mainly a complex oxide shown in the formula I is produced in a physical evaporation process, the membrane forming speed in the physical evaporation is made within 0.05 to 1Angstrom /sec. As the physical evaporation process, a spattering, an ion plating, a vacuum evaporation, or the like, other than the evaporation process under the depressurized condition can be used, but in an ordinary condition, a spattering, the RF magnetron spattering in particular, is preferable. In such a way, a membrane of a complex oxide superconductive material with a high critical current density Jc can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導薄膜の製造方法に関するものであり、よ
り詳細には、高い超電導臨界温度を有する複合酸化物超
電導薄膜の臨界電流を大幅に向上させる超電導薄膜の作
製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a superconducting thin film, and more particularly, to a method for producing a superconducting thin film that significantly improves the critical current of a composite oxide superconducting thin film having a high superconducting critical temperature. This invention relates to a method for producing a thin film.

本発明により得られる超電導薄膜は高い臨界電流を持つ
と同時に、平滑性等の他の特性においても優れた特性を
有しており、集積回路を始めとする各種電子部品の配線
材料として特に有用である。
The superconducting thin film obtained by the present invention has a high critical current and also has excellent properties such as smoothness, making it particularly useful as a wiring material for various electronic components including integrated circuits. be.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。
BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties.

超電導の代表的な利用分野であるエレクトロニクスの分
野では、各種の超電導素子が提案され、また開発されて
いる。この分野で代表的なものとして、超電導材料どう
しを弱く接合した場合に、印加電流によって量子効果が
巨視的に現れるジョセフソン効果を利用した素子が挙げ
られる。トンネル接合型ジョセフソン素子は、超電導材
料のエネルギーギャップが小さいことから、極めて高速
な低電力消費のスイッチング素子として期待されている
。さらに、電磁波や磁場に対するジョセフソン効果が正
確な量子現象として現れることから、ジョセフソン素子
を磁場、マイクロ波、放射線等の超高感度センサとして
利用することも期待されている。
In the field of electronics, which is a typical field of application of superconductivity, various superconducting elements have been proposed and developed. A typical example in this field is an element that utilizes the Josephson effect, in which a quantum effect appears macroscopically depending on an applied current when superconducting materials are weakly bonded together. Tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of superconducting materials is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson elements will be used as ultrasensitive sensors for magnetic fields, microwaves, radiation, etc.

また、超高速電子計算機では、単位面積当たりの消費電
力が冷却能力の限界に達してきているため超電導素子の
開発が要望されおり、さらに、電子回路の集積度が高く
なるにつれて電流ロスの無い超電導材料を配線材料とし
て用いることが要望されている。
In addition, in ultra-high-speed electronic computers, the power consumption per unit area is reaching the limit of cooling capacity, so there is a demand for the development of superconducting elements.Furthermore, as the degree of integration of electronic circuits increases, superconducting There is a desire to use the material as a wiring material.

しかし、様々な努力にもかかわらず、超電導材料の超電
導臨界温度Tcは長期間に亘ってNb、Geの23Kを
越えることができなかったが、昨年来、(La、 Ba
〕、(:u○、または(La、 Sr) 2cuoa等
の酸化物の焼結材が高いTCをもつ超電導材料として発
見され、非低温超電導を実現する可能性が大きく高まっ
ている。これらの物質では、30乃至50にという従来
に比べて飛躍的に高いTcが観測されている。
However, despite various efforts, the superconducting critical temperature Tc of superconducting materials has not been able to exceed 23K for Nb and Ge for a long time;
], (:u○, or (La, Sr) 2cuoa, etc., have been discovered as superconducting materials with high TC, and the possibility of realizing non-low temperature superconductivity is greatly increasing.These materials In this case, a significantly higher Tc of 30 to 50 has been observed compared to the conventional method.

尚、上述のような複合酸化物超電導体薄膜の作製は、わ
が国においては、焼結等で生成した酸化物を蒸着源とし
て用いた、スパッタリング法等の物理蒸着によって行う
ことが一般的である。
In Japan, the above-described composite oxide superconductor thin film is generally produced by physical vapor deposition such as sputtering using an oxide produced by sintering or the like as a deposition source.

発明が解決しようとする問題点 ところで、上述のような複合酸化物系超電導体薄膜は、
臨界電流密度Jcが小さいために、臨界温度Tcが極め
て高いにも関わらず実際の電子回路として実用化するこ
とができなかった。
Problems to be solved by the invention By the way, the above-mentioned composite oxide superconductor thin film has
Since the critical current density Jc was small, it could not be put to practical use as an actual electronic circuit even though the critical temperature Tc was extremely high.

そこで、本発明の目的は、上記従来技術の問題点を解決
し、高い臨界電流密度Jcを有する複合酸化物超電導材
料の薄膜を作製する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a method for producing a thin film of a composite oxide superconducting material having a high critical current density Jc.

問題点を解決するための手段 本発明に従うと、下記の式: %式% (但し、元素αは、BaまたはSrであり、Xは0.0
1≦x≦0.2を満たす数である)で表される複合酸化
物を主として含有する複合酸化物超電導体薄膜を物理蒸
着によって作製する方法において、 上記物理蒸着時の成膜速度を0.05〜1Å/秒の範囲
としたことを特徴とする超電導薄膜の作製方法が提供さ
れる。
Means for Solving the Problems According to the present invention, the following formula: % formula % (where the element α is Ba or Sr and X is 0.0
In a method for producing a composite oxide superconductor thin film mainly containing a composite oxide represented by the formula 1≦x≦0.2 by physical vapor deposition, the film forming rate during the physical vapor deposition is set to 0. Provided is a method for producing a superconducting thin film, characterized in that the heating rate is in the range of 0.05 to 1 Å/sec.

上記物理蒸着としては、スパッタリング、イオンブレー
ティング、真空蒸着等の減圧下での蒸着法の他を用いる
ことができるが、一般にはスパッタリング、特にRFマ
グネトロンスパッタリングが好ましい。
As the above-mentioned physical vapor deposition, other vapor deposition methods under reduced pressure such as sputtering, ion blating, and vacuum vapor deposition can be used, but generally sputtering, particularly RF magnetron sputtering, is preferable.

本発明の方法で作製される複合酸化物超電導薄膜は、上
記一般式: %式% で示される複合酸化物を主として含んでおり、これらの
複合酸化物はペロブスカイト型または擬似ペロブスカイ
ト型酸化物を主体としたものと考えられ、上記元素αは
8aまたはSrから選択される。
The composite oxide superconducting thin film produced by the method of the present invention mainly contains a composite oxide represented by the above general formula: It is considered that the element α is selected from 8a or Sr.

上記BaまたはSrと、Laと、Cuとの原子比は上記
の式を満たす範囲であることが好ましいが、必ずしも厳
密にこの比に限定されるものではなく、これらの比から
±50%の範囲、さらに好ましくは±20%の範囲でず
れた原子比の組成のものでも有効な超電導現象を示す場
合がある。すなわち、特許請求の範囲において「上記の
式で表される複合酸化物を主として含有する」という表
現は上記のように上記の式で定義される原子比以外のも
のも含むということを意味し、更に、上記の定義は上記
の元素以外の元素、すなわち、ppmオーダーで混入す
る不可避的不純物や、製品の他の特性、例えば機械的な
特性等を向上させる目的で添加される第3成分を含有し
ていてもよいということを意味している。
The atomic ratio of Ba or Sr, La, and Cu is preferably within a range that satisfies the above formula, but is not necessarily strictly limited to this ratio, and may be within ±50% of these ratios. Even if the composition has an atomic ratio that deviates within a range of, more preferably, ±20%, an effective superconducting phenomenon may be exhibited. That is, in the claims, the expression "mainly contains a composite oxide represented by the above formula" means that it also includes atomic ratios other than those defined by the above formula, as described above, Furthermore, the above definition includes elements other than the above elements, that is, unavoidable impurities mixed in on the order of ppm, and third components added for the purpose of improving other properties of the product, such as mechanical properties. This means that it is okay to do so.

第3成分として添加可能な元素としては、周期律表■a
族元素のSrSCa5Mg、 Be、上記以外の周期律
表ma族元素、周期律表I b、 II b、 II[
b。
Elements that can be added as the third component include ■a of the periodic table
Group elements SrSCa5Mg, Be, periodic table ma group elements other than the above, periodic table I b, II b, II [
b.

rVaおよび■a族から選択される元素、例えば、Ti
、 Vを挙げることが出来る。
rVa and an element selected from the a group, for example, Ti
, V can be mentioned.

本発明の特徴は、上記物理蒸着時の成膜速度を0.05
〜1Å/秒、さらに好ましくは0.1〜0.8Å/秒に
した点にある。
The feature of the present invention is that the film formation rate during the above physical vapor deposition is 0.05
-1 Å/sec, more preferably 0.1 to 0.8 Å/sec.

本発明者達の実験結果によると、理蒸着時の成膜速度が
1Å/秒を超えると、得られた超電導薄膜の臨界電流密
度が大幅に低下して実用的な薄膜が得られない。また、
成膜速度を0.05Å/秒未満にすると、成膜速度が極
端に遅くなるので、工業的でない。
According to the experimental results of the present inventors, when the deposition rate during physical vapor deposition exceeds 1 Å/sec, the critical current density of the obtained superconducting thin film decreases significantly, making it impossible to obtain a practical thin film. Also,
If the film formation rate is less than 0.05 Å/sec, the film formation rate becomes extremely slow and is not industrially practical.

上記物理蒸着をスパッタリングで行う場合には、スパッ
タリングを0.001〜0.5 Torrの圧力、さら
に好ましくは0.01〜0JTorrの圧力下でかつ0
□を5〜95分子%、さらに好ましくは10〜80分子
%含む雰囲気で行うのが好ましい。この02以外と一緒
に用いることが可能な他のスパッタリングガスとしては
不活性ガスであるアルゴンが好ましい。
When the above-mentioned physical vapor deposition is performed by sputtering, the sputtering is performed under a pressure of 0.001 to 0.5 Torr, more preferably under a pressure of 0.01 to 0 JTorr, and at a pressure of 0.001 to 0.5 Torr.
It is preferable to conduct the reaction in an atmosphere containing 5 to 95 mol %, more preferably 10 to 80 mol % of □. Argon, which is an inert gas, is preferably used as a sputtering gas other than 02.

また、基板を200〜950℃、さらに好ましくは50
0〜920℃に加熱しながらスパッタリングを行うのが
好ましい。
In addition, the substrate is heated at 200 to 950°C, more preferably at 50°C.
It is preferable to perform sputtering while heating at 0 to 920°C.

上記のように物理蒸着をスパッタリングで行う場合には
、成膜速度を制御するファクタとしては、成膜ガス圧力
、02/(02+Ar)の比、更にRFスパッタリング
においてはRFパワーを挙げることができる。
When physical vapor deposition is performed by sputtering as described above, factors for controlling the film formation rate include the film formation gas pressure, the ratio of 02/(02+Ar), and, in the case of RF sputtering, the RF power.

いずれの場合にも、スパッタリングガス中の02の比率
が5から95分子%であることが好ましい。
In either case, the proportion of 02 in the sputtering gas is preferably 5 to 95 mol%.

そして、スパッタリングをRFスパッタリングで行う場
合には、高周波電力を0.064〜1.27W/Crl
の範囲内、特に0.127〜0.76W/ca!の範囲
内とすることが好ましい。更に、スパッタリングガス中
0O2の比率が10から80分子%の範囲とし、成膜ガ
ス圧力を0.001〜0.5 Torrの圧力、特に0
.01〜0.3 Torrの範囲内とすることが好まし
い。
When sputtering is performed by RF sputtering, the high frequency power is 0.064 to 1.27 W/Crl.
Within the range of 0.127 to 0.76 W/ca! It is preferable to set it within the range of. Furthermore, the ratio of 0O2 in the sputtering gas is in the range of 10 to 80 mol%, and the film forming gas pressure is 0.001 to 0.5 Torr, especially 0
.. It is preferable to set it within the range of 0.01 to 0.3 Torr.

成膜ガス圧力または02/ (02+ A r)の比を
制御する場合には、上記スパッタリングをRFスパッタ
リングで行うときは、高周波電力を1.27〜2,55
W / an!の範囲内、特に1.53〜2.29W/
cafの範囲内とすることが好ましい。そして、02/
 (02+A r)の比を制御する場合には、スパッタ
リングガス中の02の比率は、30から95分子%の範
囲内、特に40から80分子%の範囲内とすることが好
ましく、成膜ガス圧力を0.001〜0.5Torrの
圧力、特に0.01〜Q、3Torrの範囲内とするこ
とが好ましい。
When controlling the film forming gas pressure or the ratio of 02/(02+Ar), when performing the above sputtering by RF sputtering, the high frequency power should be set at 1.27 to 2,55.
W/an! within the range, especially 1.53 to 2.29 W/
It is preferable to set it within the range of caf. And 02/
When controlling the ratio of (02+A r), the ratio of 02 in the sputtering gas is preferably within the range of 30 to 95 mol%, particularly within the range of 40 to 80 mol%, and the deposition gas pressure It is preferable that the pressure is in the range of 0.001 to 0.5 Torr, particularly in the range of 0.01 to Q, 3 Torr.

一方、成膜ガス圧力を制御する場合には、スパッタリン
グガス中の02の比率は、特に10から80分子%の範
囲内とすることが好ましく、成膜ガス圧力を0、OO1
〜0.57orrの圧力、特に0.05〜0.5Tor
rの範囲内とすることが好ましい。
On the other hand, when controlling the film-forming gas pressure, the ratio of 02 in the sputtering gas is preferably within the range of 10 to 80 mol%, and the film-forming gas pressure is set to 0, OO1.
~0.57 orr pressure, especially 0.05-0.5 Torr
It is preferable to set it within the range of r.

本発明の態様に従うと、上記の複合酸化物超電導薄膜を
形成する基板としては、ペロブスカイト型結晶の基板、
酸化物基板、またはそれらペロブスカイト型結晶または
酸化物がバッファ層として形成された金属基板や半導体
基板を使用することが可能である。好ましくは、基板と
しては、MgO単結晶、SrTiO3単結晶、ZrO,
単結晶、YSZ単結晶、A1□(13)単結晶、または
多結晶A1□(13)、更には、それら物質で成膜面が
形成された金属基板や半導体基板が好ましい。特に、M
gO単結晶または3rTiOs単結晶基板の成膜面を、
(001)面または(110)面とすることが好ましい
According to an aspect of the present invention, the substrate on which the above composite oxide superconducting thin film is formed includes a perovskite crystal substrate,
It is possible to use an oxide substrate, or a metal substrate or semiconductor substrate on which a perovskite crystal or oxide is formed as a buffer layer. Preferably, the substrate is MgO single crystal, SrTiO3 single crystal, ZrO,
Single crystal, YSZ single crystal, A1□(13) single crystal, or polycrystalline A1□(13), as well as metal substrates and semiconductor substrates whose film-forming surfaces are formed of these materials are preferable. In particular, M
The film formation surface of the gO single crystal or 3rTiOs single crystal substrate is
It is preferable to use a (001) plane or a (110) plane.

さらに、本発明の態様では、成膜後の薄膜を酸素分圧0
.1〜10気圧の酸素含有雰囲気で800〜960℃で
0.5〜20時間、さらに好ましくは850〜950℃
で1〜10時間加熱し、10℃/分以下の冷却速度で冷
却してアニールを行うことが好ましい。
Furthermore, in an aspect of the present invention, the thin film after being formed has an oxygen partial pressure of 0.
.. 0.5 to 20 hours at 800 to 960°C in an oxygen-containing atmosphere of 1 to 10 atm, more preferably 850 to 950°C
It is preferable to perform annealing by heating for 1 to 10 hours and cooling at a cooling rate of 10° C./min or less.

また、膜厚を0.1〜10μmの範囲、さらに好ましく
は0.5〜2μmの範囲となるように成膜する。
Further, the film is formed to have a thickness in the range of 0.1 to 10 μm, more preferably in the range of 0.5 to 2 μm.

作用 本発明の超電導薄膜の作製方法は、上記物理蒸着を0.
05〜1Å/秒、さらに好ましくは0.1〜0.8Å/
秒の成膜速度で行うことをその主要な特徴としている。
Function: The method for producing a superconducting thin film of the present invention includes the above-mentioned physical vapor deposition at 0.
05-1 Å/sec, more preferably 0.1-0.8 Å/sec
Its main feature is that it can be formed at a deposition rate of seconds.

従来の方法による複合酸化物超電導体薄膜の作製におい
ては、焼結体をターゲットとして物理蒸着、一般にはス
パッタリングを行っていたが、得られた超電導薄膜の臨
界電流密度Jcが低く、実用にはならなかった。
In the conventional method of producing composite oxide superconductor thin films, physical vapor deposition, generally sputtering, was performed using a sintered body as a target, but the critical current density Jc of the obtained superconducting thin film was low, making it impractical. There wasn't.

これは、複合酸化物超電導体は、その臨界電流密度に結
晶異方性を有するためである。すなわち、結晶のa軸お
よびb軸で決定される面に平行な方向に電流が流れ易い
が、従来の方法では、結晶方向を十分に揃えることがで
きなかったためである。
This is because the composite oxide superconductor has crystal anisotropy in its critical current density. That is, although current tends to flow in a direction parallel to the plane determined by the a-axis and b-axis of the crystal, the conventional methods have not been able to align the crystal directions sufficiently.

そこで、従来は、結晶方向を揃えるために、基板として
、複合酸化物超電導体結晶の格子間隔に近い格子間隔を
有するMgO1SrTiO,およびYSZ等の単結晶の
特定な面を成膜面として用いていた。
Therefore, in the past, in order to align the crystal directions, a specific surface of a single crystal such as MgO1SrTiO or YSZ, which has a lattice spacing close to that of a composite oxide superconductor crystal, was used as a substrate for film formation. .

本発明の方法では、従来の方法を改良して、上記物理蒸
着時の成膜速度を0.05〜1Å/秒、さらに好ましく
は0.1〜0.8 Å/秒にしたことで、複合酸化物の
結晶方向を揃える。この結果、従来法と比較して、大幅
にJcが向上した超電導渭膜が得られる。
In the method of the present invention, the conventional method is improved and the film formation rate during the physical vapor deposition is set to 0.05 to 1 Å/sec, more preferably 0.1 to 0.8 Å/sec. Align the crystal orientation of the oxide. As a result, a superconducting wave film with significantly improved Jc compared to the conventional method can be obtained.

本発明の方法では、上記の条件で、物理蒸着、好ましく
はスパッタリングにより成膜を行うが、この物理蒸着、
好ましくはスパッタリング時に基板温度を200〜95
0℃、さらに好ましくは500〜920℃に加熱して物
理蒸着、好ましくはスパッタリングすることが好ましい
。基板温度が200℃未満の場合には、複合酸化物の結
晶性が悪くアモルファス状になり、超電導薄膜は得られ
ない。また、基板温度が950℃を超えると、結晶構造
が変わってしまい、上記の複合酸化物は超電導体とはな
らない。
In the method of the present invention, film formation is performed by physical vapor deposition, preferably sputtering, under the above conditions.
Preferably, the substrate temperature during sputtering is 200-95
It is preferable to perform physical vapor deposition, preferably sputtering, by heating to 0°C, more preferably 500 to 920°C. If the substrate temperature is less than 200° C., the composite oxide has poor crystallinity and becomes amorphous, making it impossible to obtain a superconducting thin film. Furthermore, if the substrate temperature exceeds 950° C., the crystal structure changes and the above-mentioned composite oxide does not become a superconductor.

本発明で好ましく用いられるRFマグネトロンスパッタ
リングの場合には、例えばlQcmφのターゲットに対
して、スパッタリング時に高周波電力を従来の1.9W
/cnf程度から5〜100 W、すなわち、単位断面
積当たり0.064〜1.27W/co!、さらに好ま
しくは、10〜60W1すなわち、単位断面積当たり0
.127〜0.76W/cat印加するするのが好まし
い。
In the case of RF magnetron sputtering, which is preferably used in the present invention, for example, a high frequency power of 1.9 W is applied to a target of lQcmφ during sputtering, compared to the conventional method.
/cnf to 5 to 100 W, that is, 0.064 to 1.27 W/co per unit cross-sectional area! , more preferably 10 to 60 W1, that is, 0 per unit cross-sectional area.
.. It is preferable to apply 127 to 0.76 W/cat.

本発明の態様に従うと、上記の複合酸化物超電導薄膜を
形成する基板としては、MgO単結晶、5rTiO,単
結晶またはZr○2単結晶基板が好ましく、特に、Mg
O単結晶基板または5rTi(13)単結晶基板の(0
01)面または(110)面を成膜面として用いること
が好ましい。さらには、上記の単結晶相を有する金属基
板あるいは半導体基板を用いることもできる。
According to an aspect of the present invention, the substrate on which the above composite oxide superconducting thin film is formed is preferably an MgO single crystal, 5rTiO, single crystal, or Zr○2 single crystal substrate, particularly an MgO single crystal,
O single crystal substrate or 5rTi(13) single crystal substrate (0
It is preferable to use the 01) plane or the (110) plane as the film-forming plane. Furthermore, a metal substrate or a semiconductor substrate having the above-mentioned single crystal phase can also be used.

これは、既に説明したように本発明の複合酸化物超電導
体は、その電気抵抗に結晶異方性を有するためで、上記
の基板の上記成膜面上に形成された複合酸化物超電導薄
膜は、その結晶のC軸が基板成膜面に対し垂直または垂
直に近い角度となり、特に臨界電流密度Jcが大きくな
るものと考えられる。従って、MgO単結晶基板または
SrTiO3単結晶基板の(001)面を成膜面として
用いることが好ましい。また、(1101面を用いてC
軸を基板と平行にし、C軸と垂直な方向を特定して用い
ることもできる。さらに、MgO1SrTiO,は、熱
膨張率が上記の複合酸化物超電導体と近いため、加熱、
冷却の過程で薄膜に不必要な応力を加えることがなく、
薄膜を破損する恐れもない。
This is because, as already explained, the composite oxide superconductor of the present invention has crystal anisotropy in its electrical resistance, and the composite oxide superconductor thin film formed on the film formation surface of the substrate is It is thought that the C-axis of the crystal is perpendicular or nearly perpendicular to the substrate film-forming surface, and the critical current density Jc becomes particularly large. Therefore, it is preferable to use the (001) plane of the MgO single crystal substrate or the SrTiO3 single crystal substrate as the film forming surface. Also, (C using the 1101 plane)
It is also possible to make the axis parallel to the substrate and specify a direction perpendicular to the C-axis. Furthermore, MgO1SrTiO, has a coefficient of thermal expansion close to that of the above-mentioned composite oxide superconductor, so when heated,
No unnecessary stress is applied to the thin film during the cooling process.
There is no risk of damaging the thin film.

本発明の態様に従うと、成膜後の薄膜を酸素分圧0.1
〜10気圧の酸素含有雲囲気中で800〜960℃、さ
らに好ましくは850〜950℃に加熱、lO℃/分以
下の冷却速度で冷却する熱処理を施すアニール処理を行
うことが好ましい。この処理は、上記の複合酸化物中の
酸素欠陥を調整するもので、この処理を経ない薄膜の超
電導特性は悪く、超電導性を示さない場合もある。従っ
て、上記の熱処理を行うことが好ましい。
According to an aspect of the present invention, the thin film after being formed has an oxygen partial pressure of 0.1.
It is preferable to perform an annealing treatment by heating to 800 to 960° C., more preferably 850 to 950° C., in an oxygen-containing cloud atmosphere of 10 atm and cooling at a cooling rate of 10° C./min or less. This treatment is to adjust oxygen defects in the above-mentioned composite oxide, and a thin film that does not undergo this treatment will have poor superconducting properties, and may not exhibit superconductivity. Therefore, it is preferable to perform the above heat treatment.

実施例 以下に本発明を実施例により説明するが、本発明の技術
的範囲は、以下の開示に何等制限されるものではないこ
とは勿論である。
EXAMPLES The present invention will be explained below using examples, but it goes without saying that the technical scope of the present invention is not limited to the following disclosure.

実施例1 上記で説明した本発明の超電導薄膜の作製方法をRFマ
グネトロンスパッタリングによって実施した。ターゲッ
トとしては、La5BaSCuの原子比La:Ba:C
uを1.8 : 0.2 : 1とした原料粉末を常法
に従って焼結して作った1a−13a−Cu−0複合酸
化物の焼結体と、La5SrSCuの原子比La:Sr
:Cuを1.8 : 0.2 : 1とした原料粉末を
常法に従って焼結して作ったLa−Ba−Cu−0複合
酸化物の焼結体とをそれぞれ用いた。ターゲットは直径
が100mmφの円板とした。各々の場合の成膜条件は
同一とし、その成膜条件は以下の通りであった。
Example 1 The method for producing a superconducting thin film of the present invention described above was carried out by RF magnetron sputtering. As a target, the atomic ratio La:Ba:C of La5BaSCu
A sintered body of 1a-13a-Cu-0 composite oxide made by sintering raw material powder with u of 1.8:0.2:1 and an atomic ratio of La:Sr of La5SrSCu.
: A sintered body of a La-Ba-Cu-0 composite oxide prepared by sintering a raw material powder containing Cu in a ratio of 1.8:0.2:1 according to a conventional method was used. The target was a disk with a diameter of 100 mm. The film forming conditions in each case were the same, and the film forming conditions were as follows.

基板     MgO(001)面 o2/(oa+Ar)    20% 基板温度   700℃ 圧力     0. I Torr 高周波電力  40W (0,51W/crl)時間 
    6時間 膜厚     0.88μm (成膜速度   0.35  A/秒)成膜後、大気圧
の02中で900℃の温度を1時間保った後、5℃/分
の冷却速度で冷却した。なお、比較のために、同じター
ゲットの場合の成膜速度を1.5 Å/秒としたこと以
外は、全く等しい条件で複合酸化物超電導薄膜を作製し
た場合の結果を第1表に比較例として示しである。
Substrate MgO (001) plane o2/(oa+Ar) 20% Substrate temperature 700°C Pressure 0. I Torr High frequency power 40W (0.51W/crl) time
After film formation for 6 hours, film thickness 0.88 μm (film formation rate 0.35 A/sec), the temperature was maintained at 900° C. for 1 hour in 02 atmospheric pressure, and then cooled at a cooling rate of 5° C./min. For comparison, Table 1 shows a comparative example of the results obtained when a composite oxide superconducting thin film was fabricated under exactly the same conditions, except that the film formation rate was 1.5 Å/sec using the same target. It is shown as follows.

臨界温度Tcは、常法に従って四端子法によって測定し
た。また、臨界電流密度Jcは、4.2にで試料の電気
抵抗を測定しつつ電流量を増加し、試料の電気抵抗が検
出されたときの電流量を、電流路の単位面積に換算した
ものを記している。
The critical temperature Tc was measured by a four-terminal method according to a conventional method. In addition, the critical current density Jc is the value obtained by increasing the amount of current while measuring the electrical resistance of the sample in 4.2, and converting the amount of current when the electrical resistance of the sample is detected into the unit area of the current path. is written.

第1表 実施例2 成膜条件は以下の通りであること以外、実施例1と同様
な条件で複合酸化物超電導薄膜を作製した。その結果を
第2表に示す。
Table 1 Example 2 A composite oxide superconducting thin film was produced under the same conditions as in Example 1 except that the film forming conditions were as follows. The results are shown in Table 2.

基板     MgO(001)面 o2/(o2+Ar)    50% 基板温度   700℃ 圧力     Q、1Torr 高周波電力  150W (1,9W/cnf)時間 
    6時間 膜厚     0.88μm (成膜速度   0.35  A/秒)第2表 実施例3 成膜条件は以下の通りであること以外、実施例1と同様
な条件で複合酸化物超電導薄膜を作製した。その結果を
第3表に示す。
Substrate MgO (001) surface o2/(o2+Ar) 50% Substrate temperature 700℃ Pressure Q, 1Torr High frequency power 150W (1,9W/cnf) Time
6 hours Film thickness: 0.88 μm (Film forming rate: 0.35 A/sec) Table 2 Example 3 A composite oxide superconducting thin film was formed under the same conditions as in Example 1 except that the film forming conditions were as follows. Created. The results are shown in Table 3.

基板     MgO(001)面 02/(02+Ar)    20% 基板温度   700℃ 圧力     0.15Torr 高周波電力  150W (1,9W/cut)時間 
    6時間 膜厚     0.88μm (成膜速度   0.35  Å/秒)第3表 上記のように本発明の方法により作製された超電導薄膜
は、比較例より大幅に臨界電流が向上している。また、
本発明の方法で作製した複合酸化物超電導薄膜の組織が
一様でであることは、従来法により作製した比較例の複
合酸化物超電導薄膜の表面には、数ミクロンのダレイン
が存在するのに対し、本発明の方法によるものは、表面
をSEMで1万倍に拡大して観察した場合に、その表面
の大部分の面積の所で凹凸が見られないことからも推測
できる。
Substrate MgO (001) plane 02/(02+Ar) 20% Substrate temperature 700℃ Pressure 0.15Torr High frequency power 150W (1.9W/cut) Time
6 hours Film thickness: 0.88 μm (Film forming rate: 0.35 Å/sec) Table 3 As described above, the superconducting thin film produced by the method of the present invention has a significantly improved critical current compared to the comparative example. Also,
The structure of the composite oxide superconducting thin film produced by the method of the present invention is uniform, even though there are several micrometers of dalein on the surface of the composite oxide superconducting thin film of the comparative example produced by the conventional method. On the other hand, in the case of the method of the present invention, it can be inferred from the fact that when the surface is observed under SEM magnification of 10,000 times, no irregularities are observed over most of the surface area.

発明の効果 以上詳述のように、本発明の方法によって得られた超電
導薄膜は、従来の方法で作製されたものに較べ、高いJ
cを示す。
Effects of the Invention As detailed above, the superconducting thin film obtained by the method of the present invention has a higher J than that produced by the conventional method.
c.

本発明の方法は、従来法と較べ、単に、物理蒸着時の成
膜速度を小さくだけで安定に高性能な超電導薄膜を供給
することが可能となる。
Compared to conventional methods, the method of the present invention makes it possible to stably supply a high-performance superconducting thin film simply by reducing the film formation rate during physical vapor deposition.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (29)

【特許請求の範囲】[Claims] (1)式:(La_1_−_xα_x)_2CuO_4 (但し、元素αは、BaまたはSrであり、xは0.0
1≦x≦0.2を満たす数である) で表される複合酸化物を主として含有する複合酸化物超
電導体薄膜を物理蒸着によって作製する方法において、 0.05〜1Å/秒の範囲の成膜速度で上記物理蒸着を
実施することを特徴とする超電導薄膜の作製方法。
(1) Formula: (La_1_-_xα_x)_2CuO_4 (However, element α is Ba or Sr, and x is 0.0
1≦x≦0.2) A method for producing a composite oxide superconductor thin film mainly containing a composite oxide represented by A method for producing a superconducting thin film, characterized in that the physical vapor deposition described above is performed at a film speed.
(2)0.1〜0.8Å/秒の範囲の成膜速度で成膜す
ることを特徴とする特許請求の範囲第1項に記載の超電
導薄膜の作製方法。
(2) The method for producing a superconducting thin film according to claim 1, wherein the film is formed at a film forming rate in the range of 0.1 to 0.8 Å/sec.
(3)上記複合酸化物超電導体が、(La_1_−_x
Ba_x)_2CuO_4(ただしxは0.01≦x≦
0.2を満たす数である)で表される複合酸化物を含む
ことを特徴とする特許請求の範囲第第1項または第2項
に記載の超電導薄膜の作製方法。
(3) The composite oxide superconductor is (La_1_-_x
Ba_x)_2CuO_4 (where x is 0.01≦x≦
A method for producing a superconducting thin film according to claim 1 or 2, characterized in that the method comprises a composite oxide represented by a number satisfying 0.2.
(4)上記複合酸化物超電導体が、(La_1_−_x
Sr_x)_2CuO_4 (ただしxは0.01≦x≦0.2を満たす数である)
で表される複合酸化物を含むことを特徴とする特許請求
の範囲第第1項または第2項に記載の超電導薄膜の作製
方法。
(4) The composite oxide superconductor is (La_1_-_x
Sr_x)_2CuO_4 (x is a number satisfying 0.01≦x≦0.2)
A method for producing a superconducting thin film according to claim 1 or 2, characterized in that the superconducting thin film contains a composite oxide represented by:
(5)上記物理蒸着がスパッタリングであることを特徴
とする特許請求の範囲第1項から第4項のいずれか一項
に記載の超電導薄膜の作製方法。
(5) The method for producing a superconducting thin film according to any one of claims 1 to 4, wherein the physical vapor deposition is sputtering.
(6)上記スパッタリングがマグネトロンスパッタリン
グであること特徴とする特許請求の範囲第6項に記載の
超電導薄膜の作製方法。
(6) The method for producing a superconducting thin film according to claim 6, wherein the sputtering is magnetron sputtering.
(7)上記スパッタリング時のガス圧力が、0.001
から0.5Torrの範囲内であることを特徴とする特
許請求の範囲第5項または第6項に記載の超電導薄膜の
作製方法。
(7) The gas pressure during the sputtering is 0.001
7. The method for producing a superconducting thin film according to claim 5 or 6, wherein the superconducting thin film is within a range of from 0.5 Torr to 0.5 Torr.
(8)上記スパッタリング時のガス圧力が、0.01か
ら0.5Torrの範囲内であることを特徴とする特許
請求の範囲第5項または第6項に記載の超電導薄膜の作
製方法。
(8) The method for producing a superconducting thin film according to claim 5 or 6, wherein the gas pressure during the sputtering is within a range of 0.01 to 0.5 Torr.
(9)上記物理蒸着時に、基板を加熱することを特徴と
する特許請求の範囲第1項から第8項のいずれか一項に
記載の超電導薄膜の作製方法。
(9) The method for producing a superconducting thin film according to any one of claims 1 to 8, wherein the substrate is heated during the physical vapor deposition.
(10)上記物理蒸着時の基板温度が、200から95
0℃であることを特徴とする特許請求の範囲第9項に記
載の超電導薄膜の作製方法。
(10) The substrate temperature during the physical vapor deposition is from 200 to 95
The method for producing a superconducting thin film according to claim 9, wherein the temperature is 0°C.
(11)上記物理蒸着時の基板温度が、500から92
0℃であることを特徴とする特許請求の範囲第9項に記
載の超電導薄膜の作製方法。
(11) The substrate temperature during the physical vapor deposition is from 500 to 92
The method for producing a superconducting thin film according to claim 9, wherein the temperature is 0°C.
(12)上記基板として、上記複合酸化物結晶の格子間
隔に近い格子間隔を有する酸化物単結晶の成膜面を有し
ている基板を用いることを特徴とする特許請求の範囲第
1項から第10項のいずれか一項に記載の超電導薄膜の
作製方法。
(12) The substrate is a substrate having a film-forming surface of an oxide single crystal having a lattice spacing close to the lattice spacing of the composite oxide crystal. The method for producing a superconducting thin film according to any one of Item 10.
(13)上記基板として、MgO単結晶、SrTiO_
3単結晶、ZrO_2単結晶、YSZ単結晶、Al_2
O_3単結晶、または多結晶Al_2O_3を用いるこ
とを特徴とする特許請求の範囲第12項に記載の超電導
薄膜の作製方法。
(13) As the substrate, MgO single crystal, SrTiO_
3 single crystal, ZrO_2 single crystal, YSZ single crystal, Al_2
13. The method for producing a superconducting thin film according to claim 12, wherein O_3 single crystal or polycrystalline Al_2O_3 is used.
(14)上記MgO単結晶またはSrTiO_3単結晶
基板の{001}面または{110}面を成膜面とする
ことを特徴とする特許請求の範囲第13項に記載の超電
導薄膜の作製方法。
(14) The method for producing a superconducting thin film according to claim 13, wherein the {001} plane or {110} plane of the MgO single crystal or SrTiO_3 single crystal substrate is used as the film formation surface.
(15)上記成膜の後に薄膜を酸素含有雰囲気で加熱−
徐冷する熱処理を行うことを特徴とする特許請求の範囲
第1項から第14項のいずれか一項に記載の超電導薄膜
の作製方法。
(15) After the above film formation, the thin film is heated in an oxygen-containing atmosphere.
15. The method for producing a superconducting thin film according to any one of claims 1 to 14, characterized in that a heat treatment of slow cooling is performed.
(16)上記熱処理を800〜960℃の範囲の加熱温
度で、0.5〜20時間の範囲の時間行うことを特徴と
する特許請求の範囲第15項に記載の超電導薄膜の作製
方法。
(16) The method for producing a superconducting thin film according to claim 15, wherein the heat treatment is performed at a heating temperature in the range of 800 to 960°C for a time in the range of 0.5 to 20 hours.
(17)上記熱処理を850〜950℃の範囲の加熱温
度で、1〜10時間の範囲の時間行うことを特徴とする
特許請求の範囲第15項に記載の超電導薄膜の作製方法
(17) The method for producing a superconducting thin film according to claim 15, wherein the heat treatment is performed at a heating temperature in the range of 850 to 950°C for a period of time in the range of 1 to 10 hours.
(18)上記熱処理時の冷却温度が、10℃/分以下で
あることを特徴とする特許請求の範囲第16項または1
7項に記載の超電導薄膜の作製方法。
(18) Claim 16 or 1, characterized in that the cooling temperature during the heat treatment is 10°C/min or less.
The method for producing a superconducting thin film according to item 7.
(19)上記熱処理時の酸素分圧が0.1〜10気圧で
あることを特徴とする特許請求の範囲第16項から第1
8項のいずれか一項に記載の超電導薄膜の作製方法。
(19) Claims 16 to 1, characterized in that the oxygen partial pressure during the heat treatment is 0.1 to 10 atm.
The method for producing a superconducting thin film according to any one of Item 8.
(20)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が5から95分子%であることを特徴
とする特許請求の範囲第5項から第8項のいずれか一項
に記載の超電導薄膜の作製方法。
(20) The superconducting thin film according to any one of claims 5 to 8, wherein the ratio of O_2 in the sputtering gas during the sputtering is 5 to 95 molecule %. Fabrication method.
(21)上記スパッタリングをRFスパッタリングで行
い、高周波電力を0.064〜1.27W/cm^2の
範囲内としたことを特徴とする特許請求の範囲第20項
に記載の超電導薄膜の作製方法。
(21) The method for producing a superconducting thin film according to claim 20, wherein the sputtering is performed by RF sputtering, and the high frequency power is within the range of 0.064 to 1.27 W/cm^2. .
(22)上記スパッタリングをRFスパッタリングで行
い、高周波電力を0.127〜0.76W/cm^2の
範囲内としたことを特徴とする特許請求の範囲第20項
に記載の超電導薄膜の作製方法。
(22) The method for producing a superconducting thin film according to claim 20, wherein the sputtering is performed by RF sputtering, and the high frequency power is within the range of 0.127 to 0.76 W/cm^2. .
(23)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が10から80分子%であることを特
徴とする特許請求の範囲第22項に記載の超電導薄膜の
作製方法。
(23) The method for producing a superconducting thin film according to claim 22, wherein the ratio of O_2 in the sputtering gas during the sputtering is 10 to 80 mol%.
(24)上記スパッタリングをRFスパッタリングで行
い、高周波電力を1.27〜2.55W/cm^2の範
囲内としたことを特徴とする特許請求の範囲第20項に
記載の超電導薄膜の作製方法。
(24) The method for producing a superconducting thin film according to claim 20, wherein the sputtering is performed by RF sputtering, and the high frequency power is within the range of 1.27 to 2.55 W/cm^2. .
(25)上記スパッタリングをRFスパッタリングで行
い、高周波電力を1.53〜2.29W/cm^2の範
囲内としたことを特徴とする特許請求の範囲第24項に
記載の超電導薄膜の作製方法。
(25) The method for producing a superconducting thin film according to claim 24, wherein the sputtering is performed by RF sputtering, and the high frequency power is within the range of 1.53 to 2.29 W/cm^2. .
(26)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が10から80分子%であることを特
徴とする特許請求の範囲第25項に記載の超電導薄膜の
作製方法。
(26) The method for producing a superconducting thin film according to claim 25, wherein the ratio of O_2 in the sputtering gas during the sputtering is 10 to 80 molecule %.
(27)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が40から80分子%であることを特
徴とする特許請求の範囲第25項に記載の超電導薄膜の
作製方法。
(27) The method for producing a superconducting thin film according to claim 25, wherein the ratio of O_2 in the sputtering gas during the sputtering is 40 to 80 mol%.
(28)0.1〜10μmの範囲の膜厚に成膜すること
を特徴とする特許請求の範囲第1項から第29項のいず
れか一項に記載の超電導薄膜の作製方法。
(28) The method for producing a superconducting thin film according to any one of claims 1 to 29, characterized in that the film is formed to a thickness in the range of 0.1 to 10 μm.
(29)0.5〜2μmの範囲の膜厚に成膜することを
特徴とする特許請求の範囲第1項から第29項のいずれ
か一項に記載の超電導薄膜の作製方法。
(29) The method for producing a superconducting thin film according to any one of claims 1 to 29, characterized in that the film is formed to a thickness in the range of 0.5 to 2 μm.
JP62324704A 1987-02-17 1987-12-22 Manufacture of superconductive membrane Pending JPH01166419A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62324704A JPH01166419A (en) 1987-12-22 1987-12-22 Manufacture of superconductive membrane
KR1019880017018A KR970005158B1 (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and the process therefor
DE19883854493 DE3854493T2 (en) 1987-12-20 1988-12-20 Method of manufacturing a thin film superconductor.
US07/286,860 US5028583A (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and a process for producing the same
AU27099/88A AU615014B2 (en) 1987-02-17 1988-12-20 Superconducting thin film and wire and a process for producing the same
CA 586516 CA1339020C (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and a process for producing the same
EP19880403254 EP0322306B1 (en) 1987-12-20 1988-12-20 Process for producing a superconducting thin film
US07/648,964 US5252543A (en) 1987-12-20 1991-01-31 Superconducting thin film and wire on a smooth substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324704A JPH01166419A (en) 1987-12-22 1987-12-22 Manufacture of superconductive membrane

Publications (1)

Publication Number Publication Date
JPH01166419A true JPH01166419A (en) 1989-06-30

Family

ID=18168779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324704A Pending JPH01166419A (en) 1987-02-17 1987-12-22 Manufacture of superconductive membrane

Country Status (1)

Country Link
JP (1) JPH01166419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653607A (en) * 1994-07-27 1997-08-05 Sumitomo Wiring Systems, Ltd. Electric connection casing
US5718598A (en) * 1994-12-29 1998-02-17 Sumitomo Wiring Systems, Ltd. Electrical connection box and contact bonding terminal used therefor
US5742005A (en) * 1994-09-14 1998-04-21 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5920034A (en) * 1994-12-28 1999-07-06 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5934929A (en) * 1994-07-15 1999-08-10 Sumitomo Wiring Systems, Ltd. Electrical connection box

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414814A (en) * 1987-03-19 1989-01-19 Nippon Telegraph & Telephone Manufacture of oxide superconductive thin film
JPS6459973A (en) * 1987-08-31 1989-03-07 Semiconductor Energy Lab Manufacture of superconducting material
JPS6463218A (en) * 1987-09-03 1989-03-09 Oki Electric Ind Co Ltd Forming superconductive thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414814A (en) * 1987-03-19 1989-01-19 Nippon Telegraph & Telephone Manufacture of oxide superconductive thin film
JPS6459973A (en) * 1987-08-31 1989-03-07 Semiconductor Energy Lab Manufacture of superconducting material
JPS6463218A (en) * 1987-09-03 1989-03-09 Oki Electric Ind Co Ltd Forming superconductive thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934929A (en) * 1994-07-15 1999-08-10 Sumitomo Wiring Systems, Ltd. Electrical connection box
US6168456B1 (en) 1994-07-15 2001-01-02 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5653607A (en) * 1994-07-27 1997-08-05 Sumitomo Wiring Systems, Ltd. Electric connection casing
US5742005A (en) * 1994-09-14 1998-04-21 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5895277A (en) * 1994-09-14 1999-04-20 Sumitomo Wiring Systems, Ltd. Electrical connection box with general and special circuits
US5920034A (en) * 1994-12-28 1999-07-06 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5718598A (en) * 1994-12-29 1998-02-17 Sumitomo Wiring Systems, Ltd. Electrical connection box and contact bonding terminal used therefor

Similar Documents

Publication Publication Date Title
JPH01163058A (en) Supercoductive thin film and its preparation
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JPH01166419A (en) Manufacture of superconductive membrane
JPH01167221A (en) Production of superconducting thin film
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2544759B2 (en) How to make a superconducting thin film
JPH01167218A (en) Production of superconducting thin film
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH0264021A (en) Preparation of multiple oxide superconducting thin film
JPH01100022A (en) Preparation of superconducting thin film
JP2544761B2 (en) Preparation method of superconducting thin film
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JP2544760B2 (en) Preparation method of superconducting thin film
JPH01188662A (en) Production of superconducting thin film
JPH01188664A (en) Production of superconducting thin film
JPH01167223A (en) Production of superconducting thin film
JPH01167220A (en) Production of superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH01188663A (en) Production of superconducting thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JPH01188665A (en) Production of superconducting thin film
JPH01167222A (en) Production of superconducting thin film
JP2567416B2 (en) Preparation method of superconducting thin film
JPH01264911A (en) Formation of thin composite oxide superconducting film