JPH04145192A - Organic electroluminescence element - Google Patents

Organic electroluminescence element

Info

Publication number
JPH04145192A
JPH04145192A JP2267870A JP26787090A JPH04145192A JP H04145192 A JPH04145192 A JP H04145192A JP 2267870 A JP2267870 A JP 2267870A JP 26787090 A JP26787090 A JP 26787090A JP H04145192 A JPH04145192 A JP H04145192A
Authority
JP
Japan
Prior art keywords
layer
phenylene
conductive polymer
aromatic hydrocarbon
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2267870A
Other languages
Japanese (ja)
Other versions
JP2998187B2 (en
Inventor
Yasushi Iechika
泰 家近
Tsuyoshi Nakano
強 中野
Masanobu Noguchi
公信 野口
Toshihiro Onishi
敏博 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2267870A priority Critical patent/JP2998187B2/en
Priority to DE69110922T priority patent/DE69110922T2/en
Priority to EP91301416A priority patent/EP0443861B2/en
Priority to US07/861,633 priority patent/US5317169A/en
Publication of JPH04145192A publication Critical patent/JPH04145192A/en
Priority to US08/444,917 priority patent/US5726457A/en
Application granted granted Critical
Publication of JP2998187B2 publication Critical patent/JP2998187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To obtain the title element improved in the efficiency, luminance and uniformity of its luminescence by providing a specific electrically conductive polymer layer between an electric charge-carrying layer and electrodes. CONSTITUTION:The objective element can be obtained by providing (A) a layer of an electrically conductive polymer made up of recurring units of formula -Ar-B- [Ar is >=6C aromatic hydrocarbon (pref. p-phenylene, etc.) or >=4C heterocyclic aromatic hydrocarbon (pref. 2,5-thienylene); B is -CH=CH- or -NH- ]and pref. <=0.1S/cm in electric conductance between (B) an electric charge- carrying layer and (C) electrodes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機エレクトロルミネッセンス素子に関する
ものであり、詳しくは、発光効率、発光輝度、発光の均
一性が改良された有機エレクトロルミネッセンス素子に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an organic electroluminescent device, and more particularly to an organic electroluminescent device with improved luminous efficiency, luminance, and uniformity of luminescence. It is.

〔従来の技術〕[Conventional technology]

有機蛍光材料を用いたエレクトロルミネッセンス素子(
以下EL素子という)は、無機EL素子に比べ、駆動電
圧が低くて輝度が高く、種々の色の発光も容易に得るこ
とができるという特長があり、多くの試みが報告されて
きた。しかしながら、電極から有機物発光層へ電荷を注
入しにくいために低輝度であった。これを解決するため
にT angらは、有機物発光層と電子写真の感光体等
に用いられていた有機物正孔輸送材料とを積層した2層
構造を作製し、高効率、高輝度のEL素子を実現させた
(特開昭59−194393号公報)。さらに、それ以
後、有機物電子輸送材料と有機物正孔輸送材料で有機物
発光層を挟み込んだ3層構造の素子〔ジャパニーズ・ジ
ャーナル・オブ・アプライド・フィジックス(Jpn、
J、Appl、Phys、) 27. L269(19
88)〕が試みられており、また発光層に種々の色素を
ドーピングすることによりいろいろな発光色を有するE
L素子が作製されている〔ジャーナル・オブ・アプライ
ド・フィジックス(J、 Appl、 Phys、 )
第65巻、3610頁(1989年)〕。
Electroluminescent device using organic fluorescent material (
Compared to inorganic EL elements, EL elements (hereinafter referred to as EL elements) have the advantages of lower driving voltage, higher luminance, and the ability to easily emit light of various colors, and many attempts have been reported. However, the luminance was low because it was difficult to inject charge from the electrode to the organic light emitting layer. To solve this problem, Tang et al. created a two-layer structure in which an organic light-emitting layer and an organic hole-transporting material, which was used in electrophotographic photoreceptors, were laminated to create a highly efficient, high-brightness EL element. (Japanese Unexamined Patent Publication No. 194393/1983). Furthermore, since then, a device with a three-layer structure in which an organic light-emitting layer is sandwiched between an organic electron-transporting material and an organic hole-transporting material [Japanese Journal of Applied Physics (Jpn,
J, Appl, Phys, ) 27. L269 (19
[88)] has been attempted, and E which has various luminescent colors by doping the luminescent layer with various dyes has been attempted.
The L element has been fabricated [Journal of Applied Physics (J, Appl, Phys, )
Volume 65, page 3610 (1989)].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これまで報告されてきた有機EL素子は
高輝度ではあるが、他の発光素子に比べて電力あたりの
発光輝度、発光効率が低いという問題がある。この問題
を解決するためには電極からの電荷の注入効率を向上さ
せ、高い輝度を低い駆動電圧で実現する必要がある。ま
た、表示素子としては大面積にわたり均一に発光させな
ければならない。しかし、有機EL素子を構成する有機
薄膜層の膜厚は1000人程度で非常に薄く、基板の凹
凸、電極の不均一性などに起因すると思われる発光のム
ラが発生し易いという問題がある。
However, although the organic EL devices that have been reported so far have high brightness, they have a problem in that they have low luminance per electric power and low luminous efficiency compared to other light emitting devices. To solve this problem, it is necessary to improve the efficiency of charge injection from the electrodes and achieve high brightness with a low driving voltage. Furthermore, the display element must emit light uniformly over a large area. However, the thickness of the organic thin film layer constituting the organic EL element is very thin, about 1,000 layers, and there is a problem in that unevenness in light emission is likely to occur due to unevenness of the substrate, non-uniformity of the electrodes, etc.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、スピンコーティング法やキャスティング
法等によって簡便に薄膜化が可能であるとの知見から、
導電性高分子薄膜を使用したとする有機EL素子につい
て鋭意検討の結果、発光層と電荷輸送層からなる有機E
L素子の電荷輸送層と電極の間に導電性高分子層設ける
ことにより、発光効率および輝度が顕著に向上すること
を見い出し、本発明に到達した。
The present inventors discovered that it is possible to easily form a thin film by spin coating, casting, etc.
As a result of intensive studies on organic EL devices using conductive polymer thin films, we found that organic EL devices consisting of a light-emitting layer and a charge transport layer were developed.
The inventors have discovered that luminous efficiency and brightness can be significantly improved by providing a conductive polymer layer between the charge transport layer and the electrode of an L element, and have arrived at the present invention.

すなわち、本発明は、少なくとも一方が透明または半透
明である一対の電極間に発光層および電荷輸送層を有す
る有機エレクトロルミネッセンス素子において、電荷輸
送層と電極の間に、一般式%式%(1) (Arは炭素数6以上の芳香族炭化水素基、または炭素
数4以上のヘテロ環芳香族炭化水素基、Bは−CH=C
H−基または−N11−基を示す。)で表される繰り返
し単位を有する導電性高分子の層を設けてなることを特
徴とする有機エレクトロルミネッセンス素子を提供する
ことにある。
That is, the present invention provides an organic electroluminescent device having a light-emitting layer and a charge transport layer between a pair of electrodes, at least one of which is transparent or translucent, between the charge transport layer and the electrode. ) (Ar is an aromatic hydrocarbon group having 6 or more carbon atoms or a heterocyclic aromatic hydrocarbon group having 4 or more carbon atoms, B is -CH=C
Indicates a H- group or a -N11- group. ) An object of the present invention is to provide an organic electroluminescent device characterized by being provided with a layer of a conductive polymer having a repeating unit represented by:

以下、本発明によるEL素子について詳細に説明する。Hereinafter, the EL element according to the present invention will be explained in detail.

本発明に用いる一般式(1)に示す導電性高分子は、芳
香環と結合基が交互に結合した高分子である。
The conductive polymer represented by the general formula (1) used in the present invention is a polymer in which aromatic rings and bonding groups are alternately bonded.

導電性高分子の合成法としては特に限定されないが、一
般式(1)の導電性高分子の内でBがビニレン基のポリ
アリレンビニレン系ポリマー場合は、充分な性能を確保
するため比較的共役鎖長の長いものが必要であるので、
例えば特開平1−254734号、特開平1−9221
号、特開昭63−159429号、特開平1−2547
34号、特開昭64−79217号公報等に記載の高分
子中間体を経由する方法(以下高分子スルホニウム塩分
解法と総称する。)、特開昭59−199746号公報
に記載の脱ハロゲン化法等を用いることが好ましい。
The method of synthesizing the conductive polymer is not particularly limited, but in the case of a polyarylene vinylene polymer in which B is a vinylene group among the conductive polymers of general formula (1), a comparatively Since a long conjugated chain is required,
For example, JP-A-1-254734, JP-A-1-9221
No., JP-A-63-159429, JP-A-1-2547
No. 34, JP-A No. 64-79217 (hereinafter collectively referred to as polymer sulfonium salt decomposition method) via a polymer intermediate, and dehalogenation described in JP-A-59-199746. It is preferable to use a method etc.

高分子スルホニウム塩分解法では側鎖にスルホニウム塩
を有する高分子中間体、あるいはそれをアルコール溶媒
と反応させて得られる、アルコキシ基を側鎖に有する高
分子中間体を熱処理することにより一般式(1)に示さ
れる導電性高分子を得ることができる。
In the polymer sulfonium salt decomposition method, a polymer intermediate having a sulfonium salt in the side chain or a polymer intermediate having an alkoxy group in the side chain obtained by reacting it with an alcohol solvent is heat-treated, and the general formula (1 ) can be obtained.

脱ハロゲン化法では一般式(2) %式%(2) (Arは上記と同様なものを意味し、Xlはハロゲンを
表す。)で示されるジハロゲン化合物を溶液中でt−ブ
トキシカリウム等のアルカリにより縮合することにより
導電性高分子を得ることができる。
In the dehalogenation method, a dihalogen compound represented by the general formula (2) % formula % (2) (Ar means the same as above, and Xl represents a halogen) is mixed with t-butoxypotassium etc. in a solution. A conductive polymer can be obtained by condensation with an alkali.

一般式(1)のArは炭素数6以上の芳香族炭化水素ま
たは炭素数4以上のヘテロ環芳香族炭化水素である。具
体的にはA「が芳香族炭化水素基では、炭素数6以上の
無置換芳香族炭化水素基、または核置換芳香族炭化水素
基である。無置換芳香族炭化水素基では、p−フェニレ
ン、0−フェニレン、2.6−ナフタレンジイル、5,
10−アントラセンジイルが例示され、好ましくはp−
フェニレンである。核置換芳香族炭化水素基としては炭
素数1〜22の炭化水素基または炭素数1〜22のアル
コキシ基を1ないし2個核置換したものが好適に用いら
れる。置換基である炭素数1〜22の炭化水素基置換基
としてはメチル、エチル、プロピル、ブチル、ペンチル
、ヘキシル、ヘプチル、オクチル、ラウリル、オクタデ
シル基などが例示され、また、炭素数1〜22のアルコ
キシ基としてはメトキシ、工トキシ、プロピルオキシ、
ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オ
クチルオキシ、ラウリルオキシ、オクタデシルオキシ基
等が例示される。核置換芳香族基について、より具体的
にはモノメチル−p−フェニレン、モノメトキシp−フ
ェニレン、2.5−ジメチル−p−フェニレン、2,5
−ジメトキシ−p−フェニレン、モノエチル−p−フェ
ニレン、2,5−ジェトキシ−pフェニレン、2,5−
ジエチル−p−フェニレン、モノブチル−p−フェニレ
ン、モノブトキシ−pフェニレン、モノブチル−p−フ
ェニレン、2゜5−ジブトキシ−p−フェニレン、2,
5−ジヘプチルーp−フェニレン、2,5−ジヘプチル
オキシp−フェニレン、2,5−ジオクチル−p−フェ
ニレン、2,5−ジオクトキシーp−フェニレン、2゜
5−ジラウリル−p−フェニレン、2,5−ジラウリル
オキシ−p−フェニレン、2,5−ジステアリルp−フ
ェニレン、2,5−ジステアリルオキシ−p−フェニレ
ン等が例示される。好ましくは、2゜5−ジメトキシ−
p−フェニレン、2,5−ジェトキシ−p−フェニレン
、2,5−ジヘプチルオキシp−フェニレンである。
Ar in the general formula (1) is an aromatic hydrocarbon having 6 or more carbon atoms or a heterocyclic aromatic hydrocarbon having 4 or more carbon atoms. Specifically, when A is an aromatic hydrocarbon group, it is an unsubstituted aromatic hydrocarbon group having 6 or more carbon atoms, or a nuclear-substituted aromatic hydrocarbon group.For an unsubstituted aromatic hydrocarbon group, p-phenylene , 0-phenylene, 2.6-naphthalenediyl, 5,
An example is 10-anthracenediyl, preferably p-
It is phenylene. As the nuclear-substituted aromatic hydrocarbon group, a hydrocarbon group having 1 to 22 carbon atoms or an alkoxy group having 1 to 2 carbon atoms substituted with one or two nuclei is preferably used. Examples of substituents for hydrocarbon groups having 1 to 22 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, lauryl, and octadecyl groups; Alkoxy groups include methoxy, methoxy, propyloxy,
Examples include pentyloxy, hexyloxy, heptyloxy, octyloxy, lauryloxy, and octadecyloxy groups. Regarding the nuclear-substituted aromatic group, more specifically, monomethyl-p-phenylene, monomethoxy-p-phenylene, 2,5-dimethyl-p-phenylene, 2,5
-dimethoxy-p-phenylene, monoethyl-p-phenylene, 2,5-jethoxy-p-phenylene, 2,5-
Diethyl-p-phenylene, monobutyl-p-phenylene, monobutoxy-p-phenylene, monobutyl-p-phenylene, 2゜5-dibutoxy-p-phenylene, 2,
5-diheptyl-p-phenylene, 2,5-diheptyloxy-p-phenylene, 2,5-dioctyl-p-phenylene, 2,5-dioctoxy-p-phenylene, 2゜5-dilauryl-p-phenylene, 2,5 -dilauryloxy-p-phenylene, 2,5-distearyl p-phenylene, 2,5-distearyloxy-p-phenylene, and the like. Preferably, 2゜5-dimethoxy-
p-phenylene, 2,5-jethoxy-p-phenylene, and 2,5-diheptyloxy p-phenylene.

また、炭素数4以上のヘテロ環芳香族炭化水素基及びそ
の核置換体としては2,5−チェニレン、2.5−フラ
ンジイル、2,5−ピロールジイル及びそれらの3位お
よび/あるいは4位への置換体が例示される。好ましく
は、2,5−チェニレン及び炭素数が1〜22の3−ア
ルキル−2,5−チェニレン、または炭素数1〜22の
3−アルコキシ−2,5−チェニレンである。具体的に
は3−メチル−2,5−チェニレン、3−エトキシ−2
,5−チェニレン、3−アセチル−2,5−チェニレン
、3,4−ジメチル−2,5−チェニレン、3,4−ジ
ェトキシ−2,5−チェニレンなどが例示される。好ま
しくは2,5−チェニレンである。
In addition, examples of heterocyclic aromatic hydrocarbon groups having 4 or more carbon atoms and their nuclear substituted substances include 2,5-thennylene, 2,5-furandiyl, 2,5-pyrroldiyl, and their 3- and/or 4-positions. Substituted forms of are exemplified. Preferred are 2,5-chenylene, 3-alkyl-2,5-chenylene having 1 to 22 carbon atoms, or 3-alkoxy-2,5-chenylene having 1 to 22 carbon atoms. Specifically, 3-methyl-2,5-chenylene, 3-ethoxy-2
, 5-chenylene, 3-acetyl-2,5-chenylene, 3,4-dimethyl-2,5-chenylene, 3,4-jethoxy-2,5-chenylene and the like. Preferably it is 2,5-chenylene.

上記の高分子中間体または導電性高分子をスピンコード
法、キャスト法などの方法で均一に薄膜化するには、そ
の分子量は十分高いことが必要である。重合度は5以上
であり、より好ましくは、重合度10〜50000であ
る。具体的にはゲルパーミニジョンクロマトグラフィー
による分子量測定において分子量2800の標準ポリス
チレンに相当する溶媒溶出位置以前に溶出する高分子量
を有するものが効果的である。
In order to uniformly form the above polymer intermediate or conductive polymer into a thin film by a method such as a spin coding method or a casting method, the molecular weight thereof needs to be sufficiently high. The degree of polymerization is 5 or more, more preferably 10 to 50,000. Specifically, it is effective to use a high molecular weight material that elutes before the solvent elution position corresponding to standard polystyrene having a molecular weight of 2,800 in molecular weight measurement using gel perminiscence chromatography.

高分子中間体の場合は、その高分子中間体の溶液を後述
の薄膜化法で薄膜化し、ついで側鎖を公知の方法で脱離
して共役系を有する導電性高分子に転換させる方法が好
ましい。
In the case of a polymer intermediate, it is preferable to form a solution of the polymer intermediate into a thin film using the thin film forming method described below, and then remove the side chain using a known method to convert it into a conductive polymer having a conjugated system. .

また、本発明に使用の導電性高分子のうちで、Bが−N
H−基の場合は、アニリンまたはアニリン誘導体を公知
の方法で電解酸化重合あるいは化学酸化重合することに
より得られるポリアニリンおよびその誘導体が好ましい
。ポリアニリンおよびその誘導体を溶媒に溶解させるに
は、重合後、アルカリ溶液で処理することが好ましい。
Furthermore, among the conductive polymers used in the present invention, B is -N
In the case of H-group, polyaniline and derivatives thereof obtained by subjecting aniline or an aniline derivative to electrolytic oxidative polymerization or chemical oxidative polymerization by a known method are preferred. In order to dissolve polyaniline and its derivatives in a solvent, it is preferable to treat with an alkaline solution after polymerization.

アルカリとしては水酸化ナトリウム、水酸化カリウム、
アンモニア水、ヒドラジンなどが用いることができる。
As alkalis, sodium hydroxide, potassium hydroxide,
Ammonia water, hydrazine, etc. can be used.

使用するポリアニリンおよびその誘導体の重合度は極限
粘度〔η〕で0.1dl/g以上(N−メチル−2−ピ
ロリドン、30℃)が好ましい。
The degree of polymerization of the polyaniline and its derivatives used is preferably 0.1 dl/g or more (N-methyl-2-pyrrolidone, 30°C) in terms of intrinsic viscosity [η].

これらの導電性高分子は、硫酸、ヨウ素、塩化第一鉄な
どの不純物をドープすることにより電気伝導度が増加す
ることが知られているが、一方電気伝導度が増加した状
態では可視部での吸収係数も増加し、光学透過率が著し
く減少して透明性を失うことが知られている。したがっ
て、導電性高分子側から発光を取り出す場合、ドープし
ないことが望ましい。吸収スペクトルと電気伝導度は相
関しているので、電気伝導度が0. I S /cm以
下であることが好ましい。
It is known that the electrical conductivity of these conductive polymers can be increased by doping them with impurities such as sulfuric acid, iodine, and ferrous chloride. It is known that the absorption coefficient of the material also increases, the optical transmittance decreases significantly, and transparency is lost. Therefore, when emitting light from the conductive polymer side, it is desirable not to dope it. Since the absorption spectrum and electrical conductivity are correlated, if the electrical conductivity is 0. It is preferable that it is below I S /cm.

第1図に示した本発明のEL素子の構造の一例を用いて
より具体的に説明する。ガラス、透明プラスチック等の
透明基板1の上に透明電極2を形成する。電極の材料と
しては導電性の金属酸化物膜、半透明の金属薄膜等が用
いられる。具体的にはインジウム・スズ・オキサイド(
ITO)、酸化スズ(NESA) 、Au、 Pt、 
Ag、 Cu等が用いられる。
A more specific explanation will be given using an example of the structure of the EL element of the present invention shown in FIG. A transparent electrode 2 is formed on a transparent substrate 1 made of glass, transparent plastic, or the like. As the material of the electrode, a conductive metal oxide film, a translucent metal thin film, etc. are used. Specifically, indium tin oxide (
ITO), tin oxide (NESA), Au, Pt,
Ag, Cu, etc. are used.

作製方法としては、真空蒸着法、スパッタリング法、メ
ツキ法などが用いられる。
As a manufacturing method, a vacuum evaporation method, a sputtering method, a plating method, etc. are used.

次いでこの上に導電性高分子層3を形成する。Next, a conductive polymer layer 3 is formed thereon.

導電性高分子が前者のポリアリレンビニレン系ポリマー
である場合はその高分子中間体の溶液、あるいは可溶性
のポリアリレンビニレン系ポリマーの溶液を、後者のポ
リアニリン系ポリマーの場合はその溶液を電極上にスピ
ンコーチインク法、キャスティング法、ディッピング法
、バーコード法、ロールコート法等を用いて薄膜化する
。また、導電性高分子の場合は蒸着法により薄膜化する
こともできる。
When the conductive polymer is the former polyarylene vinylene polymer, a solution of the polymer intermediate or a soluble polyarylene vinylene polymer is used as the electrode, and when the conductive polymer is the latter polyaniline polymer, the solution is used as the electrode. A thin film is formed on top using a spin coach ink method, a casting method, a dipping method, a barcode method, a roll coating method, etc. Further, in the case of a conductive polymer, it can also be made into a thin film by a vapor deposition method.

膜厚としては5人〜lOμm、電流密度を上げて発光効
率を上げるために好ましくは10人〜1μmである。よ
り好ましくは20〜2000人の範囲である。
The film thickness is 5 μm to 10 μm, preferably 10 μm to 1 μm in order to increase current density and luminous efficiency. More preferably, the number is in the range of 20 to 2000 people.

なお、高分子中間体を薄膜化した場合は、その後に熱処
理等を行って導電性高分子に変換させる。
Note that when the polymer intermediate is made into a thin film, it is then subjected to heat treatment or the like to be converted into a conductive polymer.

次いで導電性高分子層3の上に電荷輸送層4、さらにそ
の上に発光層5を形成する。
Next, a charge transport layer 4 is formed on the conductive polymer layer 3, and a light emitting layer 5 is further formed thereon.

発光層および電荷輸送層用の材料としては特に限定され
ず、例えば特開昭57−51781、同59−1943
93号公報に記載されているもの等、公知のものが使用
可能である。例えば発光層としては、ナフタレン誘導体
、アントラセン誘導体、ペリレン誘導体、ポリメチン系
、ギサンテン系、クマリン系、シアニン系などの色素類
、8−ヒドロキシキノリンおよびその誘導体の金属錯体
、芳香族アミン、テトラフェニルシクロペンタジェン誘
導体、テトラフェニルブタジェン誘導体などが挙げられ
る。
The materials for the light-emitting layer and the charge transport layer are not particularly limited, and are disclosed in, for example, JP-A-57-51781 and JP-A-59-1943.
Known materials such as those described in Japanese Patent No. 93 can be used. For example, as a light-emitting layer, dyes such as naphthalene derivatives, anthracene derivatives, perylene derivatives, polymethine-based, gysanthene-based, coumarin-based, cyanine-based, metal complexes of 8-hydroxyquinoline and its derivatives, aromatic amines, tetraphenylcyclopentane, etc. Examples thereof include diene derivatives, tetraphenylbutadiene derivatives, and the like.

図で示した構造では電荷輸送層は正孔輸送性を示す材料
を用いる必要がある。正孔輸送層用材料としては、 などの芳香族アミン系材料があげられる。
In the structure shown in the figure, it is necessary to use a material that exhibits hole transport properties for the charge transport layer. Examples of materials for the hole transport layer include aromatic amine materials such as:

なお、有機EL素子の構造としては、図に示した(陽極
/導電性高分子層/電荷輸送層/発光層/陰極)の構造
以外に、発光層と陰極の間に電子輸送層を有する、いわ
ゆるサンドイッチ構造の組み合わせの構造をとることも
できる。この場合の電子輸送層の材料としては、 などが例示される。
In addition to the structure shown in the figure (anode/conductive polymer layer/charge transport layer/light emitting layer/cathode), the structure of the organic EL element includes an electron transport layer between the light emitting layer and the cathode. A combination of so-called sandwich structures can also be used. Examples of the material for the electron transport layer in this case include:

これらの電荷輸送層4及び発光層5の成膜方法について
は真空蒸着法、スピンコーティング法、キャスティング
法、ディッピング法、バーコード法、ロールコート法な
どがある。なお、広い面積に均一な薄膜を成膜するとい
う点では、蒸着法が制御性に優れており好ましい。
Methods for forming the charge transport layer 4 and the light emitting layer 5 include a vacuum deposition method, a spin coating method, a casting method, a dipping method, a barcode method, and a roll coating method. Note that in terms of forming a uniform thin film over a wide area, the vapor deposition method is preferable because it has excellent controllability.

これらの電荷輸送層4および発光層5の膜厚は少なくと
もピンホールが発生しないような膜厚である必要がある
反面、あまり厚いと逆に素子の抵抗が増加し、高い駆動
電圧が必要となり好ましくない。したがって電荷輸送層
および発光層についての膜厚は5人〜10μmであり、
好ましくはIOλ〜l、czm、さらに好ましくは50
〜2000人である。
The thickness of the charge transport layer 4 and the light emitting layer 5 must be at least such that pinholes do not occur, but if they are too thick, the resistance of the element will increase and a high driving voltage will be required, so it is preferable. do not have. Therefore, the thickness of the charge transport layer and the light emitting layer is 5 to 10 μm,
Preferably IOλ~l, czm, more preferably 50
~2000 people.

次いで、発光層5の上に電極6を設けるが、この電極は
電子注入陰極となる。その材料としてはAlXIn、 
Mg、 Mg−Ag合金、In−Ag合金、Mg−In
合金、グラファイト薄膜等のイオン化エネルギーの小さ
い材料が用いられる。陰極の作製方法としては真空蒸着
法、スパッタリング法等が用いられる。
Next, an electrode 6 is provided on the light emitting layer 5, and this electrode becomes an electron injection cathode. The material is AlXIn,
Mg, Mg-Ag alloy, In-Ag alloy, Mg-In
Materials with low ionization energy such as alloys and graphite thin films are used. A vacuum evaporation method, a sputtering method, etc. are used as a method for producing the cathode.

このようにして本発明の有機EL素子を製造することが
できる。
In this way, the organic EL device of the present invention can be manufactured.

〔発明の効果〕〔Effect of the invention〕

本発明のEL素子は導電性高分子層を設けることにより
、従来のものに比較して、発光効率および最高輝度が向
上し、より発光の均一化が図れる。
By providing the EL element of the present invention with a conductive polymer layer, luminous efficiency and maximum brightness are improved compared to conventional EL elements, and light emission can be made more uniform.

導電性高分子層と他の電荷輸送層を併用することの作用
の機構については不明であるが、電極から発光層への電
荷移動において、導電性高分子層と発光層間の正孔に対
するポテンシャル障壁を低下させる働きがあるのではな
いかと推測される。
Although the mechanism of action of using a conductive polymer layer and other charge transport layers together is unknown, there is a potential barrier for holes between the conductive polymer layer and the light emitting layer during charge transfer from the electrode to the light emitting layer. It is speculated that it may have the effect of reducing the

本発明によるEL素子によれば、バックライI・とじて
の面状光源、フラットパネルデイスプレィ等の装置とし
て好適に使用される。
The EL device according to the present invention can be suitably used as a planar light source such as a backlight I/closer, a flat panel display, or the like.

〔実施例〕〔Example〕

以下に実施例により、本発明を具体的に説明する。ただ
し、本発明は以下の実施例によって何ら制限されるもの
ではない。
The present invention will be specifically explained below with reference to Examples. However, the present invention is not limited in any way by the following examples.

実施例1 特開平1−9221号公報に記載の方法に従い、2゜5
−チェニレンジスルホニウムプロミドをアルカリで重合
し、メタノールと反応させてポリ−2,5−チェニレン
ビニレン(PTV)の中間体であるポIJ−2.5−チ
ェニレンーメトキシエチレンを得た。
Example 1 According to the method described in JP-A-1-9221, 2°5
-Thhenylene disulfonium bromide was polymerized with an alkali and reacted with methanol to obtain poly-IJ-2.5-thhenylene-methoxyethylene, which is an intermediate of poly-2,5-thhenylene vinylene (PTV).

アセトン中にて超音波洗浄した市販のITO/ガラス基
板に、得られたPTV中間体のD M F溶液を回転数
200Orpmのスピンコーティング法により500人
の厚みで塗布した。その後、真空中で200℃、2時間
熱処理した。熱処理することによりPTV中間体の膜厚
は300人に減少しCいた。ここで、赤外吸収スペクト
ルを測定したところ、1100cmの中間体特有の吸収
ピークがなくなっていたことから、PTV構造を確認し
た。
A DMF solution of the obtained PTV intermediate was coated to a thickness of 500 mm on a commercially available ITO/glass substrate that had been ultrasonically cleaned in acetone by spin coating at a rotation speed of 200 rpm. Thereafter, heat treatment was performed at 200° C. for 2 hours in a vacuum. The film thickness of the PTV intermediate was reduced to 300 C by heat treatment. Here, when an infrared absorption spectrum was measured, the absorption peak specific to the intermediate at 1100 cm had disappeared, confirming the PTV structure.

次いでその上に順次電荷輸送材料としてTPD、発光材
料としてトリス(8−キノリツール)アルミニウム(以
下A l q 3という)および電極とし7てインジウ
ムを蒸着法によって、それぞれ1140人、1040人
、6400人の膜厚に成膜した。これらの各層の蒸着に
際しては、真空を破ることなく連続して行った。蒸着の
ときの真空度は3 X 10−”Torr以下であった
。この素子に電圧28Vを印加したところ電流密度20
8mA/cm2の電流が流れ、輝度3992cd/m”
の緑色のEL光発光観察された。輝度は電流密度に比例
していた。また、倍率×8の実体顕微鏡で観察したとこ
ろ、発光は素子全体にわたり均一であった。この素子の
特性等を測定した結果を第1表に示す。
Next, 1140, 1040, and 6400 people, respectively, were deposited on top of TPD as a charge transport material, tris(8-quinolitoul) aluminum (hereinafter referred to as Al q 3) as a light emitting material, and indium as an electrode by vapor deposition. A film was formed to a certain thickness. The deposition of each of these layers was performed continuously without breaking the vacuum. The degree of vacuum during vapor deposition was 3 x 10-'' Torr or less. When a voltage of 28 V was applied to this device, the current density was 20
A current of 8 mA/cm2 flows, and a brightness of 3992 cd/m"
Green EL light emission was observed. The brightness was proportional to the current density. Furthermore, when observed using a stereomicroscope with a magnification of x8, the light emission was uniform throughout the device. Table 1 shows the results of measuring the characteristics of this element.

実施例 2 ・特開昭59−199746号公報に記載の方法に従い
、ポリ−p−フェニレンビニレン(PPV)の中間体を
得た。これを使用した以外は実施例Iと同様にして有機
E L素子を作製した。この素子に電圧35Vを印加し
たところ、電流密度190mA/cm2の電流が流れ、
輝度3395cd/m2の緑色のEL光発光観察された
。実施例1と同様に発光状態を観察した結果及びこの素
子の特性等を測定した結果を第1表に示す。
Example 2 - An intermediate of poly-p-phenylene vinylene (PPV) was obtained according to the method described in JP-A-59-199746. An organic EL device was produced in the same manner as in Example I except that this was used. When a voltage of 35V was applied to this element, a current with a current density of 190mA/cm2 flowed.
Green EL light emission with a brightness of 3395 cd/m2 was observed. Table 1 shows the results of observing the light emitting state and measuring the characteristics of this device in the same manner as in Example 1.

実施例3 実施例2で製造したPPV中間体を実施例1のPTV中
間体中に23重量%で混合し、実施例1の導電性高分子
膜の作製方法と同様にして、ITO/ガラス基板上にP
TV−PPVの混合膜を成膜した。次にこうして作成し
た導電性高分子膜上にTPD、Alq+、インジウムを
実施例1と同様にして蒸着してEL素子を作成した。
Example 3 The PPV intermediate produced in Example 2 was mixed in the PTV intermediate of Example 1 at 23% by weight, and an ITO/glass substrate was prepared in the same manner as the method for preparing the conductive polymer film of Example 1. P on top
A mixed film of TV-PPV was formed. Next, TPD, Alq+, and indium were vapor-deposited on the conductive polymer film thus prepared in the same manner as in Example 1 to prepare an EL element.

作製した素子に電圧25Vを印加したところ、208m
A/cm2の電流密度で、輝度4606cd/m2の発
光が観察された。実施例1と同様に発光状態を観察した
結果、及びこの素子の特性等を測定した結果を第1表に
示す。
When a voltage of 25V was applied to the fabricated device, the voltage was 208m.
At a current density of A/cm2, light emission with a brightness of 4606 cd/m2 was observed. Table 1 shows the results of observing the light emitting state and measuring the characteristics of this device in the same manner as in Example 1.

実施例4 モレキュラー・クリスタルズ・リキッド・クリスタルズ
(Mo1. Cryst、 Liq、 Cryst、 
)パートE、 119゜173〜180頁(1985年
)に記載の方法に従い、過硫酸アンモニウムを酸化剤と
してアニリンを化学酸化重合し、ポリアニリン(以下P
Anという)を得た。その後、水酸化ナトリウム水溶液
処理、洗浄、乾燥し、DMFに溶解させた。ITO/ガ
ラス基板上に、PAnのDMF溶液を回転数200Or
pmのスピンコーティング法により130人の厚みで塗
布した。その後、真空中、60°Cで2時間乾燥した。
Example 4 Molecular Crystals Liquid Crystals (Mo1.Cryst, Liq, Crystal,
) Part E, 119°, pp. 173-180 (1985), aniline was chemically oxidized and polymerized using ammonium persulfate as an oxidizing agent to obtain polyaniline (hereinafter referred to as P
An) was obtained. Thereafter, it was treated with an aqueous sodium hydroxide solution, washed, dried, and dissolved in DMF. A DMF solution of PAn was placed on an ITO/glass substrate at a rotation speed of 200 Orr.
It was applied to a thickness of 130 mm using the pm spin coating method. It was then dried in vacuo at 60°C for 2 hours.

さらに、その上に実施例1と同様にしてTPD、AIQ
3、インジウムを真空蒸着により積層し、EL素子を作
製した。
Furthermore, TPD, AIQ
3. Indium was laminated by vacuum evaporation to produce an EL element.

作製した素子に、電圧35Vを印加したところ、200
mA / cm2の電流密度で、輝度4818cd/m
”の緑色の発光が確認された。実施例1と同様に発光状
態を観察した結果、及びこの素子の特性等を測定した結
果を第1表に示す。
When a voltage of 35 V was applied to the fabricated device, 200
At a current density of mA/cm2, the brightness is 4818 cd/m
Green light emission was confirmed. Table 1 shows the results of observing the light emission state in the same manner as in Example 1 and measuring the characteristics of this device.

比較例1 導電性高分子層を設けない以外は実施例1と同様にして
EL素子を作成した。作製した素子に、電圧27Vを印
加したところ、185mA / cm2の電流密度で、
輝度3022cd/m2の緑色の発光が確認された。実
施例1と同様に発光状態を観察した結果、及びこの素子
の特性等を測定した結果を第1表に
Comparative Example 1 An EL device was produced in the same manner as in Example 1 except that the conductive polymer layer was not provided. When a voltage of 27V was applied to the fabricated device, the current density was 185mA/cm2,
Green light emission with a brightness of 3022 cd/m2 was confirmed. Table 1 shows the results of observing the light emitting state and measuring the characteristics of this device in the same manner as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明における有機E L素子の一実施例の概念的
な断面構造を表す。 l・・・透明基板、2・・・透明電極、3・・・導電性
高分子層、4・・・電荷輸送層、5・・・発光層、A/
″ 第 ■ 図
The figure represents a conceptual cross-sectional structure of one embodiment of an organic EL element according to the present invention. 1... Transparent substrate, 2... Transparent electrode, 3... Conductive polymer layer, 4... Charge transport layer, 5... Light emitting layer, A/
″ Figure ■

Claims (1)

【特許請求の範囲】  少なくとも一方が透明または半透明である一対の電極
間に発光層および電荷輸送層を有する有機エレクトロル
ミネッセンス素子において、電荷輸送層と電極の間に、
一般式(1) −Ar−B− (1) (Arは炭素数6以上の芳香族炭化水素基、または炭素
数4以上のヘテロ環芳香族炭化水素基、Bは−CH=C
H−基または−NH−基を示す。)で表される繰り返し
単位を有する導電性高分子の層を設けてなることを特徴
とする有機エレクトロルミネッセンス素子。
[Claims] In an organic electroluminescent device having a light-emitting layer and a charge transport layer between a pair of electrodes, at least one of which is transparent or translucent, between the charge transport layer and the electrode,
General formula (1) -Ar-B- (1) (Ar is an aromatic hydrocarbon group having 6 or more carbon atoms or a heterocyclic aromatic hydrocarbon group having 4 or more carbon atoms, B is -CH=C
Indicates an H- group or an -NH- group. ) An organic electroluminescent device comprising a layer of a conductive polymer having a repeating unit represented by:
JP2267870A 1990-02-23 1990-10-04 Organic electroluminescence device Expired - Lifetime JP2998187B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2267870A JP2998187B2 (en) 1990-10-04 1990-10-04 Organic electroluminescence device
DE69110922T DE69110922T2 (en) 1990-02-23 1991-02-22 Organic electroluminescent device.
EP91301416A EP0443861B2 (en) 1990-02-23 1991-02-22 Organic electroluminescence device
US07/861,633 US5317169A (en) 1990-02-23 1992-04-01 Organic electroluminescence device
US08/444,917 US5726457A (en) 1990-02-23 1995-05-19 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267870A JP2998187B2 (en) 1990-10-04 1990-10-04 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH04145192A true JPH04145192A (en) 1992-05-19
JP2998187B2 JP2998187B2 (en) 2000-01-11

Family

ID=17450775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267870A Expired - Lifetime JP2998187B2 (en) 1990-02-23 1990-10-04 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP2998187B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436559B1 (en) 1999-11-12 2002-08-20 Canon Kabushiki Kaisha Organic luminescence device
US6458476B1 (en) 2000-01-27 2002-10-01 Canon Kabushiki Kaisha Organic luminescence device with spiro compound
US6461748B1 (en) 2000-01-27 2002-10-08 Canon Kabushiki Kaisha Organic luminescence device with spiro compound having silicon spiro atom
US6461749B2 (en) 2000-03-31 2002-10-08 Canon Kabushiki Kaisha Organic boron compound, process for producing the compound and organic luminescence device using the compound
JP2003045665A (en) * 2001-07-27 2003-02-14 Tdk Corp Organic el display device
US6632545B1 (en) 1999-02-23 2003-10-14 Junji Kido Electroluminescent element
US6652997B2 (en) 2001-04-27 2003-11-25 Canon Kabushiki Kaisha Organic luminescence device
WO2004020372A1 (en) 2002-08-27 2004-03-11 Canon Kabushiki Kaisha Fluorene compound and organic luminescent device using the same
JP2004330788A (en) * 2003-04-30 2004-11-25 Bayer Materialscience Ag Metalization plastic molding
US6830829B2 (en) 2001-02-22 2004-12-14 Canon Kabushiki Kaisha Fused polynuclear compound and organic luminescence device
EP1491610A2 (en) 2003-06-27 2004-12-29 Canon Kabushiki Kaisha Organic electroluminescent device
US6916555B2 (en) 2001-09-03 2005-07-12 Canon Kabushiki Kaisha Organic luminescence device
WO2005082969A1 (en) * 2004-02-26 2005-09-09 Sumitomo Chemical Company, Limited Polymer and polymeric luminescent element comprising the same
US6998182B2 (en) 2001-09-28 2006-02-14 Canon Kabushiki Kaisha Organic luminescence device
US7129386B2 (en) 2003-06-27 2006-10-31 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
US7173131B2 (en) 2003-06-27 2007-02-06 Canon Kabushiki Kaisha Anthryl derivative group substituted compound, and organic luminescent device making use of same
US7229702B2 (en) 2002-03-27 2007-06-12 Canon Kabushiki Kaisha Oligofluorenlylene compounds
US7355339B2 (en) 2002-09-12 2008-04-08 Canon Kabushiki Kaisha Organic electroluminescent display and apparatus including organic electroluminescent display
US7375250B2 (en) 2003-06-27 2008-05-20 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US7387845B2 (en) 2002-08-28 2008-06-17 Canon Kabushiki Kaisha Monoamino compound and organic luminescence device using the same
US7442447B2 (en) 2003-01-17 2008-10-28 The Regents Of The University Of California Binaphthol based chromophores for the fabrication of blue organic light emitting diodes
US7510781B2 (en) 2002-08-27 2009-03-31 Canon Kabushiki Kaisha Spiro compound and organic luminescence device using the same
US7604873B2 (en) 2004-07-20 2009-10-20 Canon Kabushiki Kaisha Organic light emitting device
US7691492B2 (en) 2004-04-12 2010-04-06 Canon Kabushiki Kaisha Fluorene compound and organic light-emitting device using same
US7691491B2 (en) 2002-08-30 2010-04-06 Canon Kabushiki Kaisha Monoaminofluorene compound and organic light-emitting device using the same
US7709104B2 (en) 2004-11-26 2010-05-04 Canon Kabushiki Kaisha Aminoanthryl derivative-substituted pyrene compound and organic light-emitting device
US7749617B2 (en) 2004-09-08 2010-07-06 Canon Kabushiki Kaisha Organic compound and organic light-emitting device
US7785719B2 (en) 2004-11-26 2010-08-31 Canon Kabushiki Kaisha Fluorene compound and organic light-emitting device
US7952269B2 (en) 2004-11-26 2011-05-31 Canon Kabushiki Kaisha Organic light-emitting device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632545B1 (en) 1999-02-23 2003-10-14 Junji Kido Electroluminescent element
US6436559B1 (en) 1999-11-12 2002-08-20 Canon Kabushiki Kaisha Organic luminescence device
US6458476B1 (en) 2000-01-27 2002-10-01 Canon Kabushiki Kaisha Organic luminescence device with spiro compound
US6461748B1 (en) 2000-01-27 2002-10-08 Canon Kabushiki Kaisha Organic luminescence device with spiro compound having silicon spiro atom
US6461749B2 (en) 2000-03-31 2002-10-08 Canon Kabushiki Kaisha Organic boron compound, process for producing the compound and organic luminescence device using the compound
US6994922B2 (en) 2001-02-22 2006-02-07 Canon Kabushiki Kaisha Organic luminescence device with a fused polynuclear compound
US6830829B2 (en) 2001-02-22 2004-12-14 Canon Kabushiki Kaisha Fused polynuclear compound and organic luminescence device
US6652997B2 (en) 2001-04-27 2003-11-25 Canon Kabushiki Kaisha Organic luminescence device
JP2003045665A (en) * 2001-07-27 2003-02-14 Tdk Corp Organic el display device
US6916555B2 (en) 2001-09-03 2005-07-12 Canon Kabushiki Kaisha Organic luminescence device
US6998182B2 (en) 2001-09-28 2006-02-14 Canon Kabushiki Kaisha Organic luminescence device
US7229702B2 (en) 2002-03-27 2007-06-12 Canon Kabushiki Kaisha Oligofluorenlylene compounds
US7241513B2 (en) 2002-08-27 2007-07-10 Canon Kabushiki Kaisha Fluorene compound and organic luminescent device using the same
WO2004020372A1 (en) 2002-08-27 2004-03-11 Canon Kabushiki Kaisha Fluorene compound and organic luminescent device using the same
US7510781B2 (en) 2002-08-27 2009-03-31 Canon Kabushiki Kaisha Spiro compound and organic luminescence device using the same
US7387845B2 (en) 2002-08-28 2008-06-17 Canon Kabushiki Kaisha Monoamino compound and organic luminescence device using the same
EP2527318A1 (en) 2002-08-30 2012-11-28 Canon Kabushiki Kaisha Monoaminofluorene compound and organic light-emitting device using the same
US7691491B2 (en) 2002-08-30 2010-04-06 Canon Kabushiki Kaisha Monoaminofluorene compound and organic light-emitting device using the same
US7355339B2 (en) 2002-09-12 2008-04-08 Canon Kabushiki Kaisha Organic electroluminescent display and apparatus including organic electroluminescent display
US7442447B2 (en) 2003-01-17 2008-10-28 The Regents Of The University Of California Binaphthol based chromophores for the fabrication of blue organic light emitting diodes
JP2013241018A (en) * 2003-04-30 2013-12-05 Bayer Materialscience Ag Metallized plastic molded part
JP2011235644A (en) * 2003-04-30 2011-11-24 Bayer Materialscience Ag Metalized plastic molded article
JP2004330788A (en) * 2003-04-30 2004-11-25 Bayer Materialscience Ag Metalization plastic molding
US7491450B2 (en) 2003-06-27 2009-02-17 Canon Kabushiki Kaisha Organic electroluminescent device
US7375250B2 (en) 2003-06-27 2008-05-20 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US7358409B2 (en) 2003-06-27 2008-04-15 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
EP1491610A2 (en) 2003-06-27 2004-12-29 Canon Kabushiki Kaisha Organic electroluminescent device
US7309533B2 (en) 2003-06-27 2007-12-18 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
US7129386B2 (en) 2003-06-27 2006-10-31 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
US7173131B2 (en) 2003-06-27 2007-02-06 Canon Kabushiki Kaisha Anthryl derivative group substituted compound, and organic luminescent device making use of same
WO2005082969A1 (en) * 2004-02-26 2005-09-09 Sumitomo Chemical Company, Limited Polymer and polymeric luminescent element comprising the same
US7691492B2 (en) 2004-04-12 2010-04-06 Canon Kabushiki Kaisha Fluorene compound and organic light-emitting device using same
US7919199B2 (en) 2004-07-20 2011-04-05 Canon Kabushiki Kaisha Organic light emitting device
US8404363B2 (en) 2004-07-20 2013-03-26 Canon Kabushiki Kaisha Organic light emitting device
US7604873B2 (en) 2004-07-20 2009-10-20 Canon Kabushiki Kaisha Organic light emitting device
US7749617B2 (en) 2004-09-08 2010-07-06 Canon Kabushiki Kaisha Organic compound and organic light-emitting device
US7785719B2 (en) 2004-11-26 2010-08-31 Canon Kabushiki Kaisha Fluorene compound and organic light-emitting device
US7952269B2 (en) 2004-11-26 2011-05-31 Canon Kabushiki Kaisha Organic light-emitting device
US7709104B2 (en) 2004-11-26 2010-05-04 Canon Kabushiki Kaisha Aminoanthryl derivative-substituted pyrene compound and organic light-emitting device

Also Published As

Publication number Publication date
JP2998187B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JPH04145192A (en) Organic electroluminescence element
US5726457A (en) Organic electroluminescence device
JP3747686B2 (en) Polymer phosphor and polymer light emitting device using the same
US6403237B1 (en) Polymeric fluorescent substance and organic electroluminescence device
JP2000268973A (en) Organic el element
JP3823602B2 (en) Polymer fluorescent substance and organic electroluminescence device
JP2000068065A (en) Organic el element
JPH113782A (en) El element of organic thin film
JPH1077467A (en) Production of organic electroluminescence element
JP2003213002A (en) Aromatic diamine-containing polymer compound and organic electroluminescent element using the same
JP2000252065A (en) High molecular light emitting element
JP3243311B2 (en) EL device
JPH0673374A (en) Organic electroluminescent element
JP3265395B2 (en) Organic electroluminescence device
EP1516903A1 (en) Light-emitting compound and polymer and luminescent element
JPH06338392A (en) Organic thin film el element
KR20120130074A (en) Composition for organic photoelectric device and organic photoelectric device using the same
JP3817957B2 (en) Organic fluorescent material and organic electroluminescence device
JP2003257669A (en) Organic electroluminescence element
JPH03244630A (en) Organic electroluminescent element
JP4211203B2 (en) Polymer phosphor and polymer light emitting device using the same
JP2003051386A (en) Organic electroluminescent element
JP2929780B2 (en) Organic electroluminescence device
JP2806144B2 (en) Organic thin film EL device
JPH09151371A (en) Organic thin film el element

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

EXPY Cancellation because of completion of term