JPH04143481A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH04143481A
JPH04143481A JP26771690A JP26771690A JPH04143481A JP H04143481 A JPH04143481 A JP H04143481A JP 26771690 A JP26771690 A JP 26771690A JP 26771690 A JP26771690 A JP 26771690A JP H04143481 A JPH04143481 A JP H04143481A
Authority
JP
Japan
Prior art keywords
roller
generated
bearing
parts
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26771690A
Other languages
Japanese (ja)
Inventor
Hideji Ogawara
秀治 小川原
Takao Yoshimura
多佳雄 吉村
Ichiro Morita
一郎 森田
Takashi Koyama
隆 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26771690A priority Critical patent/JPH04143481A/en
Publication of JPH04143481A publication Critical patent/JPH04143481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To enhance the volume efficiency by providing a plurality of communicating parts leading from a concave step on the internal circumferential side of the roller end faces to another step on the internal circumferential side, furnishing a plurality of sealing parts which decrease the section area as going apart from these communicating parts, and forming grooves from these communicating part and sealing parts. CONSTITUTION:A roller 19 make revolution and a rotating round its own axis associate with rotation of a shaft 3, and thereby a spiral motion is generated. In grooves 20-27 on the end face 19a of this roller 19, those 20c, 21c, 23b-26b, 26c, 27c of the sealing parts 20b-27b, 20c-27c decrease the section area as going in the lubricant flowing direction as shown by the broken arrow, and an oil-hydraulic force is generated by the lubricant flowing in from a plurality of communicating parts 20a-27a. With the rotation component constituting the spiral motion of the roller 19, sealing parts 20b-27b, 20c decreasing the section are approx. in the circumferential direction are formed, so that an oil-hydraulic force due to wedge effect is generated in either direction of rotating round own axis. and the same magnitude of oil-hydraulic force is always generated in dispersed positions on the end faces 19a, 19b of the roller 19 so as to give well balanced condition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し1.特に体積効率が良好な機械部の構成に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in a refrigeration cycle, etc.1. In particular, it relates to the configuration of mechanical parts with good volumetric efficiency.

従来の技術 従来の構成を第3図、第4図、第6図、第6図を用いて
説明する。
Prior Art A conventional configuration will be explained with reference to FIGS. 3, 4, 6, and 6.

1は密閉ケーシング、2は電動機部であり、シャフト3
を介してシリンダ4、ローラ6、ベーン6、主軸受7、
副軸受8により構成される機械部本体9と連結している
。シャフト3は主軸3a。
1 is a sealed casing, 2 is an electric motor section, and shaft 3
Through the cylinder 4, roller 6, vane 6, main bearing 7,
It is connected to a mechanical part main body 9 constituted by a sub-bearing 8. The shaft 3 is a main shaft 3a.

副軸sb、及び主軸3a、副軸3bの軸芯からEだけ偏
心したクランク3Cよりなる。また、シャフト3の中心
には穴3eが形成されると共にクランク3Cには給油孔
sf、給油溝3qが設けられている。1oはベーン背面
に設けられたスプリングである。11a、11bはシリ
ンダ4内で、ローラ6、ベーン6、主軸受7、副軸受8
により構成される吸入室と圧縮室である。ローラ6の主
軸受7、副軸受8と対向するそれぞれの端面5M。
It consists of a subshaft sb, and a crank 3C eccentric by E from the axes of the main shaft 3a and subshaft 3b. Further, a hole 3e is formed in the center of the shaft 3, and an oil supply hole sf and an oil supply groove 3q are provided in the crank 3C. 1o is a spring provided on the back side of the vane. 11a and 11b are in the cylinder 4, a roller 6, a vane 6, a main bearing 7, and an auxiliary bearing 8.
It consists of a suction chamber and a compression chamber. Each end face 5M of the roller 6 faces the main bearing 7 and the sub-bearing 8.

/ 6bの内周側には内周側から外周側に向うに伴い断面積
が減少するテーパ5c、6dが設けられている。12は
、シャフト3と連結する給油機構でおる。13は吸入管
であり、副軸受8、シリンダ4の吸入通路14全介して
吸入室11aと連通している。15は吐出孔であり吐出
弁16を介して密閉ケーシング1内と連通している。1
7は吐出管であり密閉ケーシング1内に開放している。
Tapers 5c and 6d whose cross-sectional area decreases from the inner circumferential side to the outer circumferential side are provided on the inner circumferential side of / 6b. 12 is an oil supply mechanism connected to the shaft 3. Reference numeral 13 denotes a suction pipe, which communicates with the suction chamber 11a through the sub-bearing 8 and the suction passage 14 of the cylinder 4. Reference numeral 15 denotes a discharge hole, which communicates with the inside of the sealed casing 1 via a discharge valve 16. 1
Reference numeral 7 denotes a discharge pipe that opens into the sealed casing 1.

18は潤滑油である。18 is lubricating oil.

第6図の実線の矢印方向は、圧縮機運転中のある時点に
おけるローラ5の運動方向をまた破線の矢印方向は、ロ
ーラ6の運動によりローラの端面sa、sbを潤滑油1
8が流れる方向を示している。また、se、sfはロー
ラ6のテーパ5c。
The direction of the solid arrow in FIG. 6 indicates the direction of movement of the roller 5 at a certain point in time during compressor operation, and the direction of the dashed arrow indicates the direction in which the end surfaces sa and sb of the roller are coated with lubricating oil 1 due to the movement of the roller 6.
8 indicates the direction of flow. Further, se and sf are the taper 5c of the roller 6.

5dのうち、この破線の矢印方向に断面積を徐々に減少
する部位(sfは図示せず)であり、6g。
Of 5d, this is the part whose cross-sectional area gradually decreases in the direction of the broken arrow (sf is not shown), and is 6g.

6hは、断面積を徐々に増加する部位(shは図示せず
)である。
6h is a portion (sh is not shown) whose cross-sectional area is gradually increased.

次に回転式圧縮機の圧縮機構について説明する。Next, the compression mechanism of the rotary compressor will be explained.

冷却システム(図示せず)からの冷媒ガスは、吸入管1
3、吸入孔14より導かれシリンダ4内の吸入室11M
に至る。吸入室11aに至った冷媒ガスは、シャフト3
のクランク3Cに回転自在に収納されたローラ5とベー
ン6により仕切られた圧縮室11bで、電動機部2の回
転に伴うシャフト3の回転運動により漸次圧縮される。
Refrigerant gas from the cooling system (not shown) is supplied to the suction pipe 1
3. Suction chamber 11M inside cylinder 4 led from suction hole 14
leading to. The refrigerant gas that has reached the suction chamber 11a is transferred to the shaft 3
The compression chamber 11b is partitioned by a roller 5 and a vane 6, which are rotatably housed in the crank 3C, and is gradually compressed by the rotational movement of the shaft 3 as the electric motor section 2 rotates.

圧縮された冷媒ガスは、吐出孔16、吐出弁16を介し
て密閉ケーシング1内に一旦吐出された後、吐出管17
を介して冷却システムに吐出される。
The compressed refrigerant gas is once discharged into the sealed casing 1 through the discharge hole 16 and the discharge valve 16, and then through the discharge pipe 17.
to the cooling system.

又、冷媒の溶は込んだ密閉ケーシング1内の高圧の潤滑
油18Fi、、給油機構12によpシャフト3の穴3e
に供給され、主軸受7と副軸受8との摺動部に供給され
ると共に、給油孔3(、給油溝3qよりクランク3Cと
ローラ5の内周側に供給され、ローラ端面6a、6bを
潤滑した後、吸入室11a、圧縮室11bに至り、その
後吐出孔16より密閉ケーシング1内に吐出され、密閉
ケーシング1の下部に戻る。
In addition, high-pressure lubricating oil 18Fi in the sealed casing 1 filled with refrigerant solution is supplied to the hole 3e of the p shaft 3 by the oil supply mechanism 12.
It is supplied to the sliding parts of the main bearing 7 and auxiliary bearing 8, and is also supplied to the inner circumferential side of the crank 3C and roller 5 from the oil supply hole 3 (and oil supply groove 3q), and the roller end faces 6a, 6b. After being lubricated, it reaches the suction chamber 11a and the compression chamber 11b, and is then discharged into the sealed casing 1 from the discharge hole 16, and returns to the lower part of the sealed casing 1.

このとき、ローラ6は、シャフト3の回転に伴い、クラ
ンク3Cのまわりを方向を考えながら自転し且つ、公転
運動を行い、この結果ローラ6上の一点の軌跡は、ら旋
状となる。従って、ローラ5の移動方向は、シャフト3
が回転する間に3600近く変化することになるが例え
ばローラ6のら旋運動の運動方向が、第6図の矢印で示
す方向とすると、ローラ6の端面5a、5bにはテーパ
5c。
At this time, as the shaft 3 rotates, the roller 6 rotates and revolves around the crank 3C while considering the direction, and as a result, the locus of one point on the roller 6 becomes a spiral. Therefore, the moving direction of the roller 5 is the shaft 3
For example, if the direction of the spiral movement of the roller 6 is the direction shown by the arrow in FIG. 6, the end surfaces 5a and 5b of the roller 6 will have a taper 5c.

6dが設けられているためテーパ5c、5dの中で50
と6量の近傍部に流入する潤滑油18のみが、内径側か
ら外径側に向うに従い断面が先細となりクサビ効果によ
り油圧力を発生することになる。(但し、ts f’ 
はテーパ5dの5c’とは反対の部位であシ、図示して
いない。)従って、チー/< 6 cと6dの6eと5
fの近傍部の油圧力がバランスし、その結果ローラ6と
主軸受7、副軸受8間のクリアランスδ8とδbがδ2
=δbとなる様にローラ5が保持される。ところで、ロ
ーラ端面5a、5bを介して、クランク3c側から吸入
室11a、圧縮室11bに流入する冷媒の溶は込んだ潤
滑油の量は、クリアランスの3乗に比例する。従って、
δ8+δb=二定の場合、流入する量はδ6=δbのと
きに最小となり、その結果、テーパac、adを設ける
ことにより、体積効率が良好で効率の高い圧縮機が提供
される。
6d is provided, so 50 in the tapers 5c and 5d.
Only the lubricating oil 18 flowing into the vicinity of the 6th volume has a tapered cross section from the inner diameter side toward the outer diameter side, and generates hydraulic pressure due to the wedge effect. (However, ts f'
is a portion of the taper 5d opposite to 5c' and is not shown. ) Therefore, Chi/< 6 c and 6d 6e and 5
The hydraulic pressure in the vicinity of f is balanced, and as a result, the clearances δ8 and δb between the roller 6, main bearing 7, and sub-bearing 8 become δ2.
The roller 5 is held so that = δb. Incidentally, the amount of lubricating oil dissolved in the refrigerant flowing into the suction chamber 11a and the compression chamber 11b from the crank 3c side via the roller end surfaces 5a and 5b is proportional to the cube of the clearance. Therefore,
When δ8+δb=2 constant, the inflow amount is minimum when δ6=δb, and as a result, by providing the tapers ac and ad, a highly efficient compressor with good volumetric efficiency is provided.

例えば、実公昭61−20317号公報にて示される。For example, it is shown in Japanese Utility Model Publication No. 61-20317.

発明が解決しようとする課題 この様な従来の溝造では、テーパに侵入する潤滑油のく
さび効果を利用しており、このくさび効果は、シャフト
の回転運動に伴うローラのら旋状の運動のうち公転運動
成分では発生するが、テーパが円周方向には断面積が変
化しないためにローラのクランクのまわ#)ヲ回る自転
運動の成分に対しては、発生せずくさび効果が小さい。
Problems to be Solved by the Invention Conventional groove construction uses the wedge effect of lubricating oil that enters the taper, and this wedge effect is caused by the spiral movement of the roller accompanying the rotational movement of the shaft. This occurs in the orbital motion component, but since the cross-sectional area of the taper does not change in the circumferential direction, it does not occur in the rotational motion component in which the roller rotates around the crank, and the wedge effect is small.

また、クサビ効果による油圧力の発生部位が、ローラの
端面上の一箇所のみであり、大部分の部位には、発生せ
ず、更に、テーパ部そのものが、円周方向に連通した形
状となっているために、くさび効果により発生した圧力
は円周方向に逃げることとなり、くさび効果による発生
圧力は低い。この結果、くさび効果によるローラの安定
性は十分とは言えず、従って体積効率の向上効果が少な
いとの課題があった。
In addition, the hydraulic pressure generated by the wedge effect is only at one location on the end face of the roller, and does not occur at most locations, and furthermore, the tapered section itself has a shape that communicates in the circumferential direction. Therefore, the pressure generated by the wedge effect escapes in the circumferential direction, and the pressure generated by the wedge effect is low. As a result, the stability of the roller due to the wedge effect cannot be said to be sufficient, resulting in a problem that the effect of improving volumetric efficiency is small.

又、他の従来例として、ローラの端面に内周側から外周
側に至るに伴い輻が狭くなる数条の溝を設けたものがあ
るが、溝が内周側から外周側へまっすぐ伸びているか、
又は円周方向のどちらが一方へ同じ方向に傾いた曲線で
あるために、1回転中の自転方向が変化するローラの運
動に対して十分なくさび効果を発生することは難しく、
又、油圧力の発生部位が、ローラ上の一箇所となり、や
けりローラの安定性は十分とは言えない課題があった。
In addition, as another conventional example, there is one in which several grooves are provided on the end surface of the roller, the convergence of which narrows from the inner circumference to the outer circumference, but the grooves extend straight from the inner circumference to the outer circumference. Is it there?
Or, because the curves are tilted in the same direction in the circumferential direction, it is difficult to generate a sufficient wedge effect for the movement of the roller whose rotation direction changes during one rotation.
In addition, the hydraulic pressure is generated at only one location on the roller, and there is a problem that the stability of the burn roller is not sufficient.

さらにローラの肉厚が厚い場合においては、ローラと軸
受端面との密着力が大きく、ローラと軸受端面が接触す
ると引き離すに十分な油圧力がくさび効果から得られず
体積効率が向上しない課題があった。
Furthermore, when the rollers are thick, the adhesion between the rollers and the bearing end surfaces is large, and when the rollers and bearing end surfaces come into contact, sufficient hydraulic pressure cannot be obtained from the wedge effect to separate them, resulting in a problem in which volumetric efficiency is not improved. Ta.

本発明は上記従来例の欠点を解決するものであり、従来
以上に体積効率の向上を図ると共にロラ肉厚の厚い圧縮
機においても十分なくさび効果を発生し、吸入映や圧縮
室への冷媒の溶は込んだ潤滑油の流入量を最小に抑える
こと番目的としている。
The present invention solves the above-mentioned drawbacks of the conventional example, and aims to improve the volumetric efficiency more than the conventional example, and also generates a sufficient wedge effect even in compressors with thick rollers, thereby reducing the flow of refrigerant into the suction and compression chambers. The objective is to minimize the amount of lubricating oil that enters the melt.

課題を解決するための手段 本発明は、ローラの端面の内周側にそれぞれ設けられた
内周側凹状の段差とローラの内周側の段差との連通部と
、略円周方向に伸び連通部より離れるに伴い断面積を減
少する複数の封止部とより形成される溝を備えたもので
ある。
Means for Solving the Problems The present invention provides communication portions between the inner circumferential concave steps provided on the inner circumferential side of the end faces of the rollers and the inner circumferential steps of the rollers, which extend substantially in the circumferential direction and communicate with each other. It is provided with a groove formed by a plurality of sealing parts whose cross-sectional area decreases as the distance from the part increases.

作   用 本発明は上記した構成により、ローラのら粧運動のうち
自転運動の成分に対しては、どちらの方向に自転しても
溝に流入した潤滑油は断面積の小さい方向に流れ、必ず
溝の封止部のどちらかに油圧力を発生することとなり、
大きな雄圧力を発生することができる。また、油圧力の
発生部位は、それぞれのローラ端面で2箇所以上に分散
して発生することになる。更に、溝の封止部に流入した
潤滑油は逃げ場が無いので油圧力は高く維持できる。
Effect: With the above-described configuration, the lubricating oil flowing into the groove flows in the direction of the smaller cross-sectional area regardless of which direction the roller rotates, so that the lubricating oil always flows in the direction of the smaller cross-sectional area. Hydraulic pressure will be generated in either of the sealing parts of the groove,
Can generate large male pressure. Furthermore, the hydraulic pressure is generated at two or more distributed locations on each roller end face. Furthermore, since the lubricating oil that has flowed into the sealing portion of the groove has no place to escape, the hydraulic pressure can be maintained at a high level.

さらにローラ肉厚の厚い場合においても、ローラ内周部
に内周側凹状となる段差を設けているため、ローラ端面
面積が小さくなり1.くさび効果により軸受面に対する
密着力よりも大きな油圧力が得られる。
Furthermore, even when the roller is thick, the roller end surface area is reduced because the inner circumferential portion of the roller is provided with a step that is concave on the inner circumferential side. Due to the wedge effect, a hydraulic pressure greater than the adhesion force to the bearing surface can be obtained.

従って、両端面に発生する油圧力が大きく且っローラ端
面上に分散して発生し、発生した油圧力が高く維持でき
ることになり、ローラと主軸受及び副軸受間のクリアラ
ンスδ6とδbが漏れの最も少ないδ6=δbにIM実
に保持される。その結果圧縮室や吸入室へ流入するオイ
ルの量が減少し体積効率が向上すると共に漏れ損失が少
なくなる。
Therefore, the hydraulic pressure generated on both end faces is large and distributed on the roller end face, and the generated hydraulic pressure can be maintained at a high level, and the clearances δ6 and δb between the roller and the main bearing and sub bearing are reduced to prevent leakage. IM is actually maintained at the minimum δ6=δb. As a result, the amount of oil flowing into the compression chamber and suction chamber is reduced, improving volumetric efficiency and reducing leakage loss.

実施例 以下実施例につき、第1図、第2図にて説明する。Example Examples will be explained below with reference to FIGS. 1 and 2.

尚、従来例と同一の部分は同一符号を付し説明を省略す
る。
Incidentally, the same parts as in the conventional example are given the same reference numerals, and the description thereof will be omitted.

19はローラであり、従来と同様にシャフト3のクラン
ク3cに回転自在に保持されている。ローラ19の端面
19a、19bには、内周側に内周部が凹状となる段差
19c、19dが設けられており、さらに、溝20〜2
4〜27及び溝28〜32〜35が同数だけ設けられて
いる。溝20〜35はローラ19の内周側の段差19G
、19dとの連通部20 a〜35a及び円周方向に沿
って連通部20a〜35aより伸び且つ連通部20a〜
35aより離れるに伴い断面積を減少する封止部20b
〜36b及び2oC〜35cにより形成されている。
Reference numeral 19 denotes a roller, which is rotatably held by the crank 3c of the shaft 3 as in the conventional case. The end surfaces 19a and 19b of the roller 19 are provided with steps 19c and 19d on the inner periphery side, the inner periphery of which is concave, and grooves 20 to 2.
The same number of grooves 4 to 27 and grooves 28 to 32 to 35 are provided. The grooves 20 to 35 are the steps 19G on the inner circumferential side of the roller 19.
, 19d, and the communicating portions 20a to 35a extending from the communicating portions 20a to 35a along the circumferential direction.
Sealing portion 20b whose cross-sectional area decreases as it moves away from 35a
~36b and 2oC~35c.

かかる構成において、吸入管13より吸入された冷媒ガ
スは、従来と同様に圧縮され吐出管17より冷却システ
ムに吐出される。
In this configuration, the refrigerant gas sucked through the suction pipe 13 is compressed in the same way as in the conventional case and is discharged from the discharge pipe 17 to the cooling system.

1だ、冷媒の溶は込んだ密閉ケーシング1内の高圧の潤
滑油18も従来と同様に機械部本体9を潤滑するが、ロ
ーラ19の内周側に流入した潤滑油18は、ローラ19
a、19bを潤滑した後従来と同様に密閉ケーシングの
下部に戻る。
1. The high-pressure lubricating oil 18 in the sealed casing 1 filled with refrigerant also lubricates the mechanical body 9 as in the past, but the lubricating oil 18 that has flowed into the inner circumferential side of the roller 19
After lubricating parts a and 19b, return to the lower part of the sealed casing as in the conventional case.

ローラ19は、従来と同様にシャフト3の回転に伴い、
公転運動と自転運動を行い、この結果ローラ19はら旋
運動を行う。このら旋運動のある瞬間の運動の方向を従
来と同様に実線の矢印方向とし、又ローラ19の運動に
より潤滑油18が流れる方向を破線の矢印方向とする。
As the shaft 3 rotates, the roller 19 rotates as in the conventional case.
The roller 19 performs a revolution movement and an autorotation movement, and as a result, the roller 19 performs a spiral movement. The direction of this spiral motion at a certain moment is the direction of the solid line arrow, as in the conventional case, and the direction in which the lubricating oil 18 flows due to the movement of the roller 19 is the direction of the broken line arrow.

このとき、ローラ19の端面19a上の溝2゜〜27で
は、封止部20b 〜27 b 、 20c 〜27C
!のうち封止部20C,21c、23b、24b。
At this time, in the grooves 2° to 27 on the end surface 19a of the roller 19, the sealing parts 20b to 27b, 20c to 27C
! Among them, the sealing portions 20C, 21c, 23b, and 24b.

25b、26b、26G 、27cが、破線の矢印方向
で示す潤滑油18の流れ方向に対して、断面積を減少す
ることとなV、連通部20a〜27aより流入する潤滑
油1Bにより油圧力を発生する。
25b, 26b, 26G, and 27c reduce the cross-sectional area with respect to the flow direction of the lubricating oil 18 indicated by the dashed arrow direction. Occur.

即ち、溝20〜27のうち、溝22以外の溝では、封止
部20b 〜27b 、20c 〜27cのどちらか一
方又は両方で油圧力が発生し、油圧力の発生位置が、従
来の一箇所だけと異なり、ローラ端面19a上に分散さ
れる。又、端面19b上の溝28〜36においても、端
面19a上の溝20〜2了と同様に溝22と対称位置溝
30以外の溝で、封止部28b〜ssb、2sc〜36
cのどちらか一方又は両方で油圧が発生し、且つ油圧の
発生位置は、端面19 aと19bで対称位置となる。
That is, in the grooves 20 to 27 other than the groove 22, hydraulic pressure is generated in one or both of the sealing parts 20b to 27b and 20c to 27c, and the position of the hydraulic pressure generation is different from the conventional one point. Unlike in the case where the particles are separated from each other, they are dispersed on the roller end surface 19a. Also, in the grooves 28 to 36 on the end surface 19b, the sealing portions 28b to ssb, 2sc to 36 are located at grooves other than the groove 22 and the symmetrical groove 30, similar to the grooves 20 to 2 on the end surface 19a.
Hydraulic pressure is generated at one or both of the end faces 19a and 19b, and the positions at which the oil pressure is generated are symmetrical between the end faces 19a and 19b.

更に、ローラ19のら旋運動を形成する自転成分におい
ては、略円周方向に断面積を減少する封止部20b〜3
5b 、20c 、35cを形成しているために、どち
らの自転方向に対してもクサビ効果による油圧力を発生
する。また油圧力は、封止部2ob〜35b、2oC〜
35Cの近傍で発生するので油圧力の逃げ場がなく、油
圧力は高く保持される。従って、ローラ19の端面19
a。
Furthermore, in the autorotation component forming the spiral motion of the roller 19, the sealing portions 20b to 3 whose cross-sectional area decreases in the substantially circumferential direction
5b, 20c, and 35c, hydraulic pressure is generated due to the wedge effect in either direction of rotation. In addition, the hydraulic pressure is
Since it occurs near 35C, there is no escape for the hydraulic pressure, and the hydraulic pressure is kept high. Therefore, the end surface 19 of the roller 19
a.

19bKは常に同じ大きさの油圧力が分散した位置に発
生しバランスすることになる。また、この油圧力は、自
転成分により発生する油圧力針と、油圧力が逃げず高く
保持される分だけ従来より高い油圧力となるため、ロー
ラ19は、−回転中従来以上に確実にクリアランスδa
;δbの位置に保持され、体積効率が向上する。
In 19bK, the same amount of hydraulic pressure is always generated at dispersed positions, resulting in a balance. In addition, this hydraulic pressure is higher than before due to the hydraulic pressure needle generated by the rotational component and the hydraulic pressure that does not escape and is kept high, so the roller 19 has a more secure clearance than before during rotation. δa
; It is held at the position of δb, and the volumetric efficiency is improved.

さらに、ローラ肉厚が厚い場合においても、ローラ19
の内周側に内周側凹状となる段差19C119dを設け
ているため、ローラ端面の面積を小さくできるため、ロ
ーラ端面19a、19bと主軸受7または副軸受8との
接触部における密着力をくさび効果による油圧力より弱
くでき、ローラが片面に寄ったまま回転することがなく
なる。
Furthermore, even when the roller wall thickness is large, the roller 19
Since the step 19C119d that is concave on the inner circumferential side is provided, the area of the roller end face can be reduced, so that the adhesion force at the contact portion between the roller end faces 19a, 19b and the main bearing 7 or the sub bearing 8 is reduced. It can be made weaker than the hydraulic pressure caused by the effect, and the rollers will not rotate while being biased to one side.

このために、圧縮室や吸入室へ流入する潤滑油の量が減
少し体積効率が向上する。
Therefore, the amount of lubricating oil flowing into the compression chamber and suction chamber is reduced, improving volumetric efficiency.

尚、本実施例においては、断面積の変化を溝巾にて行っ
たが、溝の深さで行っても良い。
In this embodiment, the cross-sectional area was changed by changing the groove width, but it may also be changed by changing the groove depth.

発明の効果 以上の説明から明らかな様に本発明は、シリンダと、シ
リンダの端面に固定された主軸受及び副軸受と、主軸受
及び副軸受内を回転摺動し且つクランクを有するシャフ
トと、シャフトのクランクに自転自在に収納されたロー
ラと、ローラに当接し且つシリンダに設けられた溝内を
往復摺動するベーンと、ローラの内周側で主軸受及び副
軸受と対向する端面のそれぞれに設けられた内周側凹状
の段差とローラの内周側に設けられた段差との連通部、
および略円周方向に伸び連通部より離れるに伴い断面積
を減少する複数の封止部より形成される溝を備えたもの
であるから、ローラのら旋運動を形成する自転運動に対
しても油圧力が発生するために油圧力が高くなり、また
油圧力の発生部位はそれぞれの端面上の2.箇所以上に
分散して発生し、更に封止部に流入した潤滑油は逃げ場
がないので発生した油圧力を高く維持できることとなる
ので、ローラの端面と主軸受、副軸受間のクリアランス
を常に均等に保持することができ、漏れ損失が減少し体
積効率が向上する。
Effects of the Invention As is clear from the above description, the present invention comprises a cylinder, a main bearing and a sub-bearing fixed to the end face of the cylinder, a shaft that rotates and slides within the main bearing and the sub-bearing and has a crank; A roller that is rotatably housed in the crank of the shaft, a vane that contacts the roller and slides back and forth in a groove provided in the cylinder, and an end face that faces the main bearing and sub-bearing on the inner circumferential side of the roller. a communication portion between a concave step provided on the inner circumferential side of the roller and a step provided on the inner circumferential side of the roller;
and a groove formed by a plurality of sealing portions that extend in the circumferential direction and decrease in cross-sectional area as they move away from the communication portion, so it is resistant to the rotational movement that forms the spiral movement of the roller. The hydraulic pressure increases due to the generation of hydraulic pressure, and the hydraulic pressure is generated at 2. on each end face. Since the lubricating oil that is generated dispersed over multiple locations and flows into the sealing part has no place to escape, the generated hydraulic pressure can be maintained high, so the clearance between the roller end face, main bearing, and sub-bearing is always equalized. This reduces leakage loss and improves volumetric efficiency.

さらにローラ肉厚が厚い場合においても、ロラの内周側
に設けられた段差により、ローラ端面の面積が小さくな
ることからローラ端面と軸受面とが接触した場合の密着
力をくさび効果による油圧力より弱くでき、ローラが片
面に寄ったまま回転することがなくなり、ローラ端面と
主軸受、副軸受間のクリアランスを均等に保持すること
ができ体積効率の高い圧縮機を供給することができる。
Furthermore, even when the roller wall thickness is thick, the area of the roller end face is reduced due to the step provided on the inner circumference of the roller, so the hydraulic pressure due to the wedge effect reduces the adhesion force when the roller end face and bearing surface come into contact. It can be made weaker, the rollers do not rotate while being biased to one side, and the clearance between the roller end face, the main bearing, and the sub-bearing can be maintained evenly, and a compressor with high volumetric efficiency can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回転式圧縮機のローラ
の正面図、第2図は本発明の機械部の拡大断面図、第3
図は従来の回転技圧縮機の縦断面図、第4図は第3図の
y −■’線における矢視図、第5図は第3図の機械部
の拡大断面図、第6図は従来のローラ正面図である。 3・・・・・・シャフト、3C・・・・・・クランク、
4・・・°°°シリンダ、6・・・・・・ベーン、7・
・・・・・主軸受、8・・・・・・副軸受、19・・・
・・・ローラ、19a、19b・・・・・・ローラ端面
、19c、19d・旧・・段差、20〜24〜27.2
8〜32〜35・・・・・・溝、20 a〜24a〜2
7a 、28a〜32a〜35a・・・・・・連通部、
20b〜24b 〜27b 、20C〜24c〜27C
。 28b〜32b〜35b、28c〜32c〜35c・・
・・・・封止部。
FIG. 1 is a front view of a roller of a rotary compressor showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the mechanical part of the present invention, and FIG.
The figure is a longitudinal sectional view of a conventional rotary compressor, Figure 4 is a view along the y-■' line in Figure 3, Figure 5 is an enlarged sectional view of the mechanical part in Figure 3, and Figure 6 is FIG. 3 is a front view of a conventional roller. 3...Shaft, 3C...Crank,
4...°°° cylinder, 6... vane, 7.
...Main bearing, 8...Sub bearing, 19...
...Roller, 19a, 19b...Roller end face, 19c, 19d, old...Step, 20-24-27.2
8-32-35...Groove, 20a-24a-2
7a, 28a to 32a to 35a... communication part,
20b~24b~27b, 20C~24c~27C
. 28b~32b~35b, 28c~32c~35c...
...Sealing part.

Claims (1)

【特許請求の範囲】[Claims] シリンダと、前記シリンダの端面に固定された主軸受及
び副軸受と、前記主軸受及び副軸受内を回転摺動し且つ
クランクを有するシャフトと、前記シャフトのクランク
に自転自在に収納されたローラと、前記ローラに当接し
且つ前記シリンダに設けられた溝内を往復摺動するベー
ンと、前記ローラの内周側で前記主軸受及び副軸受と対
向する端面のそれぞれに設けられた内周側凹状の段差と
前記ローラの内周側に設けられた段差との連通部および
略円周方向に伸び前記連通部より離れるに伴い断面積を
減少する複数の封止部より形成される溝を備えた回転式
圧縮機。
a cylinder; a main bearing and a sub-bearing fixed to an end surface of the cylinder; a shaft that rotates and slides within the main bearing and the sub-bearing and has a crank; and a roller that is rotatably housed in the crank of the shaft. , a vane that contacts the roller and slides back and forth in a groove provided in the cylinder; and an inner concave shape provided on each of the end faces facing the main bearing and the sub bearing on the inner circumference side of the roller. and a groove formed by a communication portion between the step and the step provided on the inner circumferential side of the roller, and a plurality of sealing portions extending approximately in the circumferential direction and decreasing in cross-sectional area as the distance from the communication portion increases. Rotary compressor.
JP26771690A 1990-10-04 1990-10-04 Rotary compressor Pending JPH04143481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26771690A JPH04143481A (en) 1990-10-04 1990-10-04 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26771690A JPH04143481A (en) 1990-10-04 1990-10-04 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH04143481A true JPH04143481A (en) 1992-05-18

Family

ID=17448564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26771690A Pending JPH04143481A (en) 1990-10-04 1990-10-04 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH04143481A (en)

Similar Documents

Publication Publication Date Title
JPS62101895A (en) Rotary compressor with blade slot pressure groove
JP2005201140A (en) Fluid machine
JP2513444B2 (en) High pressure rotary compressor
JP3881861B2 (en) Scroll compressor
JPH031516B2 (en)
US5316455A (en) Rotary compressor with stabilized rotor
US6135737A (en) Scroll hydraulic machine
JPH04143481A (en) Rotary compressor
JP2005325842A (en) Fluid machine
JPH06346878A (en) Rotary compressor
JP2604814B2 (en) Rotary compressor
JP6541708B2 (en) Rolling cylinder positive displacement compressor
JPH01219383A (en) Compressor
JPH03271592A (en) Rotary compressor
JP2769177B2 (en) Rotary compressor
WO2023218584A1 (en) Scroll compressor
JPH0678756B2 (en) Scroll compressor
EP0541801A1 (en) Rotary compressor
JP2672626B2 (en) Rotary compressor
JP2578919B2 (en) Rotary compressor
KR100304945B1 (en) Scroll Compressor with oil control structure
JPH03141885A (en) Rotary compressor
JPH01227890A (en) Rotary compressor
JP2783371B2 (en) Rotary compressor
JP2980257B2 (en) Rotary compressor