JPH04137730A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04137730A
JPH04137730A JP26017490A JP26017490A JPH04137730A JP H04137730 A JPH04137730 A JP H04137730A JP 26017490 A JP26017490 A JP 26017490A JP 26017490 A JP26017490 A JP 26017490A JP H04137730 A JPH04137730 A JP H04137730A
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon nitride
ions
selective oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26017490A
Other languages
Japanese (ja)
Inventor
Chihiro Nagata
永田 千尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26017490A priority Critical patent/JPH04137730A/en
Publication of JPH04137730A publication Critical patent/JPH04137730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent the performance deterioration of a semiconductor device by removing the end of a mask for selective oxidation after formation of a thick oxide film for element isolation, and in this condition, implanting ions for channel stopper. CONSTITUTION:A polysilicon film 3 and a silicon nitride film 4 are stacked through a thin oxide film 2 on a silicon substrate 1, and those are etched to remove the polysilicon film 3 and the silicon nitride film 4 on an element isolating region, and with the silicon nitride film as a mask, B<+> is implanted below the oxide film 2 in the element isolating region, and selective oxidation is performed to form a thick LOCOS oxide film 5 in the element isolating region. And the silicon nitride film 4 and the oxide film 6 are removed by wet etching, and the silicon substrate 1 around the LOCOS oxide film 5 is exposed, and with the polysilicon film 3 and the LOCOS oxide film 5 as masks, F<-> and B<+> are implanted in this order to form a channel stopper around the LOCOS oxide film 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に関し、特に、素子
分離領域の微細化に伴う半導体装置の性能劣化を防ぐも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, and in particular, to preventing performance deterioration of a semiconductor device due to miniaturization of an element isolation region.

(従来の技術〕 素子同士を電気的に絶縁する素子分離領域には、通常、
選択酸化(LOGO5酸化)によって形成される厚い酸
化膜(LOGO3酸化膜)が利用される。
(Conventional technology) In the element isolation region that electrically insulates elements from each other,
A thick oxide film (LOGO3 oxide film) formed by selective oxidation (LOGO5 oxidation) is used.

そして、素子分離領域を構成するLOGO3酸化膜を微
細化すれば、素子間の幾何学的分離長が縮小されて、半
導体集積回路の高集積化を図ることができる。
If the LOGO3 oxide film constituting the element isolation region is miniaturized, the geometrical separation length between elements is reduced, making it possible to achieve higher integration of semiconductor integrated circuits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、素子間の幾何学的分離長を縮小(例えば
、1μm程度に)した場合、バンチスルー耐圧を確保す
るためにチャネルストッパ用のイオンの単位面積当たり
の注入量を増加することになるが、従来は、LOGO3
酸化膜の下側にチャネルストッパを形成する、即ちLO
GO3酸化を行う前に素子分離領域にチャネルストア1
<用のイオン注入を行うので、LOCO3酸化膜形成の
際にチャネルストッパ用のイオンが素子領域の広い範囲
に拡散して、接合耐圧、狭チャネル効果、基板バイアス
効果等の制御に悪影響を与えてしまうという問題点があ
る。
However, if the geometrical separation length between elements is reduced (for example, to about 1 μm), the amount of ions implanted per unit area for channel stopper will increase in order to ensure bunch-through breakdown voltage. Previously, LOGO3
Forming a channel stopper under the oxide film, i.e. LO
Channel store 1 is placed in the device isolation region before GO3 oxidation.
Since ion implantation is performed for LOCO3, ions for the channel stopper diffuse over a wide range of the device region during the formation of the LOCO3 oxide film, adversely affecting the control of junction breakdown voltage, narrow channel effect, substrate bias effect, etc. There is a problem with storing it away.

また、LOGO3酸化膜を微細にするにはバーズビーク
を抑制しなければならないが、バーズビークを抑制する
と、LOCO3酸化膜厚が同程度ならば、より大きな応
力歪みが半導体基板に発生して素子領域端部のゲート酸
化膜質が劣化してしまうし、局所的な薄膜化も起こって
しまう。
In addition, to make the LOGO3 oxide film finer, bird's beak must be suppressed, but if the bird's beak is suppressed, if the LOCO3 oxide film thickness is the same, larger stress strain will be generated in the semiconductor substrate and the edges of the element region will be affected. The quality of the gate oxide film deteriorates, and local thinning of the film also occurs.

この発明は、このような従来の技術が有する未解決の課
題に着目してなされたものであり、LOCO3酸化膜の
微細化に伴って生じる半導体装置の性能劣化を防止する
ことができる半導体装置の製造方法を提供することを目
的としている。
This invention was made by focusing on the unresolved problems of the conventional technology, and provides a semiconductor device that can prevent the performance deterioration of the semiconductor device that occurs due to the miniaturization of the LOCO3 oxide film. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、請求項(1)記載の半導体
装置の製造方法は、半導体基板上に選択酸化用マスクを
形成する工程と、前記選択酸化用マスクを利用して選択
酸化を行い前記半導体基板に素子分離用の厚い酸化膜を
形成する工程と、前記厚い酸化膜形成後に前記選択酸化
用マスクの端部を除去する工程と、前記選択酸化用マス
クの端部を除去した後にチャネルストッパ用のイオンを
注入する工程と、を具備した。
In order to achieve the above object, a method for manufacturing a semiconductor device according to claim (1) includes a step of forming a selective oxidation mask on a semiconductor substrate, and performing selective oxidation using the selective oxidation mask. forming a thick oxide film for element isolation on a semiconductor substrate; removing an end of the selective oxidation mask after forming the thick oxide film; and forming a channel stopper after removing the end of the selective oxidation mask. and a step of implanting ions for the purpose.

また、請求項(2)記載の半導体装置の製造方法は、上
記請求項(1)記載の半導体装置の製造方法において、
チャネルストッパ用のイオンとしてホウ素イオンを用い
るとともに、そのホウ素イオンの注入前にフッ素イオン
を注入する。
Further, the method for manufacturing a semiconductor device according to claim (2) is the method for manufacturing a semiconductor device according to claim (1), comprising:
Boron ions are used as channel stopper ions, and fluorine ions are implanted before the boron ions are implanted.

〔作用〕[Effect]

素子分離用の厚い酸化膜を形成した後に、選択酸化用マ
スクの端部が除去されると、厚い酸化膜の周囲の半導体
基板、即ち、素子領域の縁の部分が露出するから、この
状態でチャネルストッパ用のイオンを注入すると、チャ
ネルストッパは、厚い酸化膜の周囲にのみ形成されるこ
とになる。そして、その後に選択酸化を行う必要はない
から、チャネルストッパ用のイオンが素子領域内の広い
範囲に拡散することがない。
When the edge of the selective oxidation mask is removed after forming a thick oxide film for element isolation, the semiconductor substrate surrounding the thick oxide film, that is, the edge of the element region, is exposed. When ions for the channel stopper are implanted, the channel stopper is formed only around the thick oxide film. Since there is no need to perform selective oxidation after that, ions for the channel stopper do not diffuse into a wide range within the device region.

また、請求項(2)記載の発明のように、ホウ素イオン
の注入前にフッ素イオンを注入すると、チャネルストッ
パとしての効果はホウ素イオンによって得られ、フッ素
は、格子間シリコンを不動化するので、ホウ素イオンの
拡散が抑制される。さらに、フッ素は、シリコン酸化膜
の体積を膨張させる働きもあるので、素子領域端部の酸
化膜質の劣化や薄膜化が抑制される。
Further, as in the invention described in claim (2), if fluorine ions are implanted before implanting boron ions, the effect as a channel stopper is obtained by the boron ions, and fluorine immobilizes the interstitial silicon. Diffusion of boron ions is suppressed. Furthermore, since fluorine also has the function of expanding the volume of the silicon oxide film, deterioration of the quality of the oxide film and thinning of the oxide film at the edge of the element region are suppressed.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図(a)乃至(e)は、本発明の第1実施例の半導
体装置の製造工程を示す断面図である。
FIGS. 1A to 1E are cross-sectional views showing the manufacturing process of a semiconductor device according to a first embodiment of the present invention.

先ず、半導体基板としてのシリコン基if上に、応力緩
和のための薄い酸化膜2を介して、選択酸化用マスクを
構成するポリシリコン膜3及びシリコン窒化膜4を積層
する(第1図(a)参照)。
First, a polysilicon film 3 and a silicon nitride film 4 constituting a mask for selective oxidation are laminated on a silicon base if as a semiconductor substrate via a thin oxide film 2 for stress relaxation (see FIG. 1(a)). )reference).

次いで、エツチングを行って、素子分離領域上のポリシ
リコン膜3及びシリコン窒化膜4を除去する(第1図(
b)参照)、なお、ポリシリコン膜3は、薄く残存する
ように除去する。
Next, etching is performed to remove the polysilicon film 3 and silicon nitride film 4 on the element isolation region (see FIG.
b)), the polysilicon film 3 is removed so as to remain thin.

そして、シリコン窒化膜4をマスクとして、素子骨M 
fiI域の酸化膜2の下側にホウ素イオンB゛を注入す
る(第1図(b)参照)。なお、このイオン注入は、フ
ィールドしきい値を制御するためのイオン注入であって
、極少量でよく、省略することも可能である。
Then, using the silicon nitride film 4 as a mask, the element bone M
Boron ions B' are implanted under the oxide film 2 in the fiI region (see FIG. 1(b)). Note that this ion implantation is for controlling the field threshold value, and only a very small amount is required, so it can be omitted.

次いで、熱酸化を行えば、シリコン窒化膜4で覆われた
部分は、素子分離領域に比べて酸化速度が極めて遅いた
め、選択酸化(LOGO3酸化)となり、素子分離領域
に厚い酸化膜としてのLOCO5酸化膜5が形成される
(第1図(C)参照)。
Next, when thermal oxidation is performed, the oxidation rate of the portion covered with the silicon nitride film 4 is extremely slow compared to the element isolation region, so selective oxidation (LOGO3 oxidation) occurs, and LOCO5 is formed as a thick oxide film in the element isolation region. An oxide film 5 is formed (see FIG. 1(C)).

このLOGO3酸化では、ポリシリコン膜3が酸化膜の
横方向への成長を抑制するため、バーズビークは極小さ
くて済むし、フィールドしきい値を制御するために注入
したホウ素イオンB゛は、極少量であるから、LOCO
3酸化の際にホウ素イオンB°が横方向に拡散しても、
素子領域にはほとんど影響が与えられない。
In this LOGO3 oxidation, the polysilicon film 3 suppresses the lateral growth of the oxide film, so the bird's beak can be extremely small, and the amount of boron ions B implanted to control the field threshold is extremely small. Therefore, LOCO
Even if boron ions B° diffuse laterally during trioxidation,
The element area is hardly affected.

また、LOGO3酸化の際にポリシリコン膜3の端部も
酸化されるため、LOGO3酸化膜5の周縁部に酸化膜
6が形成されるから、シリコン窒化膜4及び酸化膜6を
ウェットエツチングにより除去すれば、LOGO3酸化
膜5酸化膜5リ囲ン基板1が露出する(第1図(d)参
照)。
Furthermore, since the edges of the polysilicon film 3 are also oxidized during LOGO3 oxidation, an oxide film 6 is formed at the peripheral edge of the LOGO3 oxide film 5. Therefore, the silicon nitride film 4 and the oxide film 6 are removed by wet etching. Then, the substrate 1 surrounding the LOGO 3 oxide film 5 oxide film 5 is exposed (see FIG. 1(d)).

次いで、ポリシリコン膜3及びLOGO3酸化膜5をマ
スクとして、フッ素イオンF−及びホウ素イオンB°を
、この順序で注入する(第1図(d)参照)。
Next, using the polysilicon film 3 and the LOGO3 oxide film 5 as masks, fluorine ions F- and boron ions B° are implanted in this order (see FIG. 1(d)).

すると、素子分離領域を構成するLOCO3酸化膜5の
周囲に、チャネルストッパ7が形成されるが、フッ素イ
オンF−は、ホウ素イオンB゛の拡散を抑制する(格子
間シリコンを不動化する)働きがあるため、パンチスル
ー耐圧を確保するためにホウ素イオンB゛を大量に注入
しても、素子領域への拡散はほとんどなく、接合耐圧や
基板バイアス効果等に悪影響は与えられない。
Then, a channel stopper 7 is formed around the LOCO3 oxide film 5 constituting the element isolation region, but the fluorine ions F- act to suppress the diffusion of the boron ions B (immobilize the interstitial silicon). Therefore, even if a large amount of boron ions B are implanted to ensure punch-through breakdown voltage, there is almost no diffusion into the element region, and there is no adverse effect on junction breakdown voltage, substrate bias effect, etc.

このため、素子分離長を縮小しても半導体装置の性能が
劣化するような不具合がないから、素子分離領域の微細
化による半導体集積回路の集積度向上が有効に達成され
る。
Therefore, even if the element isolation length is reduced, there is no problem that the performance of the semiconductor device deteriorates, so that the degree of integration of the semiconductor integrated circuit can be effectively achieved by miniaturizing the element isolation region.

そして、ポリシリコン膜3を除去した後にゲート酸化膜
8を形成する(第1図(e)参照)。この場合、LOC
O3酸化膜5酸化膜5リ囲ン基板1にはフッ素イオンF
−が含まれているが、シリコン酸化膜中に取り込まれた
フッ素は、その酸化膜の体積を膨張させる働きがあるた
め、LOCO3酸化膜5酸化膜5リ囲みに起因していた
ゲート酸化膜8の膜質劣化や薄膜化が抑制される。さら
には、シリコン基板1と、LOGO3酸化膜端部のゲー
ト酸化膜8との間の界面準位を減少させる効果もある。
After removing the polysilicon film 3, a gate oxide film 8 is formed (see FIG. 1(e)). In this case, the LOC
O3 oxide film 5 Oxide film 5 Surrounding substrate 1 contains fluorine ions F
However, the fluorine incorporated into the silicon oxide film has the effect of expanding the volume of the oxide film, so the gate oxide film 8 caused by the LOCO3 oxide film 5 oxide film 5 Deterioration of film quality and thinning of the film are suppressed. Furthermore, it also has the effect of reducing the interface state between the silicon substrate 1 and the gate oxide film 8 at the end of the LOGO3 oxide film.

第2図(a)乃至(6)は、本発明の第2実施例の半導
体装置の製造工程を示す断面図である。
FIGS. 2(a) to 2(6) are cross-sectional views showing the manufacturing process of a semiconductor device according to a second embodiment of the present invention.

先ず、シリコン基板1上に薄い酸化膜2を介してシリコ
ン窒化膜4を積層しく第2図(a)参照)た後、素子分
離領域のシリコン窒化膜4及び酸化膜2を除去してシリ
コン基板1を露出させる(第2図(b)参照)。
First, a silicon nitride film 4 is laminated on a silicon substrate 1 via a thin oxide film 2 (see FIG. 2(a)), and then the silicon nitride film 4 and oxide film 2 in the element isolation region are removed to form a silicon substrate. 1 (see FIG. 2(b)).

次いで、表面全体を薄いシリコン窒化膜9及びポリシリ
コン膜10で覆い(第2図(C)参照)、そしてポリシ
リコン膜lOを部分的に除去して、素子分離領域の周囲
にサイドウオール11を形成し、さらに、フィールドし
きい値を制御するために極少量のホウ素イオンB゛を素
子分離領域に注入する(第2図(d)参照)。なお、ホ
ウ素イオンB゛の注入は、省略も可能である。
Next, the entire surface is covered with a thin silicon nitride film 9 and a polysilicon film 10 (see FIG. 2(C)), and the polysilicon film 10 is partially removed to form a sidewall 11 around the element isolation region. Further, a very small amount of boron ions B' are implanted into the element isolation region in order to control the field threshold value (see FIG. 2(d)). Note that the implantation of boron ions B' can be omitted.

そして、LOGO3酸化を行いLoCO3酸化膜5を形
成しく第2図(e)参照)、そのLOGO3酸化の際に
酸化したサイドウオール11をウェットエツチングによ
り除去した後に、シリコン窒化膜4及びLOGO3酸化
膜5をマスクとして、薄いシリコン窒化膜9を通過する
程度の打ち込みエネルギで、LOGO3酸化膜5の周囲
に、フッ素イオンF−及びホウ素イオンB“を、この順
序で注入する(第2図げ)参照)。
Then, LOGO3 oxidation is performed to form a LoCO3 oxide film 5 (see FIG. 2(e)), and after removing the sidewall 11 oxidized during the LOGO3 oxidation by wet etching, the silicon nitride film 4 and the LOGO3 oxide film 5 are removed. Using as a mask, fluorine ions F- and boron ions B" are implanted in this order around the LOGO3 oxide film 5 with an implantation energy that is sufficient to pass through the thin silicon nitride film 9 (see Figure 2)). .

その後、シリコン窒化膜4及び9を除去し、ゲート酸化
膜8を形成する(第2図(6)参照)。
Thereafter, the silicon nitride films 4 and 9 are removed, and a gate oxide film 8 is formed (see FIG. 2(6)).

この第2実施例にあっても、上記第1実施例と同様の作
用効果が得られるから、素子分離領域の微細化による半
導体集積回路の集積度向上が有効に達成されるとともに
、素子分離領域周辺のゲート酸化膜8の改善が図られる
In this second embodiment as well, the same effects as in the first embodiment can be obtained, so that it is possible to effectively improve the degree of integration of a semiconductor integrated circuit by miniaturizing the element isolation region. The surrounding gate oxide film 8 can be improved.

〔発明の効果] 以上説明したように、請求項(1)記載の発明であれば
、厚い酸化膜を形成した後に、その周囲にチャネルスト
ッパ用のイオンを注入するため、素子領域へのイオン拡
散が抑制され、半導体装置の性能劣化が防止されるとい
う効果がある。
[Effects of the Invention] As explained above, according to the invention set forth in claim (1), after forming a thick oxide film, ions for a channel stopper are implanted around the thick oxide film, so that ion diffusion into the element region is prevented. This has the effect of suppressing deterioration in the performance of the semiconductor device.

また、請求項(2)記載の発明であれば、チャネルスト
ッパ用のイオンの素子領域への拡散がさらに抑制される
とともに、厚い酸化膜周辺のゲート酸化膜の改善も図ら
れるという効果がある。
Further, the invention as set forth in claim (2) has the effect that diffusion of channel stopper ions into the element region is further suppressed, and the gate oxide film around the thick oxide film is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(e)は本発明の第1実施例の半導体
装置の製造工程を示す断面図、第2図(a)乃至(6)
は本発明の第2実施例の半導体装置の製造工程を示す断
面図である。 ■・・・シリコン基板、3.10・・・ポリシリコン膜
、4.9・・・シリコン窒化膜、5・・・LOCO3酸
化膜、7・・・チャネルストッパ、8・・・ゲート酸化
膜第 図
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing process of a semiconductor device according to a first embodiment of the present invention, and FIGS. 2(a) to (6)
FIG. 3 is a cross-sectional view showing the manufacturing process of a semiconductor device according to a second embodiment of the present invention. ■...Silicon substrate, 3.10...Polysilicon film, 4.9...Silicon nitride film, 5...LOCO3 oxide film, 7...Channel stopper, 8...Gate oxide film No. figure

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に選択酸化用マスクを形成する工程
と、前記選択酸化用マスクを利用して選択酸化を行い前
記半導体基板に素子分離用の厚い酸化膜を形成する工程
と、前記厚い酸化膜形成後に前記選択酸化用マスクの端
部を除去する工程と、前記選択酸化用マスクの端部を除
去した後にチャネルストッパ用のイオンを注入する工程
と、を具備したことを特徴とする半導体装置の製造方法
(1) A step of forming a mask for selective oxidation on a semiconductor substrate, a step of performing selective oxidation using the mask for selective oxidation and forming a thick oxide film for element isolation on the semiconductor substrate, and a step of forming a thick oxide film for element isolation on the semiconductor substrate; A semiconductor device comprising the steps of removing an end of the selective oxidation mask after film formation, and implanting channel stopper ions after removing the end of the selective oxidation mask. manufacturing method.
(2)チャネルストッパ用のイオンとしてホウ素イオン
を用いるとともに、そのホウ素イオンの注入前にフッ素
イオンを注入する請求項(1)記載の半導体装置の製造
方法。
(2) The method of manufacturing a semiconductor device according to claim (1), wherein boron ions are used as ions for the channel stopper, and fluorine ions are implanted before implantation of the boron ions.
JP26017490A 1990-09-28 1990-09-28 Manufacture of semiconductor device Pending JPH04137730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26017490A JPH04137730A (en) 1990-09-28 1990-09-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26017490A JPH04137730A (en) 1990-09-28 1990-09-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04137730A true JPH04137730A (en) 1992-05-12

Family

ID=17344349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26017490A Pending JPH04137730A (en) 1990-09-28 1990-09-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04137730A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503214A (en) * 1994-04-04 1996-04-02 Cmi International, Inc. Mold and method for casting a disk brake rotor
JP2007012884A (en) * 2005-06-30 2007-01-18 Seiko Epson Corp Semiconductor substrate manufacturing method and semiconductor device manufacturing method
JP2007103492A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Semiconductor device and manufacturing method thereof
JP2008078600A (en) * 2006-09-21 2008-04-03 Hynix Semiconductor Inc Method for forming element isolation film of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503214A (en) * 1994-04-04 1996-04-02 Cmi International, Inc. Mold and method for casting a disk brake rotor
JP2007012884A (en) * 2005-06-30 2007-01-18 Seiko Epson Corp Semiconductor substrate manufacturing method and semiconductor device manufacturing method
JP2007103492A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Semiconductor device and manufacturing method thereof
JP2008078600A (en) * 2006-09-21 2008-04-03 Hynix Semiconductor Inc Method for forming element isolation film of semiconductor device

Similar Documents

Publication Publication Date Title
KR100468785B1 (en) Method of fabricating MOS Field Effect Transistor with pocket region
JPH06318634A (en) Isolating method for element in semiconductor device
JPH04137730A (en) Manufacture of semiconductor device
JPH04278534A (en) Element separation method of semiconductor device
JP2001284445A (en) Semiconductor device and manufacturing method therefor
US7061128B2 (en) Semiconductor device and manufacturing method of the same
JP2533003B2 (en) Field oxide film formation method
US5763316A (en) Substrate isolation process to minimize junction leakage
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JP2707901B2 (en) Method for manufacturing semiconductor device
KR100297169B1 (en) Method for forming isolation layer of semiconductor device
KR100220251B1 (en) Semiconductor device and method of manufacturing the same
KR100256228B1 (en) Method for forming isolation film of semiconductor device
KR100588781B1 (en) Semiconductor Device And Method For Manufacturing The Same
KR940001813B1 (en) Isolation method and device of semiconductor
KR20040002211A (en) Semiconductor device and method for fabricating the same
KR0144026B1 (en) Forming method of element isolation
JP4828790B2 (en) Method for manufacturing MOSFET type semiconductor device
KR100198600B1 (en) Method of forming planar isolation area for semiconductor device
JPH0529559A (en) Manufacture of semiconductor device
KR20000004532A (en) Method for manufacturing an isolation layer of semiconductor devices
JPH0479336A (en) Production of semiconductor device
KR100699819B1 (en) Method of forming metal-oxide-semiconductor transistor
KR19980039620A (en) Device Separation Method of Semiconductor Devices
JPH05259446A (en) Manufacture of semiconductor device