JPH04135955A - Vehicle anti-skid brake - Google Patents

Vehicle anti-skid brake

Info

Publication number
JPH04135955A
JPH04135955A JP26106390A JP26106390A JPH04135955A JP H04135955 A JPH04135955 A JP H04135955A JP 26106390 A JP26106390 A JP 26106390A JP 26106390 A JP26106390 A JP 26106390A JP H04135955 A JPH04135955 A JP H04135955A
Authority
JP
Japan
Prior art keywords
braking
wheel
vehicle
control threshold
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26106390A
Other languages
Japanese (ja)
Inventor
Haruki Okazaki
晴樹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26106390A priority Critical patent/JPH04135955A/en
Publication of JPH04135955A publication Critical patent/JPH04135955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To obtain the quality of turning around by giving a yaw moment to a vehicle, without sacrificing the quality of brake, at the time of entering into turning travel from beeline travel, by changing a control threshold value so that brake efficiency on the turning inner wheel side may become higher than brake efficiency on the turning outer wheel side. CONSTITUTION:A travel state deciding means 4 decides that it is a turning travel state when a steering angle is more than a predetermined value, on the basis of the angle of steering and the change rate of the angle of steering obtained by means of a steering angle sensor, and also decides that it is the state of entering turning travel from beeline travel when the change rate of the angle of steering is more than a predetermined value in the plus direction (steering angle increasing direction). When an entering state decision is obtained, a front wheel control threshold value changing means 5 changes the control threshold value of the turning inner wheel of front wheels into the direction in which the brake efficiency of the wheel becomes higher (tighter locking), and a rear wheel control threshold value changing means 6 changes a control threshold into a direction in which the brake efficiency of the rear wheel becomes higher (tighter locking). Thus, the quality of a vehicle turning around can be heightened without sacrificing the quality of brake.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両のアンチスキッドブレーキ装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an anti-skid brake device for a vehicle.

(従来の技術) アンチスキッドブレーキ装置は、基本的には、車輪速が
予め定められた減速度(制御閾値)を目標として減少す
るように、あるいは車輪のスlルンプ率が目標スリップ
率(制御閾値)となるように、車輪に付与する制動圧を
増減制御(以下、これを必要に応じて単にABS制御と
いう)することにより、制動時における車輪の口・ツク
ないしはスキッド状態の発生を防止し、方向安定性を失
わせずに車両を短い制動距離で停止させるものである。
(Prior Art) Anti-skid braking devices basically reduce wheel speed to a predetermined deceleration (control threshold) or reduce wheel slump rate to a target slip rate (control threshold). By controlling the braking pressure applied to the wheels to increase or decrease (hereinafter simply referred to as ABS control as necessary) so that the brake pressure reaches , which allows the vehicle to stop within a short braking distance without losing directional stability.

上記制動圧の制御については種々の提案があり、例えば
、実開昭59−155264号公報には、制動時にハン
ドルか所定角度以上切られた場合、旋回外輪のブレーキ
込めタイミングを旋回内輪よりも遅らせるようにしたし
のが開示されている。
There are various proposals for controlling the above-mentioned braking pressure. For example, Japanese Utility Model Application Publication No. 59-155264 proposes that when the steering wheel is turned by a predetermined angle or more during braking, the timing of applying the brake on the outer wheel of the turn is delayed compared to the inner wheel of the turn. This is what has been disclosed.

(発明が解決しようとする課題) ところで、車両の制動時における旋回走行においては、
その旋回初期における回頭性と制動性との両立が求めら
れるが、上述の所定角度以上の切れ角で旋回外輪のブレ
ーキ込めタイミングを遅らせるやり方では、回頭性は得
られても制動性が犠牲になる。
(Problems to be Solved by the Invention) By the way, when a vehicle turns while braking,
It is necessary to achieve both turning performance and braking performance at the beginning of the turn, but if the above-mentioned method of delaying the timing of applying the brakes on the outer wheel of the turn at a turning angle of more than a predetermined angle is achieved, braking performance is sacrificed even though turning performance is obtained. .

(課題を解決するための手段) 本発明は、このような課題に対して、旋回初期、つまり
、直進走行から旋回走行への進入時に、左右の前輪に制
動圧を同時に付与しながら、制動圧制御の閾値を左右で
変えることにより、制動性を犠牲にすることなく、車両
にヨーモーメントを与えて回頭性を得るものである。
(Means for Solving the Problems) The present invention solves these problems by applying braking pressure to the left and right front wheels at the same time at the beginning of a turn, that is, when entering from straight-ahead driving to cornering. By changing the left and right control thresholds, it is possible to apply yaw moment to the vehicle and obtain turning performance without sacrificing braking performance.

すなわち、そのための具体的な手段は、車輪の回転速度
を検出する車輪速検出手段と、車輪の制動圧を調節する
制動圧調節手段と、上記車輪速検出手段によって検出さ
れる車輪速に基づき所定の制御閾値に従って上記制動圧
を増減するよう上記制動圧調節手段を制御する制御手段
とを備え、且つ左右の前輪の制動圧を互いに独立させて
制御可能な車両のアンチスキッドブレーキ装置であって
、車両の操舵状態を検出する操舵状態検出手段と、上記
転舵状態検出手段により検出された操舵状態に基いて、
車両が直進走行から旋回走行へ進入する進入状態のとき
に、左右の前輪のうちの旋回内輪側の制動効率か旋回外
輪側の制動効率よりも高くなるように上記両前輪のうち
の少なくとも一方の制動圧の制御閾値を変更する制御閾
値変更手段を備えていることを特徴とするものである。
That is, specific means for this purpose include wheel speed detection means for detecting the rotational speed of the wheels, braking pressure adjustment means for adjusting the braking pressure of the wheels, and a predetermined wheel speed detection means based on the wheel speed detected by the wheel speed detection means. An anti-skid brake device for a vehicle, comprising a control means for controlling the brake pressure adjusting means to increase or decrease the brake pressure according to a control threshold value, and capable of controlling brake pressures of left and right front wheels independently of each other, Based on the steering state detected by the steering state detection means for detecting the steering state of the vehicle and the steering state detection means,
When the vehicle is in an approach state where it enters from straight-ahead driving to turning driving, at least one of the left and right front wheels is set so that the braking efficiency of the inner turning wheel or the braking efficiency of the outer turning wheel is higher than that of the left and right front wheels. The present invention is characterized in that it includes a control threshold value changing means for changing the control threshold value of the braking pressure.

この場合、後輪の制動圧の制御を前輪の制動圧の制御に
対して独立して行なうように構成しておき、車両が旋回
走行状態にあるときに後輪の制動効率が低くなるように
後輪の制動圧の制御閾値を変更するようにすることがで
きる。
In this case, the braking pressure of the rear wheels is configured to be controlled independently of the braking pressure of the front wheels, so that the braking efficiency of the rear wheels becomes low when the vehicle is in a cornering state. It is possible to change the control threshold value of the braking pressure of the rear wheels.

また、後輪の制動圧の制御を前輪の制動圧の制御に対し
て独立して行なう構成とする場合、車両が旋回走行状態
にあるときに、後輪の制動効率か進入状態のときに高く
、その後は低くなるように後輪の制動圧の制御閾値を変
更するようにしてもよい。
In addition, when the rear wheel braking pressure is controlled independently from the front wheel braking pressure control, when the vehicle is in a cornering state, the braking efficiency of the rear wheels is high. , the control threshold for the rear wheel braking pressure may be changed so that it becomes lower thereafter.

(作用) 上記アンチスキッドブレーキ装置においては、直進走行
から旋回走行への進入時に、左右の前輪に制動圧を同時
に付与するから、制動性が得られるとともに、旋回内輪
側の制動効率が旋回外輪側の制動効率よりも高くなるよ
うに制御閾値か変更されるから、それによって車両にヨ
ーモーメントが発生し、車両の回頭性か高まる。
(Function) In the above anti-skid brake device, braking pressure is simultaneously applied to the left and right front wheels when entering from straight running to cornering, so braking performance is obtained, and the braking efficiency of the inner wheel of the turn is lower than that of the outer wheel of the turn. Since the control threshold value is changed so as to be higher than the braking efficiency of

また、上記旋回走行時において、後輪の制動効率が低く
なるように制御閾値を変更すれば、後輪の路面に対する
グリップ力を高く維持することができ、車両の所謂尻ぶ
りを防止することができる。
Furthermore, if the control threshold value is changed so that the braking efficiency of the rear wheels is lowered during the above-described cornering operation, the grip force of the rear wheels on the road surface can be maintained high, and the so-called lurching of the vehicle can be prevented. can.

また、上記尻ふりは車両か進入状態に入って暫くしてか
ら生ずるから、進入時は後輪の制動効率を高めにし、そ
の後に制動効率が低くなるようにすると、制動性を得な
がら、上記尻ぶりを防止する上で有利になる。
In addition, since the above-mentioned wobbling occurs after a while after the vehicle enters the approach state, by increasing the braking efficiency of the rear wheels at the time of approach and then reducing the braking efficiency, it is possible to obtain the braking performance while maintaining the above-mentioned This will be advantageous in preventing buttock movements.

(発明の効果) 従って、本発明によれば、車両のアンチスキ・ソドブレ
ーキ装置において、直進走行から旋回走行への進入時に
、旋回内輪側の制動効率が旋回外輪側の制動効率よりも
高くなるように制御閾値を変更するようにしたから、制
動性を犠牲にすることななく車両の回頭性を高めること
ができる。
(Effects of the Invention) Therefore, according to the present invention, in the antiskid/slip brake system for a vehicle, when entering from straight traveling to cornering, the braking efficiency on the inner wheel side of the turn is higher than the braking efficiency on the outer wheel side of the turn. Since the control threshold value is changed, the turning performance of the vehicle can be improved without sacrificing braking performance.

また、上記旋回走行時に後輪の制動効率を下げるように
制御閾値を変更するものでは、車両の旋回走行の安定性
を高めることかでき、さらに、後輪の制動効率が進入時
に高く、その後に低くなるようにすれば、制動性を得な
がら旋回走行の安定性を得ることができる。
In addition, by changing the control threshold to reduce the braking efficiency of the rear wheels during cornering, it is possible to increase the stability of the vehicle's cornering.Furthermore, the braking efficiency of the rear wheels is high during entry, and By making it lower, it is possible to obtain stability in cornering while obtaining braking performance.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図には実施例の全体構成が示されている。FIG. 1 shows the overall configuration of the embodiment.

すなわち、車両のアンチスキッドブレーキ装置は、車輪
速検出手段1により検出された車輪速に基づき所定の制
御閾値に従って制動圧調節手段2により車輪の制動圧を
増減制御する制御手段3と、車両の操舵状態に基いて車
両の走行状態を判定する走行状態判定手段4と、上記制
御閾値を変更する制御閾値変更手段5,6とを備えてい
る。
That is, the anti-skid brake device for a vehicle includes a control means 3 for controlling the braking pressure of the wheels to be increased or decreased by the braking pressure adjusting means 2 according to a predetermined control threshold value based on the wheel speed detected by the wheel speed detecting means 1, and a control means 3 for controlling the braking pressure of the wheels by controlling the braking pressure for the wheels by the braking pressure adjusting means 2 based on the wheel speed detected by the wheel speed detecting means 1. It is provided with driving state determining means 4 for determining the driving state of the vehicle based on the state, and control threshold value changing means 5 and 6 for changing the control threshold value.

以下、具体的に説明すると、第2図に示すように、この
実施例に係る車両は、左右の前輪11゜12か従動輪、
左右の後輪13.14が駆動輪とされ、エンジン15の
出力トルクか自動変速機16からプロペラシャフト17
、差動装置18及び左右の駆動軸19.20を介して左
右の後輪1314に伝達されるように構成されている。
More specifically, as shown in FIG.
The left and right rear wheels 13 and 14 are used as driving wheels, and the output torque of the engine 15 or the propeller shaft 17 is transmitted from the automatic transmission 16.
, and is configured to be transmitted to the left and right rear wheels 1314 via the differential device 18 and the left and right drive shafts 19,20.

上記各車輪11〜14には、これらの車輪と一体的に回
転するディスク21a〜24aと、制動圧の供給を受け
てディスク21a〜24aの回転を制動するキャリパ2
1b〜24bとを備えたブレーキ装置21〜24か設け
られている。
Each of the wheels 11 to 14 includes discs 21a to 24a that rotate integrally with these wheels, and a caliper 2 that brakes the rotation of the discs 21a to 24a by receiving braking pressure.
1b to 24b are provided.

上記ブレーキ装置21〜24を作動せしめるためのブレ
ーキ制御システムは、運転者によるブレーキペダル26
の踏込力を増大させる倍力装置27と、この倍力装置2
7によって増大された力に応じて制動圧を発生させるマ
スターシリンダ28とを有する。マスターシリンダ28
から延設された前輪用制動圧供給ライン29は左前輪用
制動圧供給ライン29aと右前輪用制動圧供給ライン2
9bとに分岐し、各々ブレーキ装置21 22のキャリ
パ21a、22bに接続されている。上記左前輪用制動
圧供給ライン29aには、電磁式開閉弁30aと電磁式
リリーフ弁30bとからなる第1バルブユニyト30か
設けられ、上記右前輪用制動圧供給ライン29bには、
電磁式開閉弁3ユaと電磁式リリーフ弁31bとからな
る第2バルブユニツト31が設けられている。
The brake control system for operating the brake devices 21 to 24 includes a brake pedal 26 operated by the driver.
a booster 27 that increases the stepping force of the booster 2;
A master cylinder 28 generates braking pressure in response to the force increased by 7. master cylinder 28
The front wheel brake pressure supply line 29 extended from the left front wheel brake pressure supply line 29a and the right front wheel brake pressure supply line 2
9b, and are connected to calipers 21a and 22b of brake devices 21 and 22, respectively. The braking pressure supply line 29a for the left front wheel is provided with a first valve unit 30 consisting of an electromagnetic on-off valve 30a and an electromagnetic relief valve 30b, and the braking pressure supply line 29b for the right front wheel is provided with:
A second valve unit 31 is provided which includes an electromagnetic on-off valve 3a and an electromagnetic relief valve 31b.

上記マスターシリンダ28から延設された後輪用制動圧
供給ライン32には、電磁式開閉弁33aと、電磁式リ
リーフ弁33bとからなる第3/嘴ルブユニツト33が
設けられている。そして、この後輪用制動圧供給ライン
32は、上記第3バルブユニツト33の下流側で左後輪
用制動圧供給ライン32aと右後輪用制動圧供給ライン
32bとに分岐し、各々ブレーキ装置23.24のキャ
リパ23a、24bに接続されている。
A rear wheel braking pressure supply line 32 extending from the master cylinder 28 is provided with a third/beak valve unit 33 consisting of an electromagnetic on-off valve 33a and an electromagnetic relief valve 33b. The rear wheel brake pressure supply line 32 branches into a left rear wheel brake pressure supply line 32a and a right rear wheel brake pressure supply line 32b on the downstream side of the third valve unit 33. 23 and 24 are connected to calipers 23a and 24b.

すなわち、本実施例は、上記第1バルブユニグト30の
作動によって左前輪11のブレーキ装置2Jの制動圧を
調節する第1チヤンネルと、上記第2バルブユニツト3
1の作動によって右前輪12のブレーキ装置22の制動
圧を調節する第2チヤンネルと、上記第3バルブユニツ
ト33の作動によって左右の後輪13.14のブレーキ
装置23.24の制動圧を調節する第3チヤンネルとを
備え、これら各チャンネルは互いに独立して制御される
ようになっている。そして、上記第1〜第3のバルブユ
ニット30,31.33が制動圧調節手段3を構成して
いるものである。
That is, in this embodiment, the first channel adjusts the braking pressure of the brake device 2J for the left front wheel 11 by the operation of the first valve unit 30, and the second valve unit 3
1, the second channel adjusts the braking pressure of the brake device 22 of the right front wheel 12, and the third valve unit 33 adjusts the braking pressure of the brake devices 23, 24 of the left and right rear wheels 13, 14 by the operation of the third valve unit 33. and a third channel, and each of these channels is controlled independently of each other. The first to third valve units 30, 31, and 33 constitute the braking pressure adjusting means 3.

上記第1〜第3のチャンネルを制御するコントロールユ
ニット34は、ブレーキペダル26が踏まれているか否
が及びブレーキペダル26の踏込速度を検出するブレー
キセンサ35がらのブレーキ信号と、各車輪11〜14
の回転速度を検出する車輪速検出手段1としての車輪速
センサ37〜40からの車輪速信号と、舵角センサ(操
舵状態検出手段)42からの舵角信号とが入力され、A
BS制御を各チャンネル毎に並行して行なうようになっ
ている。
The control unit 34 that controls the first to third channels receives a brake signal from a brake sensor 35 that detects whether or not the brake pedal 26 is depressed and the speed at which the brake pedal 26 is depressed, and a brake signal from each of the wheels 11 to 14.
Wheel speed signals from wheel speed sensors 37 to 40 as wheel speed detecting means 1 for detecting the rotational speed of A and steering angle signals from a steering angle sensor (steering state detecting means) 42 are input.
BS control is performed in parallel for each channel.

すなわち、コントロールユニット34は、上記各車輪1
1〜14の車輪速に基いて、所定の制御閾値に従って上
記バルブユニット30,31.33により各車輪11〜
14の制動圧を増減制御する制御手段3と、走行状態判
定手段4と、前輪制御閾値変更手段5と、後輪制御閾値
変更手段6とを備え、上記第1〜第3の各バルブユニッ
ト30゜31.33の開閉弁30a、31a、33aと
リリーフ弁30b、31b、33bとをデユーティ制御
によって開閉制御するようになっている。なお、上記リ
リーフ弁30b、31b、33bから排出されたブレー
キオイルは。図示しないドレンラインによってマスター
シリンダ28のリザーバタンク28aに戻されるもので
ある。
That is, the control unit 34 controls each wheel 1
Based on the wheel speeds 1 to 14, the valve units 30, 31, and 33 control each wheel 11 to
The first to third valve units 30 each include a control means 3 for increasing and decreasing the braking pressure of 14, a driving state determining means 4, a front wheel control threshold changing means 5, and a rear wheel control threshold changing means 6. The on-off valves 30a, 31a, 33a and the relief valves 30b, 31b, 33b are controlled to open and close by duty control. The brake oil discharged from the relief valves 30b, 31b, and 33b is as follows. It is returned to the reservoir tank 28a of the master cylinder 28 by a drain line (not shown).

以下、上記コントロールユニット34について具体的に
説明する。
The control unit 34 will be specifically explained below.

制御手段3は、疑似車体速設定部と、制御閾値設定部を
備え、制御閾値と車輪加減速度やスリップ率との比較に
よってフェーズ0(ABS非制御状態)、フェーズI(
ABS制御時における制動圧の減圧状態)、フェーズ■
(減圧後の保持状態)、フェーズ■(減圧保持後の急増
圧状態)及びフェーズ■(急増圧後の緩増圧状態)から
フェーズを選択し、各フェーズに応じた制動圧制御信号
を第1〜第3のバルブユニット30,31.33に出力
するようになっている。
The control means 3 includes a pseudo vehicle speed setting section and a control threshold setting section, and determines whether phase 0 (ABS non-control state) or phase I (
Braking pressure depressurization state during ABS control), phase ■
(maintenance state after pressure reduction), phase ■ (sudden pressure state after pressure reduction and maintenance), and phase ■ (slow pressure increase state after sudden pressure increase), and set the braking pressure control signal corresponding to each phase to the first - Output to the third valve unit 30, 31, 33.

上記疑似車体速Vrは、車輪11〜14かスリップして
いるときの車体速度は正確に検出できないことから、上
記車輪速に基いて便宜上の車体速度として設定されるも
のであり、4輪11〜14のうちの最高車輪速が疑似車
体速V「と設定される一方、路面の摩擦係数に応じて速
度変化量を高摩擦係数における1、2 G・Δtから低
摩擦係数の0.3G・Δtまでの間で設定して次のよう
に補正される。なお、Δtはコントロールユニット34
のサンプリング周期(例えば7 gas)である。
The pseudo vehicle speed Vr is set as a vehicle speed for convenience based on the wheel speed, since the vehicle speed cannot be accurately detected when the wheels 11 to 14 are slipping. The highest wheel speed among the 14 wheels is set to the pseudo vehicle speed V, while the amount of speed change is varied from 1 or 2 G.Δt at a high friction coefficient to 0.3 G.Δt at a low friction coefficient depending on the friction coefficient of the road surface. The setting is made between
sampling period (for example, 7 gas).

Vr ”−Vr −(1,2G ・Δt〜0.3G−Δ
t)制御閾値の設定は各チャンネル毎に独立して行われ
るものであり、制御閾値としては、本例の場合、上記フ
ェーズ0(ABS非制御時)からフェーズI(減圧)へ
の移行判定用の第1車輪減速度閾値Glと、フェーズI
からフェーズ■(保持)への移行判定用の第2車輪減速
度閾値G2と、フェーズ■からフェーズ■(急増圧)へ
の移行判定用の第1スリツプ率閾値Slと、フェーズ■
からフェーズ■(緩増圧)への移行判定用の車輪加速度
閾値G3と、フェーズ■からフェーズIへの移行判定用
の第2スリツプ率閾値S2とがある。上記制御閾値は、
疑似車体速Vr及び路面の摩擦係数に応じて適宜設定さ
れるものである。
Vr”-Vr-(1,2G ・Δt~0.3G-Δ
t) The control threshold is set independently for each channel, and in this example, the control threshold is used to determine the transition from Phase 0 (when ABS is not controlled) to Phase I (decompression). and the first wheel deceleration threshold Gl of phase I
A second wheel deceleration threshold G2 for determining the transition from phase ■ to phase ■ (holding), a first slip rate threshold Sl for determining transition from phase ■ to phase ■ (sudden pressure), and phase ■
There is a wheel acceleration threshold G3 for determining the transition from phase (2) to phase (slow pressure increase), and a second slip rate threshold S2 for determining transition from phase (2) to phase I. The above control threshold is
It is appropriately set according to the pseudo vehicle speed Vr and the friction coefficient of the road surface.

後輪13.14の車輪速に関しては、両車輪速のうちの
小さい方の車輪速が後輪車輪速として選択される。また
、スリップ率は次式に従って算出される。
Regarding the wheel speed of the rear wheels 13, 14, the smaller of the two wheel speeds is selected as the rear wheel speed. Further, the slip rate is calculated according to the following formula.

スリップ率−(1−車輪速÷疑似車体速)この場合、通
常のABS制御での上記制御閾値の設定は、第3図に示
すように、路面に対する車輪の横抗力係数μLを過度に
低くすることなく、路面と車輪との間の摩擦係数μを高
くできるように、つまりSsの範囲の特性が得られるよ
うに設定されるものである。すなわち、摩擦係数μが高
いということは制動効率が高いということであり、横抗
力係数μLが高いということは、旋回走行での安定性な
いしは操舵性が良いということであるか、上記制動効率
と旋回走行性とは、第3図かられかるように両立か難し
いものであり、上記通常のABS制御ではこの両者がで
きるたけ両立するように制御閾値か設定されるものであ
る。
Slip rate - (1 - Wheel speed ÷ Pseudo vehicle body speed) In this case, setting the above control threshold in normal ABS control excessively lowers the lateral drag coefficient μL of the wheels against the road surface, as shown in Figure 3. It is set so that the coefficient of friction μ between the road surface and the wheels can be increased without causing any friction, that is, so that characteristics in the range of Ss can be obtained. In other words, a high friction coefficient μ means high braking efficiency, and a high lateral drag coefficient μL means good stability or steering performance when cornering. As shown in FIG. 3, cornering performance is something that is difficult to achieve simultaneously, and in the above-mentioned normal ABS control, the control threshold value is set so as to achieve both of these as much as possible.

車輪の減速度及び加速度は、車輪速の前回値と今回値と
の差を上記サンプリング周期Δtで除算し、その結果を
重力加速度に換算して求められる。
The deceleration and acceleration of the wheels are obtained by dividing the difference between the previous value and the current value of the wheel speed by the sampling period Δt, and converting the result into gravitational acceleration.

路面の摩擦係数の検出にあたっては、ABS非制御時に
おいては高摩擦路面と一律に判定し、ABS制御に入っ
た後は、車輪減速度と車輪加速度とに基いて路面の摩擦
係数を検出するものである。
When detecting the friction coefficient of the road surface, when ABS control is not performed, the road surface is uniformly determined to be a high-friction road surface, and after ABS control is entered, the friction coefficient of the road surface is detected based on wheel deceleration and wheel acceleration. It is.

すなわち、車輪減速度が大きく車輪加速度が小さいとき
低摩擦路面と判定し、車輪減速度が小さく車輪加速度が
大きいとき高摩擦路面と判定し、その他のときは中摩擦
路面と判定するものである。
That is, when the wheel deceleration is large and the wheel acceleration is small, the road surface is determined to be low friction, when the wheel deceleration is small and the wheel acceleration is large, the road surface is determined to be high friction, and in other cases, the road surface is determined to be medium friction.

従って、上記制御手段3により通常は第4図に示すよう
な制動圧の増減制御か行われることになる。
Therefore, the control means 3 normally performs control to increase or decrease the braking pressure as shown in FIG.

■ すなわち、定速走行状態からブレーキペダル26が
踏み込まれると、マスターシリンダ28で発生した制動
圧が増加していき、それに伴って車輪速か減少していく
(2) That is, when the brake pedal 26 is depressed while the vehicle is running at a constant speed, the braking pressure generated in the master cylinder 28 increases, and the wheel speed decreases accordingly.

■ 車輪減速度が第1車輪減速度閾値G1よりも大きく
なると、ABS制御に移行してフェーズIか選択され、
制動圧は所定の減圧態様に従って減少される。
■ When the wheel deceleration becomes larger than the first wheel deceleration threshold G1, the system shifts to ABS control and selects Phase I;
The braking pressure is reduced according to a predetermined pressure reduction pattern.

■ 車輪減速度が第2車輪減速度閾値G2よりも小さく
なると、フェーズ■か選択され、制動圧は減圧状態で保
持される。
(2) When the wheel deceleration becomes smaller than the second wheel deceleration threshold G2, phase (2) is selected and the braking pressure is maintained in a reduced pressure state.

■ 上記減圧保持に伴ってスリップ率か減少し、第1ス
リツプ率閾値S1を越えると、フェーズ■が選択され、
制動圧の急増加が行われる。
■ When the slip rate decreases as the reduced pressure is maintained and exceeds the first slip rate threshold S1, phase ■ is selected.
A sudden increase in braking pressure takes place.

■ 上記急増圧により、車輪加速度が減少し車輪加速度
閾値63以下になると、フェーズ■が選択され、制動圧
の緩増加が行われる。
(2) When the wheel acceleration decreases due to the sudden pressure increase and becomes equal to or less than the wheel acceleration threshold value 63, phase (2) is selected and the braking pressure is gradually increased.

■ 上記緩増圧により、スリップ率が第2スリップ率間
値S2を越えると、フェーズIが選択される。
(2) When the slip rate exceeds the second slip rate inter-value S2 due to the above-mentioned gradual pressure increase, Phase I is selected.

以上の如くして、第1〜第3の各チャンネルにつき、互
いに独立して制動圧か増減制御されることにより、各車
輪のロックないしはスキッド状態の発生を防止し、方向
安定性を失わせずに車両を短い制動距離で停止させるこ
とになる。
As described above, by controlling the braking pressure to increase or decrease independently for each of the first to third channels, locking or skidding of each wheel is prevented, and directional stability is not lost. This will allow the vehicle to stop within a short braking distance.

制御閾値の変更制御について説明する。Control threshold change control will be explained.

まず、走行状態判定手段4は、舵角センサ42によって
得られる舵角及び舵角変化率に基いて車両の走行状態を
判定するものである。すなわち、舵角θが所定値00以
上のときは旋回走行状態と判定し、且つ舵角変化率θが
プラス方向(舵角増大方向)へ所定値(+θ0)以上の
ときは直進走行から旋回走行への進入状態と判定する。
First, the driving state determining means 4 determines the driving state of the vehicle based on the steering angle and the rate of change of the steering angle obtained by the steering angle sensor 42. That is, when the steering angle θ is greater than or equal to a predetermined value of 00, it is determined that the vehicle is in a turning state, and when the steering angle change rate θ is greater than or equal to the predetermined value (+θ0) in the positive direction (increasing direction of the steering angle), the vehicle changes from straight traveling to cornering. It is determined that the vehicle is entering the state.

前輪制御閾値変更手段5は、上記進入状態の判定か得ら
れたときに、前輪11.12のうちの旋回内輪の方の制
御閾値を車輪の制動効率が高くなる(ロック深め)方向
に変更するものである。そして、舵角θか所定値00未
満であるとき(直進走行状態)、舵角θか所定値00以
上で且つ舵角変化率θがプラス方向へ所定値(+θ0)
未満(定常旋回状態)、及び舵角θか所定値00以上で
且つ舵角変化率θかマイナス方向へ所定値(θ0)以上
(舵角減少時てあって、旋回走行から直進走行への脱出
状態である)のときは、制御閾値の変更を行なうことな
く、通常のABS制御を行なうことになる。
The front wheel control threshold changing means 5 changes the control threshold for the inner turning wheel of the front wheels 11 and 12 in a direction that increases the braking efficiency of the wheel (deeper locking) when the determination of the approach state is obtained. It is something. When the steering angle θ is less than a predetermined value of 00 (straight running state), the steering angle θ is greater than or equal to the predetermined value of 00 and the steering angle change rate θ is in the positive direction by a predetermined value (+θ0).
less than (steady turning state), and the steering angle θ is greater than or equal to the predetermined value 00, and the steering angle change rate θ is greater than or equal to the predetermined value (θ0) in the negative direction (when the steering angle is decreasing, escaping from turning to straight running) In this case, normal ABS control is performed without changing the control threshold.

後輪制御閾値変更手段6は、上記進入状態の判定が得ら
れたときに、制御閾値を後輪13.14の制動効率が高
くなる(ロック深め)方向に変更し、定常旋回状態及び
脱出状態の判定か得られたときに、制御閾値を制動効率
か低くなる(ロック浅め)方向に変更するものである。
When the determination of the approach state is obtained, the rear wheel control threshold value changing means 6 changes the control threshold value in a direction in which the braking efficiency of the rear wheels 13, 14 becomes higher (deeper locking), and the control threshold value is changed to a direction in which the braking efficiency of the rear wheels 13, 14 becomes higher (deeper locking). When the determination is made, the control threshold value is changed to lower the braking efficiency (shallower locking).

上記前後輪の制御閾値の変更に関し、制動効率が高くな
る(ロック深め)方向への制御閾値の変更は、スリップ
率閾値を高くし、また、疑似車体速Vrの傾きがマイナ
ス側に大きくなるようにするものである。
Regarding the change in the control threshold value for the front and rear wheels mentioned above, changing the control threshold value in the direction of increasing braking efficiency (deeper locking) increases the slip rate threshold value and also increases the slope of the pseudo vehicle speed Vr to the negative side. It is something to do.

具体的には、転舵速度フェーズ0(ABS非制御時)か
らフェーズI(減圧)への移行判定用の第1車輪減速度
閾値G1と、フェーズIがらフェーズ■(保持)への移
行判定用の減速度閾値G2とは高くするように、フェー
ズ■(減圧保持)からフェーズ■(急増圧)への移行判
定用の第1スリツプ率閾値S2と、フェーズ■からフェ
ーズIへの移行判定用の第2スリツプ率閾値s2とは高
く、つまり疑似車体速V「からみて深くなるように、ま
た、フェーズ■からフェーズ■(緩増圧)への移行判定
用の車輪加速度閾値G3を低くするように、各々の閾値
に所定の補正を行なうものである。
Specifically, the first wheel deceleration threshold G1 is used to determine the transition from steering speed phase 0 (when ABS is not controlled) to phase I (depressurization), and the first wheel deceleration threshold G1 is used to determine the transition from phase I to phase ■ (maintained). The first slip rate threshold S2 for determining the transition from phase ■ (maintenance of reduced pressure) to phase ■ (sudden pressure) and the first slip rate threshold S2 for determining the transition from phase ■ to phase I are set to be higher than the deceleration threshold G2. The second slip rate threshold s2 is set to be high, that is, it is set to be deep when viewed from the pseudo vehicle speed V, and the wheel acceleration threshold G3 for determining the transition from phase ■ to phase ■ (slow pressure increase) is set low. , a predetermined correction is made to each threshold value.

上記制御閾値の変更を第3図によって説明すれば、この
変更は、横抗力係数μLを犠牲にしても、最も高い摩擦
係数μ(最大制動効率)が得られるスリップ率Sμ、な
いしはそれよりも高い(ロックが深くなる)スリップ率
を目標として行なうものである。
If the change in the control threshold value is explained with reference to FIG. 3, this change will result in a slip ratio Sμ that provides the highest friction coefficient μ (maximum braking efficiency) or higher even if the lateral drag coefficient μL is sacrificed. This is done with the goal of increasing the slip rate (deeper lock).

また、制動効率が低くなる(ロック浅め)方向への制御
閾値の変更は、スリップ率閾値を低くし、また、疑似車
体速Vrの傾きかマイナス側に小さくなるようにするも
のである。具体的には、上記第1スリップ率閾値Sl、
第2スリツプ率閾値S2、減速度閾値Gl及び加速度閾
値G2を先の場合とは逆の態様で補正変更するものであ
り、第3図で言えば、摩擦係数μを犠牲にしても、高い
横抗力係数μLを得ることができるスリップ率SμL付
近を目標として、制御閾値の変更が行われるものである
Furthermore, changing the control threshold in the direction of lowering the braking efficiency (slower locking) lowers the slip ratio threshold and also makes the slope of the pseudo vehicle speed Vr smaller on the negative side. Specifically, the first slip rate threshold Sl,
This is to correct and change the second slip rate threshold S2, deceleration threshold Gl, and acceleration threshold G2 in the opposite manner to the previous case. The control threshold value is changed with the aim of reaching around the slip ratio SμL at which the drag coefficient μL can be obtained.

第5図は上記制御閾値の変更制御を示すフロであり、ブ
レーキ信号、各車輪速信号、車速信号及び舵角信号を入
力し、ABS制御に入っているとき、舵角θをみて旋回
走行中であれば、舵角変化率θをみる(ステップ81〜
S4)。そして、ステップS4でθ≧十00(進入状態
)の判定のとき、前輪の旋回内輪側の制御閾値及び後輪
の制御閾値を各々ロック深め方向に変更してABS制御
を行ない(ステップ85〜S7)、ステップS4の判断
がNoのとき、前輪側の制御閾値は変更することなく、
後輪の制御閾値をロック浅め方向に変更してABS制御
を行なう(ステップS8゜S9)。また、旋回走行状態
でなければ、前後輪の制御閾値を変更することなく通常
のABS制御を行なうことになる(ステップ510)。
FIG. 5 is a flowchart showing the control for changing the control threshold value. When the brake signal, each wheel speed signal, the vehicle speed signal, and the steering angle signal are input and ABS control is entered, the steering angle θ is checked and the steering angle is being turned. If so, check the steering angle change rate θ (step 81~
S4). Then, when it is determined in step S4 that θ≧1000 (approach state), ABS control is performed by changing the control threshold for the inner wheel of the front wheel and the control threshold for the rear wheel to deepen the locking direction (steps 85 to S7). ), when the determination in step S4 is No, the front wheel side control threshold is not changed,
ABS control is performed by changing the control threshold value for the rear wheels toward a shallower locking direction (steps S8 and S9). Further, if the vehicle is not in a turning running state, normal ABS control is performed without changing the control threshold values for the front and rear wheels (step 510).

従って、直進走行から旋回走行への進入時に、左右の前
輪11.12のうちの旋回内輪側の制動効率が旋回外輪
側の制動効率よりも高くなるように制御閾値が変更され
るから、それによって車両にヨーモーメントか発生し、
車両の口頭性か高まる。また、このとき、左右の前輪1
1.12には制動圧が付与されているから、制動性を犠
牲にすることはない。
Therefore, when entering from straight-ahead driving to turning driving, the control threshold value is changed so that the braking efficiency of the inner turning wheel of the left and right front wheels 11, 12 is higher than the braking efficiency of the outer turning wheel. A yaw moment occurs in the vehicle,
The verbal nature of the vehicle increases. Also, at this time, the left and right front wheels 1
1.12 has braking pressure applied to it, so braking performance is not sacrificed.

また、上記旋回走行時において、後輪13.14の制動
効率は進入時に高く、その後に低くなるから、進入時の
制動性を得ながら、その後の後輪13.14の路面に対
するグリップ力を高く維持することができ、車両の所謂
尻ぶりを防止することができる。
In addition, during the above-described cornering, the braking efficiency of the rear wheels 13.14 is high at the time of approach and then becomes low, so while obtaining braking efficiency at the time of approach, the subsequent grip force of the rear wheels 13.14 on the road surface is increased. Therefore, the so-called lurching of the vehicle can be prevented.

なお、上記実施例では進入時に旋回内側の前輪をロック
深めにしたか、旋回外側の前輪をロック浅めにするよう
にしてもよい。
In the above embodiment, the front wheel on the inside of the turn may be locked more deeply, or the front wheel on the outside of the turn may be locked more lightly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は実施例の制御系
統の構成図、第2図はアンチスキッドブレーキ装置の全
体構成図、第3図はスリップ率と摩擦係数、横抗力係数
との関係を示す特性図、第4図は通常のABS制御のタ
イムチャート図、第5図は制御閾値変更制御を示すフロ
ー図である。 1・・・・・・車輪速検出手段 2・・・・・・制動圧調節手段 3・・・・・・制御手段 4・・・・・・走行状態判定手段 5・・・・・・前輪制御閾値変更手段 6・・・・・・後輪制御閾値変更手段 42・・・・・・舵角センサ 第4図 はかする 車輪速検出手段 制動圧調筋手段 制御手段 走行状聾f11定手段 前輪制御閾値変更ゴー段 後輪制御閾値変更手段 舵角センナ
The drawings show an embodiment of the present invention. Fig. 1 is a configuration diagram of the control system of the embodiment, Fig. 2 is an overall configuration diagram of the anti-skid brake device, and Fig. 3 is a diagram showing the slip ratio, friction coefficient, and lateral drag coefficient. FIG. 4 is a time chart of normal ABS control, and FIG. 5 is a flow diagram showing control threshold change control. 1...Wheel speed detection means 2...Braking pressure adjustment means 3...Control means 4...Running state determination means 5...Front wheels Control threshold value changing means 6... Rear wheel control threshold value changing means 42... Rudder angle sensor Front wheel control threshold change go stage Rear wheel control threshold change means Steering angle senna

Claims (3)

【特許請求の範囲】[Claims] (1)車輪の回転速度を検出する車輪速検出手段と、車
輪の制動圧を調節する制動圧調節手段と、上記車輪速検
出手段によって検出される車輪速に基づき所定の制御閾
値に従って上記制動圧を増減するよう上記制動圧調節手
段を制御する制御手段とを備え、且つ左右の前輪の制動
圧を互いに独立させて制御可能な車両のアンチスキッド
ブレーキ装置であって、 車両の操舵状態を検出する操舵状態検出手段と、 上記転舵状態検出手段により検出された操舵状態に基い
て、車両が直進走行から旋回走行へ進入する進入状態の
ときに、左右の前輪のうちの旋回内輪側の制動効率が旋
回外輪側の制動効率よりも高くなるように上記両前輪の
うちの少なくとも一方の制動圧の制御閾値を変更する制
御閾値変更手段を備えていることを特徴とする車両のア
ンチスキッドブレーキ装置。
(1) wheel speed detection means for detecting the rotational speed of the wheels; braking pressure adjustment means for adjusting the braking pressure of the wheels; and the braking pressure being set according to a predetermined control threshold based on the wheel speed detected by the wheel speed detection means. and a control means for controlling the braking pressure adjusting means to increase or decrease the braking pressure, and the anti-skid braking device for a vehicle is capable of independently controlling the braking pressures of the left and right front wheels, the anti-skid braking device for a vehicle detecting the steering state of the vehicle. Based on the steering state detected by the steering state detecting means and the steering state detecting means, the braking efficiency of the inner turning wheel of the left and right front wheels is determined when the vehicle is in the approach state where the vehicle enters from straight traveling to turning traveling. 1. An anti-skid brake system for a vehicle, comprising: a control threshold value changing means for changing a control threshold value of the braking pressure of at least one of the two front wheels so that the braking efficiency becomes higher than the braking efficiency of the outer wheel when turning.
(2)後輪の制動圧の制御が前輪の制動圧の制御に対し
て独立して行なわれるように構成されており、 転舵状態検出手段により検出された操舵状態に基いて、
車両が旋回走行状態にあるときに、後輪の制動効率が低
くなるように後輪の制動圧の制御閾値を変更する後輪制
御閾値変更手段が設けられている請求項(1)に記載の
車両のアンチスキッドブレーキ装置。
(2) The rear wheel brake pressure is controlled independently of the front wheel brake pressure, and based on the steering condition detected by the steering condition detection means,
The vehicle according to claim (1), further comprising a rear wheel control threshold changing means for changing the control threshold of the braking pressure of the rear wheels so that the braking efficiency of the rear wheels is lowered when the vehicle is in a cornering state. Vehicle anti-skid brake device.
(3)後輪の制動圧の制御が前輪の制動圧の制御に対し
て独立して行なわれるように構成されており、 転舵状態検出手段により検出された操舵状態に基いて、
車両が旋回走行状態にあるときに、後輪の制動効率が進
入状態のときは高く、その後は低くなるように後輪の制
動圧の制御閾値を変更する後輪制御閾値変更手段が設け
られている請求項(1)に記載の車両のアンチスキッド
ブレーキ装置。
(3) The rear wheel brake pressure is controlled independently of the front wheel brake pressure, and based on the steering condition detected by the steering condition detection means,
Rear wheel control threshold changing means is provided for changing the control threshold of the braking pressure of the rear wheels so that when the vehicle is in a cornering state, the braking efficiency of the rear wheels is high in the approach state and becomes low thereafter. The anti-skid brake device for a vehicle according to claim (1).
JP26106390A 1990-09-28 1990-09-28 Vehicle anti-skid brake Pending JPH04135955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26106390A JPH04135955A (en) 1990-09-28 1990-09-28 Vehicle anti-skid brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26106390A JPH04135955A (en) 1990-09-28 1990-09-28 Vehicle anti-skid brake

Publications (1)

Publication Number Publication Date
JPH04135955A true JPH04135955A (en) 1992-05-11

Family

ID=17356565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26106390A Pending JPH04135955A (en) 1990-09-28 1990-09-28 Vehicle anti-skid brake

Country Status (1)

Country Link
JP (1) JPH04135955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047996A (en) * 1999-07-15 2001-02-20 Robert Bosch Gmbh Vehicle wheel slip control method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047996A (en) * 1999-07-15 2001-02-20 Robert Bosch Gmbh Vehicle wheel slip control method and device
JP4685219B2 (en) * 1999-07-15 2011-05-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vehicle wheel slip control method and apparatus

Similar Documents

Publication Publication Date Title
JP4396002B2 (en) Vehicle traction control device
JPH08207607A (en) Traction controller for four-wheel drive vehicle
JPH04208648A (en) Travel control device for car
US10688998B2 (en) Control apparatus for four-wheel drive vehicle
US20040064239A1 (en) Power distribution control apparatus for four wheel drive vehicle
JP4936600B2 (en) Method and apparatus for controlling a brake system in a vehicle
JP2863294B2 (en) Anti-skid brake system for vehicles
JP4289294B2 (en) Traction control device
KR950014359B1 (en) Anti-spin braking system for maintaining directional stability of a vehicle
JP2002115756A (en) Attitude control device of automobile and comprehensive control device of continuously variable transmission
JPH04135955A (en) Vehicle anti-skid brake
JP3453848B2 (en) Vehicle anti-skid control device
JP3219795B2 (en) Anti-skid brake system for vehicles
JP2919029B2 (en) Anti-skid brake system for vehicles
JP3395353B2 (en) Anti-skid control device
JPH1178845A (en) Antiskid controller
JP2863293B2 (en) Anti-skid brake system for vehicles
JPH04135956A (en) Vehicle anti-skid brake
JP2863292B2 (en) Anti-skid brake system for vehicles
JPH092220A (en) Method for controlling distribution of braking force of vehicle
JPH0632222A (en) Antiskid brake device of vehicle
JP2002122219A (en) Attitude control device for automobile and integrated control device of continuously variable transmission
JP3234092B2 (en) Anti-skid brake system for vehicles
JP3255459B2 (en) Anti-skid brake system for vehicles
CN116353566A (en) Vehicle anti-lock braking system, control method thereof and vehicle