JPH04132689A - Method and device for producing diamond thin film - Google Patents

Method and device for producing diamond thin film

Info

Publication number
JPH04132689A
JPH04132689A JP25441490A JP25441490A JPH04132689A JP H04132689 A JPH04132689 A JP H04132689A JP 25441490 A JP25441490 A JP 25441490A JP 25441490 A JP25441490 A JP 25441490A JP H04132689 A JPH04132689 A JP H04132689A
Authority
JP
Japan
Prior art keywords
diamond
thin film
substrate
gas
diamond thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25441490A
Other languages
Japanese (ja)
Inventor
Sumio Iijima
澄男 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25441490A priority Critical patent/JPH04132689A/en
Publication of JPH04132689A publication Critical patent/JPH04132689A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an uniform diamond thin film having a smooth surface by planting diamond fine powder having a prescribed size on the surface of a substrate before the formation of the thin film and subsequently reacting a hydrocarbon with hydrogen in their gases. CONSTITUTION:Diamond fine powder having a particle size of <= several ten nm is planted on the surface of a substrate to form seed crystals. A mixture of a hydrocarbon gas with hydrogen gas is fed on the substrate for their reaction to form a diamond thin film on the surface of the substrate having the planted seed crystals. Thus, an uniform diamond thin film having a smooth surface is formed in good reproducibility.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ダイヤモンド薄膜の製造方法とそのための
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a diamond thin film and an apparatus therefor.

(従来の技術および発明が解決しようとする課題)ダイ
ヤモンドは、すべての物質の中で最高の硬度と熱伝導度
をもち、何磨拐、カッターなど広く工業的に利用されて
いる。ダイヤモンドの合成は高温高圧法による製造法が
広く知られている。高圧高温法によるダイヤモンド合成
法は製造方法が複雑であること、製造装置が大型になり
経済的でないこと、製造工程が簡便でないことなど、ダ
イヤモンド製造法としては種々の難点がある。
(Prior Art and Problems to be Solved by the Invention) Diamond has the highest hardness and thermal conductivity of all substances, and is widely used industrially in polishers and cutters. Diamond synthesis is widely known as a manufacturing method using high temperature and high pressure methods. Diamond synthesis methods using high-pressure and high-temperature methods have various drawbacks as a diamond manufacturing method, such as the manufacturing method being complicated, the manufacturing equipment being large and uneconomical, and the manufacturing process not being simple.

方、最近開発された低圧気相法によるダイヤモンドの合
成法はその製造方法が簡便で、経済的なダイヤモンドの
製造方法である。気相法によるダイヤモンド合成は、薄
膜状ダイヤモンドの合成に特徴がある。ダイヤモンド薄
膜は半導体レーザーLSIデバイスの放熱板などの電子
材料、また高温半導体としても注目され研究が進んでい
る。ダイヤモンド薄膜はシリコンやタングステンなどの
基板表面に成長させる。
On the other hand, the recently developed diamond synthesis method using a low-pressure gas phase method is a simple and economical method for producing diamond. Diamond synthesis using the vapor phase method is characterized by the synthesis of thin film diamond. Diamond thin films are attracting attention as electronic materials such as heat sinks for semiconductor laser LSI devices, and as high-temperature semiconductors, and research is progressing. A diamond thin film is grown on the surface of a substrate such as silicon or tungsten.

低圧気相法によるダイヤモンド薄膜形成の難点の一つは
、均一な薄膜が得難いことである。シリコンやタングス
テンを基板として、ダイヤモンドを成長させると、塊状
のダイヤモンド粒子が成長し、表面が荒れて、滑らかな
膜が得られない。この問題の解決策として、ダイヤモン
ド薄膜形成に先だって、基板に前処理を施すことが提案
されている。たとえば、粒径数ミクロン程度のダイヤモ
ンド粉末の懸濁液に基板を浸し、一定時間超音波で撹拌
すると、ダイヤモンド薄膜の成長が促進され、滑らかな
膜が形成されることがある。その理由として、この前処
理によって基板表面に“′きず゛が生じ、結晶成長核の
密度が5桁も増大すると考えられている。しかしながら
、この方法は再現性に欠け、必ずしもよい結果が得られ
るとは限らない。
One of the difficulties in forming a diamond thin film by the low pressure vapor phase method is that it is difficult to obtain a uniform thin film. When diamond is grown on silicon or tungsten as a substrate, diamond particles grow in the form of lumps, making the surface rough and making it impossible to obtain a smooth film. As a solution to this problem, it has been proposed to pre-treat the substrate prior to forming the diamond thin film. For example, if a substrate is immersed in a suspension of diamond powder with a particle size of several microns and agitated using ultrasonic waves for a certain period of time, the growth of a diamond thin film may be promoted and a smooth film may be formed. The reason for this is thought to be that this pretreatment causes "'flaws" on the substrate surface, increasing the density of crystal growth nuclei by five orders of magnitude.However, this method lacks reproducibility and does not necessarily yield good results. Not necessarily.

本発明は、このような事情に鑑みてなされたものであり
、表面が滑らかで均質なダイヤモンド薄膜を再現性よく
製造する方法とそのための装置とを提供することを目的
としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus for producing a diamond thin film having a smooth and homogeneous surface with good reproducibility.

(課題を解決するだめの手段) 本発明はダイヤモンド微粉末を成長の種子として用いて
表面が滑らかで均質なダイヤモンド薄膜を形成するもの
である。薄膜形成に先立ち、粒径数十nm以下のダイヤ
モンド微粉末を基体表面に植えこみ、炭化水素ガスと水
素ガスの混合ガスの雰囲気中で加熱し、基体表面にダイ
ヤモンド薄膜を形成する。このダイヤモンド微粉末は基
体表面に均一に分散され、ダイヤモンド結晶の成長核の
密度を増大し、表面が滑らかで、均質なダイヤモンド薄
膜を形成することができる。炭化水素ガスと水素ガスの
混合ガスは加熱またはイオン化等により反応性ガスにす
る。この反応ガスは、基体表面に均一に分散したダイヤ
モンド微粉末を種結晶として、ホモエピ結晶成長し、表
面が連続し滑らかで、均質なダイヤモンド薄膜に成長す
る。
(Another Means to Solve the Problems) The present invention uses fine diamond powder as a seed for growth to form a diamond thin film with a smooth and homogeneous surface. Prior to forming the thin film, fine diamond powder with a particle size of several tens of nanometers or less is implanted on the surface of the substrate and heated in an atmosphere of a mixed gas of hydrocarbon gas and hydrogen gas to form a diamond thin film on the surface of the substrate. This fine diamond powder is uniformly dispersed on the surface of the substrate, increases the density of diamond crystal growth nuclei, and forms a homogeneous diamond thin film with a smooth surface. The mixed gas of hydrocarbon gas and hydrogen gas is made into a reactive gas by heating or ionization. This reaction gas causes homoepi-crystal growth using fine diamond powder uniformly dispersed on the surface of the substrate as a seed crystal, and grows into a homogeneous diamond thin film with a continuous, smooth surface.

ダイヤモンド薄膜を形成する基体の材料は、ダイヤモン
ドが気相成長できるものであれば、その種類に格別の限
定はなく、たとえば、酸化物、窒化物、半導体、金属、
半金属があげられる。
The material of the substrate forming the diamond thin film is not particularly limited as long as diamond can be grown in a vapor phase, such as oxides, nitrides, semiconductors, metals,
Metalloids can be mentioned.

粉体、繊維状または多孔質物質の表面に低圧気相法でダ
イヤモンドを形成する方法は、熱気相法、プラズマ気相
法、電子衝撃気相法等のダイヤモンド製造方法で、反応
性ガスの流れは粘性流動状態でガス輸送に方向性がない
ことが重要である。低圧気相法によって生成さぜるダイ
ヤモンド薄膜の厚さは、炭化水素ガスと水素ガスの混合
ガスの圧力、混合比、反応炉の温度、反応処理時間等を
調整することにより、所望の厚さに成長できる。
The method of forming diamond on the surface of powder, fibrous or porous material by low pressure vapor phase method is diamond manufacturing method such as hot vapor phase method, plasma vapor phase method, electron impact vapor phase method, etc. It is important that there is no directionality in gas transport in a viscous flow state. The thickness of the diamond thin film produced by the low-pressure gas phase method can be adjusted to the desired thickness by adjusting the pressure of the mixed gas of hydrocarbon gas and hydrogen gas, the mixing ratio, the temperature of the reactor, the reaction treatment time, etc. can grow.

この方法が従来のダイヤモンド薄膜を形成するだめの基
体の前処理方法と相違する点は、粒径数十nm以下のダ
イヤモンド微粉末を、膜形成に先だって、基体表面に植
えこむことである。前述の従来の方法では結晶表面に何
らかのきすを生じさせることに主眼がおかれていた。し
かし本発明者は、基板上に滑らかなダイヤモンド薄膜が
形成されるのは基板につけたきすのぜいではなく、きす
をつけるために用いる粒径数/、m程度のダイヤモンド
粉末の一部が微粉末となり超音波によって基板表面に植
えこまれた場合であることを初めて見出した。従来はダ
イヤモンド粉末は基板にきすをつけるために用いていた
ので常に粉末の一部が基板に植えこまれるとは限らず、
再現性が悪かったのである。
The difference between this method and the conventional pretreatment method for a substrate on which a diamond thin film is to be formed is that fine diamond powder with a particle size of several tens of nanometers or less is implanted on the surface of the substrate prior to film formation. The above-mentioned conventional methods mainly focus on producing some kind of scratch on the crystal surface. However, the inventor of the present invention has discovered that the smooth diamond film formed on the substrate is not caused by the scratches applied to the substrate, but by a part of the diamond powder with a particle size of about 1/2 m used for forming the scratches. It was discovered for the first time that this is the case when the powder is formed into a powder and implanted onto the surface of a substrate using ultrasonic waves. Conventionally, diamond powder was used to create scratches on the substrate, so some of the powder was not always implanted into the substrate.
The reproducibility was poor.

本発明の製造装置は内部を真空減圧状態とすることので
きる加熱炉と、加熱炉内に炭化水素ガスと水素ガスの混
合ガスを供給する供給系と、炭化水素ガスと水素ガスを
反応性ガスにする系からなっている。
The manufacturing apparatus of the present invention includes a heating furnace that can create a vacuum state inside, a supply system that supplies a mixed gas of hydrocarbon gas and hydrogen gas into the heating furnace, and a reactive gas supply system that supplies hydrocarbon gas and hydrogen gas to the heating furnace. It consists of a system to

(実施例) まず粒径数十nm以下のダイヤモンド微粉末の製法を述
べる。
(Example) First, a method for producing fine diamond powder having a particle size of several tens of nanometers or less will be described.

粒径数十nm以下のダイヤモンド微粉末は、研磨拐、カ
ッター等で広く用いられ粒径数〜数十pmのダイヤモン
ド粉末を原料として、これを粉砕することにより製造す
る。粒径数〜数十ミクロンのダイヤモンド粉末を、水、
アルコール、アセトン等の溶液に適当な濃度に懸濁し、
面に垂直に振動する金属板と、これに平行に位置した金
属板の間に懸濁液を導入し、金属板を振動させダイヤモ
ンド粒子を互いに衝突させ粉砕する。この処理により、
懸濁液11科こ粒径数十nm以下の粒径をもつダイヤモ
ンド微粉末を発生させることができる。
Diamond fine powder with a particle size of several tens of nanometers or less is widely used in polishers, cutters, etc., and is produced by pulverizing diamond powder with a particle size of several to several tens of pm as a raw material. Diamond powder with a particle size of several to several tens of microns is mixed with water,
Suspend at an appropriate concentration in a solution such as alcohol or acetone,
A suspension is introduced between a metal plate that vibrates perpendicular to the plane and a metal plate positioned parallel to the metal plate, and the metal plate is vibrated to cause the diamond particles to collide with each other and crush them. With this process,
With this suspension, fine diamond powder having a particle size of several tens of nanometers or less can be generated.

金属板を振動する駆動装置としては、超音波発生器や電
磁振動子などがあげられる。粉砕処理を施した後、原料
である粒径数〜数十ミクロンのダイヤモンド粉末と粒径
数十nm以下のダイヤモンド粉末を含むダイヤモンド微
粉末の)“W濁液は、沈降法で分離し、後者のみを含む
懸濁液を得る。
Examples of the drive device that vibrates the metal plate include an ultrasonic generator and an electromagnetic vibrator. After the pulverization process, the raw material (W suspension) of diamond powder containing diamond powder with a particle size of several to several tens of microns and diamond powder with a particle size of several tens of nanometers or less is separated by a sedimentation method, and the latter is separated by a sedimentation method. Obtain a suspension containing only

第4図は、この装置の例を示したもので、原料である粒
径数〜数十ミクロンのダイヤモンド粉末の懸濁液を容れ
る容器(1)内に、金属板(2)が設置しである。これ
に平行にもう一つの金属板(3)が設けられており、マ
イクロメーター(4)により二つの板の間隙を調整する
。マイクロメーターの一方の端は超音波発生器(5)に
固定されている。金属板(3)を振動させることで、金
属板の間にある懸濁液中のダイヤモンド粉末を粉砕する
。振動板の運動方向は面に垂直方向であることが重要で
ある。粉砕中は、懸濁液はポンプ(6)によりビニール
チューブ(7)を循環し、金属板(3)に設けられた内
管(8)を通り、容器(1)に戻される。振動板をアル
ミニウムや銅などの比較的柔らかい材料にすると、金属
片の混入を防ぐことができる。粉砕処理によって作成さ
れた、粒径数〜数十ミクロンのダイヤモンド粉末と粒径
数1”nm以下のダイヤモンド微粉末の混合したダイヤ
モンド粉体の懸濁液は、沈降用の容器に移し、粒径数〜
数十ミクロンのダイヤモンド粉末のみを沈降し分離する
Figure 4 shows an example of this device, in which a metal plate (2) is placed in a container (1) containing a suspension of diamond powder, which is a raw material, with a particle size of several to several tens of microns. be. Another metal plate (3) is provided parallel to this, and the gap between the two plates is adjusted using a micrometer (4). One end of the micrometer is fixed to the ultrasonic generator (5). By vibrating the metal plates (3), the diamond powder in suspension between the metal plates is pulverized. It is important that the direction of movement of the diaphragm is perpendicular to the plane. During grinding, the suspension is circulated through the vinyl tube (7) by the pump (6), through the inner tube (8) provided in the metal plate (3), and returned to the container (1). If the diaphragm is made of a relatively soft material such as aluminum or copper, metal pieces can be prevented from getting mixed in. The diamond powder suspension created by the pulverization process, which is a mixture of diamond powder with a particle size of several to several tens of microns and fine diamond powder with a particle size of several 1” nm or less, is transferred to a sedimentation container, and the particle size is number~
Only diamond powder of several tens of microns is precipitated and separated.

なお粉砕処理のとき粒径の大きな硬い粒子例えば粒径数
百/imのダイヤモンド、タングステン、モノブデン、
ステンレスなどの粉末もまぜておくと、振動を加えたと
きの衝突の確率が高くなり、より効率的に微粉末を発生
させることができる。
In addition, during the pulverization process, large hard particles such as diamond, tungsten, monobdenum, and
If powder of stainless steel or other material is also mixed in, the probability of collision will increase when vibration is applied, and fine powder can be generated more efficiently.

この装置を用いて、粒径数〜数十ミクロンのダイヤモン
ド粉末を原料として、ステンレス性容器(1)にいれた
エチルアルコール溶液に分散し、金属板(2)と(3)
の間隙を300μmに設定し、1時間粉砕した。この懸
濁液の上澄み液をとり、第1図の装置を用いてシリコン
基板表面にスプレー塗布したものを電子顕微鏡観察した
ところ粒径数十nm以下のダイヤモンド粉末が、おおよ
そ1010cm−2の密度で分散されていた。
Using this device, diamond powder with a particle size of several to several tens of microns as a raw material is dispersed in an ethyl alcohol solution in a stainless steel container (1), and metal plates (2) and (3) are dispersed.
The gap was set to 300 μm, and the mixture was ground for 1 hour. The supernatant liquid of this suspension was taken and spray-coated onto the surface of a silicon substrate using the apparatus shown in Fig. 1. When observed under an electron microscope, diamond powder with a particle size of several tens of nanometers or less was found to have a density of approximately 1010 cm-2. It was dispersed.

第1図は、ダイヤモンド微粉末を基板表面に塗布する装
置の一例を示したもので、スプレー(11)には、水、
アルコール、アセトン等のダイヤモンド微粉末の懸濁液
が容れである。基板支持台(12)に設置された基板(
13)表面にスプレーによって塗布する。
Figure 1 shows an example of an apparatus for applying fine diamond powder onto the surface of a substrate.
The container contains a suspension of fine diamond powder in alcohol, acetone, etc. The board (
13) Apply to the surface by spraying.

第2図は、粒径数十nm以下のダイヤモンド粉末の懸濁
液に粒径数百□mのステンレスビーズを容れた容器(1
4)に基板(13)を浸し、一定時間超音波発生装置(
15)により撹拌し、基板を引き上げ乾燥し、粒径数十
nm以下のダイヤモンド微粉末を基板表面に植えこむ。
Figure 2 shows a container (1
4) and soak the substrate (13) in the ultrasonic generator (
15), the substrate is pulled up and dried, and fine diamond powder with a particle size of several tens of nanometers or less is planted on the surface of the substrate.

つまり、微粉末は超音波によって基板につきささり、基
板に微粉末が植えこまれた形となる。
In other words, the fine powder is attached to the substrate by ultrasonic waves, and the fine powder becomes embedded in the substrate.

第2図に示した装置を用いて表面に粒径数十nm以下の
ダイヤモンド微粉末を植えこんだ前述のジノコン基板を
、試料温度850°C1炭化水素ガスと水素ガスの体積
混合比1%の混合ガス(圧力20Torr)雰囲気中で
、10分間熱処理した。すると第5図の電子顕微鏡写真
に示すようにシリコン表面に、大きさ数十nmの結晶学
的晶癖をもったダイヤモンドの微粒子が形成できた。こ
の雰囲気中で続けて5時間熱処理すると、基板上に表面
が滑らかで厚さが約2□mのダイヤモンド薄膜が形成で
きた。この薄膜中には非晶質の部分はなく極めて均質に
多結晶膜が形成されていた。以上の薄膜製造工程を数回
性なったところすべて表面が滑らがで均質な薄膜が得ら
れ、十分な再現性があることがわかった。炭化水素ガス
と水素ガスの混合比を3%および5%に設定し、他の条
件は同じにしておこなうとシリコン基板表面に、より大
きな粒径をもつダイヤモンドの微粒子が形成できた。従
ってより容易に薄膜を形成することができた。この場合
も再現性は十分であった。
Using the apparatus shown in Fig. 2, the above-mentioned Ginocon substrate, on which fine diamond powder with a particle size of several tens of nanometers or less was implanted, was heated at a sample temperature of 850°C and a volumetric mixing ratio of hydrocarbon gas and hydrogen gas of 1%. Heat treatment was performed for 10 minutes in a mixed gas atmosphere (pressure: 20 Torr). Then, as shown in the electron micrograph of FIG. 5, fine diamond particles having a crystallographic habit and having a size of several tens of nanometers were formed on the silicon surface. When heat-treated in this atmosphere for 5 hours, a diamond thin film with a smooth surface and a thickness of about 2 □m was formed on the substrate. There were no amorphous parts in this thin film, and a polycrystalline film was formed extremely uniformly. When the above thin film manufacturing process was repeated several times, homogeneous thin films with smooth surfaces were obtained in all cases, and it was found that sufficient reproducibility was obtained. When the mixing ratio of hydrocarbon gas and hydrogen gas was set to 3% and 5%, and other conditions were kept the same, diamond particles with a larger particle size were formed on the surface of the silicon substrate. Therefore, it was possible to form a thin film more easily. In this case as well, the reproducibility was sufficient.

第3図は、ダイヤモンド薄膜形成の装置の例を示したも
ので、炭化水素ガスと水素ガスの混合ガスを反応性混合
ガスにする方法として、熱気州法の場合である。ダイヤ
モンド微粉末を塗布したシリコンやタングステン基板(
13)は、試料架台(16)に設置し、真空容器(17
)の中央に置く。容器内を真空排気系(18)で排気す
る。所定の圧力、たとえば、真空計(19)によって1
O−5Torr程度になったことを確認した段階で、炭
化水素ガスと水素ガスはそれぞれガス供給計(20)(
21)より供給する。真空計(19)により圧力を測定
し、所定圧力において、試料架台に設けられたヒーター
(22)を導電端子(23)から通電し加熱する。基板
温度は、試料架台に設置された熱電対によって測定し、
制御する。試料架台の上部にタングステン線またはタン
グステン網の発熱フイラメン) (25)を設け、導電
端子(26)から通電し加熱する。
FIG. 3 shows an example of an apparatus for forming a diamond thin film, which uses the hot air method as a method of converting a mixed gas of hydrocarbon gas and hydrogen gas into a reactive mixed gas. Silicon or tungsten substrate coated with fine diamond powder (
13) is installed on the sample stand (16), and the vacuum container (17) is placed on the sample stand (16).
). The inside of the container is evacuated using a vacuum evacuation system (18). 1 by means of a predetermined pressure, e.g. vacuum gauge (19).
When it is confirmed that the pressure has reached approximately O-5 Torr, the hydrocarbon gas and hydrogen gas are supplied with the gas supply meter (20) (
21). The pressure is measured by a vacuum gauge (19), and at a predetermined pressure, a heater (22) provided on the sample mount is heated by supplying electricity from a conductive terminal (23). The substrate temperature is measured by a thermocouple installed on the sample mount.
Control. A heat-generating filament (25) made of tungsten wire or tungsten mesh is provided on the top of the sample holder, and electricity is applied from the conductive terminal (26) to heat the sample.

なお、実施例では、基体として平坦な基板を用いたが、
これに限らず凹凸や曲面を有するもの等形状は何でもよ
い。
In addition, in the examples, a flat substrate was used as the base, but
The shape is not limited to this, and any shape may be used, such as one having unevenness or a curved surface.

(発明の効果) 本発明によれば、表面が滑らかで均質なダイヤモンド薄
膜を再現性よく形成することができる。
(Effects of the Invention) According to the present invention, a diamond thin film with a smooth and homogeneous surface can be formed with good reproducibility.

【図面の簡単な説明】 第1図、第2図はダイヤモンド微粒子を基板に何着させ
る装置の4既略図。第3図はダイヤモンド薄膜の製造装
置の概略図。第4図はダイヤモンド微粒子の製造装置の
概略図。第5図はシリコン基板表面に形成されたダイヤ
モンドの微粒子の粒子構造を示す電子顕微鏡写真。 なお、図中の番号は次のものを示している。 11・・・スプレー、12・・・基板支持台、13・・
・基板、14.、。 容器、15・・・超音波発生器、16・・・試料架台、
17・・・真空容器、18・・・真空排気系、19・・
・真空計、20.21・・・ガス供給系、22・・・ヒ
ーター、23・・・導電端子、26・・・熱電文」、2
5・・・発熱フィラメンI・。 代用1人弁理十内原 晋
[Brief Description of the Drawings] Figures 1 and 2 are four schematic diagrams of an apparatus for depositing fine diamond particles on a substrate. FIG. 3 is a schematic diagram of a diamond thin film manufacturing apparatus. FIG. 4 is a schematic diagram of a diamond particle manufacturing apparatus. FIG. 5 is an electron micrograph showing the particle structure of fine diamond particles formed on the surface of a silicon substrate. Note that the numbers in the figure indicate the following. 11... Spray, 12... Substrate support stand, 13...
・Substrate, 14. ,. Container, 15... Ultrasonic generator, 16... Sample mount,
17... Vacuum container, 18... Vacuum exhaust system, 19...
・Vacuum gauge, 20.21... Gas supply system, 22... Heater, 23... Conductive terminal, 26... Thermoelectric message, 2
5...Exothermic filament I. Substitute sole patent attorney Susumu Jouchihara

Claims (4)

【特許請求の範囲】[Claims] (1)ダイヤモンド微粉末を種結晶として基体表面にダ
イヤモンド薄膜を形成することを特徴とするダイヤモン
ド薄膜の製造法。
(1) A method for producing a diamond thin film, which comprises forming a diamond thin film on the surface of a substrate using fine diamond powder as a seed crystal.
(2)炭化水素ガスと水素ガスの混合ガスを反応させ、
ダイヤモンド微粉末を植えこんだ基体表面にダイヤモン
ド薄膜を形成する請求項1に記載のダイヤモンド薄膜の
製造法。
(2) Reacting a mixed gas of hydrocarbon gas and hydrogen gas,
2. The method for producing a diamond thin film according to claim 1, wherein the diamond thin film is formed on the surface of a substrate in which fine diamond powder is implanted.
(3)ダイヤモンド微粉末は粒径数十nm以下である請
求項1または2に記載のダイヤモンド薄膜の製造法。
(3) The method for producing a diamond thin film according to claim 1 or 2, wherein the diamond fine powder has a particle size of several tens of nanometers or less.
(4)内部を真空減圧状態とすることのできる加熱炉と
、加熱炉内に炭化水素ガスと水素ガスの混合ガスを供給
するガス供給系と、混合ガスを反応性ガスにする系を持
つことを特徴とするダイヤモンド薄膜の製造装置。
(4) Having a heating furnace that can create a vacuum inside, a gas supply system that supplies a mixed gas of hydrocarbon gas and hydrogen gas into the heating furnace, and a system that converts the mixed gas into a reactive gas. Diamond thin film manufacturing equipment featuring:
JP25441490A 1990-09-25 1990-09-25 Method and device for producing diamond thin film Pending JPH04132689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25441490A JPH04132689A (en) 1990-09-25 1990-09-25 Method and device for producing diamond thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25441490A JPH04132689A (en) 1990-09-25 1990-09-25 Method and device for producing diamond thin film

Publications (1)

Publication Number Publication Date
JPH04132689A true JPH04132689A (en) 1992-05-06

Family

ID=17264646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25441490A Pending JPH04132689A (en) 1990-09-25 1990-09-25 Method and device for producing diamond thin film

Country Status (1)

Country Link
JP (1) JPH04132689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182390A (en) * 1990-11-13 1992-06-29 Japan Steel Works Ltd:The Manufacture of diamond plate
EP0844319A4 (en) * 1996-06-12 2001-09-05 Matsushita Electric Ind Co Ltd Diamond film and process for preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182390A (en) * 1990-11-13 1992-06-29 Japan Steel Works Ltd:The Manufacture of diamond plate
EP0844319A4 (en) * 1996-06-12 2001-09-05 Matsushita Electric Ind Co Ltd Diamond film and process for preparing the same

Similar Documents

Publication Publication Date Title
JP2536927B2 (en) Method for producing polycrystalline diamond film
JPH0477711B2 (en)
JP2638275B2 (en) Production method of vapor phase diamond thin film using diamond fine powder as seed crystal
JPH05270983A (en) Cvd diamond growth on hydride-forming metal substrate
US5200231A (en) Method of manufacturing polycrystalline diamond layers
JPS62138395A (en) Preparation of diamond film
JPH04132689A (en) Method and device for producing diamond thin film
JPS63277593A (en) Elements coated with diamond and its production
JPH0518796B2 (en)
US20080166479A1 (en) Diamond Shell with a Geometrical Figure and Method for Fabrication Thereof
US5268201A (en) Composite diamond grain and method for production thereof
Hou et al. Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes
JPH03141198A (en) Production of polycrystal diamond layer
JP2003261399A (en) Base material for depositing diamond film, and diamond film
JPH05339730A (en) Forming method of diamond coating film
JP2010070405A (en) Diamond film and method of producing the same
JP3185289B2 (en) Diamond deposition method
JPS61201698A (en) Diamond film and its production
JP2964610B2 (en) Manufacturing method of diamond fine particles
JP3874984B2 (en) Low-temperature deposition method and apparatus for microcrystalline diamond thin film
JP3459152B2 (en) Substrate pretreatment method and method for producing polycrystalline diamond membrane using the same
JP3008466B2 (en) Selective growth method of diamond thin film using diamond fine powder
JP2773442B2 (en) Diamond production method
JP3822059B2 (en) Method of warping deformation of silicon substrate
JPS63270394A (en) Flow type method for synthesizing diamond and apparatus therefor