JP3874984B2 - Low-temperature deposition method and apparatus for microcrystalline diamond thin film - Google Patents

Low-temperature deposition method and apparatus for microcrystalline diamond thin film Download PDF

Info

Publication number
JP3874984B2
JP3874984B2 JP2000036510A JP2000036510A JP3874984B2 JP 3874984 B2 JP3874984 B2 JP 3874984B2 JP 2000036510 A JP2000036510 A JP 2000036510A JP 2000036510 A JP2000036510 A JP 2000036510A JP 3874984 B2 JP3874984 B2 JP 3874984B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
diamond
diamond thin
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000036510A
Other languages
Japanese (ja)
Other versions
JP2001226194A (en
Inventor
哲夫 曽我
正義 梅野
孝志 神保
シャルダ タルン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000036510A priority Critical patent/JP3874984B2/en
Publication of JP2001226194A publication Critical patent/JP2001226194A/en
Application granted granted Critical
Publication of JP3874984B2 publication Critical patent/JP3874984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、平坦性の良好な微結晶ダイヤモンド薄膜を従来より低温で成膜する方法及び装置に関する。
【0002】
【従来の技術】
ダイヤモンドは、優れた絶縁特性,光透過性,耐高温特性,機械的強度を呈することから、シリコンに代わる材料として電子デバイス,機能薄膜,光学窓,低電界駆動電子放出素子,保護膜等として注目されている。この種の用途では、平坦な表面をもつダイヤモンド薄膜を作製することが不可欠である。
従来のダイヤモンド薄膜は、CVD法,プラズマCVD法等によってシリコン基板上にダイヤモンドを堆積させることにより成膜している。しかし、成膜されたダイヤモンド薄膜は、ミクロンオーダーの表面凹凸をもち、電子デバイス,光学素子等の微細なデバイスを作り込むのに適した平坦性を備えていない。
【0003】
平坦なダイヤモンド薄膜の作製には堆積初期過程で成長核の制御が重要とされ、砥石研磨,エッチング,超音波処理等でシリコン基板を粗面化している。たとえば、特開平5−97582号公報では、エッチング処理でシリコン基板の表面に1×107〜1×109個/cm2の割合で微細な凹部を形成した後、ダイヤモンド薄膜をシリコン基板上にヘテロエピタキシャル成長させている。
【0004】
【発明が解決しようとする課題】
微細な凹凸の形成により,当初平坦であったシリコン基板が粗くなり、平坦性が要求されるデバイス,低電界駆動電子放出素子等への応用が困難になる。しかも、薄膜成長に先立って粗面化が必要となるため、製造プロセスが複雑化する。また、ダイヤモンド薄膜をシリコン基板上で成長させるとき、従来法ではシリコン基板を850℃程度に保持している。シリコン基板へのダメージやダイヤモンド結晶粒の粒径等を考慮すると、基板保持温度は可能な限り低いことが好ましいが、600℃程度まで基板保持温度を下げるとダイヤモンドの核生成が起こらず、ダイヤモンド薄膜が堆積・成長しなくなる。
【0005】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、ダイヤモンド結晶成長中の基板に負バイアスを印加することにより、メタンのプラズマ分解で生成した炭素の正イオンの基板への移行・堆積を促進させ、基板の粗面化処理等を必要とすることなく、平坦性に優れた微結晶ダイヤモンド薄膜を低温成膜することを目的とする。
【0006】
本発明の低温成膜法は、その目的を達成するため、500〜700℃に保持した基板に−200〜−320Vの負バイアスを印加し、マイクロ波照射により基板表面近傍にプラズマを発生させ、原料メタンを反応域に送り込み、原料メタンのプラズマ分解で生成した炭素の正イオンを基板に移行させ、且つ基板に流す電流を電流密度:1〜5mA/cm 2 の範囲で調整することにより基板に移行する炭素の正イオンの供給量を制御することを特徴とする。
また、低温成膜装置は、チャンバ内に配置した基板支持台と、基板支持台にセットされる基板の周囲を取り囲む絶縁体と、基板に負バイアスを印加し、基板に流れる電流を制御する負バイアス直流電源と、ダイヤモンド結晶成長中に基板表面近傍にプラズマを発生させるマイクロ波照射機構を備えている。
【0007】
【作用】
気相成長させた薄膜は、結晶粒径を小さくすることにより平坦性が向上する。結晶粒径は、成膜中の基板温度を上げると大きくなり、基板温度を下げると小さくなる。しかし、メタンCH4を原料とするマイクロ波プラズマCVD法では、基板温度を600℃程度まで下げるとダイヤモンドの核生成・結晶成長が生じないため、従来では850℃程度が最適な成膜温度とされている。
【0008】
これに対し、本発明では、結晶成長中の基板に負バイアスを印加すると共に基板表面近傍にプラズマを発生させて原料メタンを反応域に送り込むことにより、メタンをプラズマ分解し、生成した炭素の正イオンを基板に効率よく移行・堆積させている。基板以外の部分を絶縁体で覆うとき、基板以外の部分に炭素の正イオンが流れることを防止でき、基板に流れる電流だけを制御することが可能となる。その結果、基板に流れる電流を制御することにより基板に注入される炭素イオンの量が正確に制御され、ダイヤモンドの低温核生成が容易になる。
【0009】
このように基板に負バイアスを印加してプラズマ分解反応を利用することにより、従来ではダイヤモンドの核生成・結晶成長が生じないとされていた600℃程度の低温でもダイヤモンド薄膜の成膜が可能になる。成膜温度の低温化により、析出したダイヤモンド結晶粒がナノメーターオーダーの微結晶となる。また、シリコン基板に粗面化処理を施す必要がないため基板の平坦性が保持され、ダイヤモンド薄膜の平坦度が向上する。
【0010】
【実施の形態】
本発明に従ったダイヤモンド薄膜の成膜では、たとえば概略を図1に示した負バイアス印加マイクロ波プラズマCVD装置が使用される。
このプラズマCVD装置は、たとえばステンレス鋼製のチャンバ1に基板支持台2を配置し、基板支持台2上にグラファイト電極3を介してシリコン基板4を載置し、シリコン基板4の周囲を石英板5(絶縁体)で取り囲んでいる。基板としては、シリコンに限らず他の半導体材料や金属基板等を使用することもできる。
【0011】
アースされたチャンバ1及びグラファイト電極3を負バイアス直流電源6に結線することにより、シリコン基板4に負バイアスが印加される。シリコン基板4以外の基板支持台2の部分が石英板5で覆われているので、バイアス印加時に全ての電流がシリコン基板4に流れ、バイアス電圧制御によってシリコン基板4に流れる電流を管理できる。また、マイクロ波電源8から発生したマイクロ波を変調器9で変調し、導波管10及モード変換器11を経てチャンバ1に送り込み、シリコン基板4の表面近傍にプラズマ7を発生させる。なお、符番12は、マイクロ波電源8に付設したダミーロードを示す。
2をキャリアガスとして原料メタンCH4を負バイアスが印加されたシリコン基板4に向けて流すと、原料メタンCH4はプラズマ7に接して分解され、生成した炭素原子が正に帯電する。炭素の正イオンは、負に印加されているシリコン基板4に引っ張られ、ダイヤモンド薄膜として堆積・成長する。
【0012】
微結晶ダイヤモンドを成膜する際、シリコン基板4に印加するバイアス電圧を−200〜−320Vに維持することが好ましい。−200V未満のバイアス電圧では、十分な核生成が行われず,微結晶ダイヤモンドが堆積しない。逆に−320Vを超えるバイアス電圧では、炭素イオンが過剰になって応力を発生させ、シリコン基板4に反りを引き起こす原因になる。
基板に流れる電流は、ダイヤモンドの核生成を均一に行わせるため電流密度1〜5mA/cm2の範囲で調節することが好ましい。1mA/cm2未満の電流密度では、炭素イオンの密度が少なくなり十分な核生成が生じない。逆に5mA/cm2を超える電流密度では、炭素イオンの密度が過剰になるため、炭素がSiの原子間に侵入し、応力を発生させる原因になる。
【0013】
【実施例】
図1に示したマイクロ波プラズマCVD装置を用いて、原料メタンCH4からダイヤモンドを合成した。励起源には、周波数2.45GHzのマイクロ波電源(1000W)を使用した。
チャンバ1にセットされたシリコン基板4を500〜700℃の温度域に保持し、メタンCH4(原料)及び水素H2(キャリア)をそれぞれ流量12sccm、300sccmで反応域に送り込み、基板温度及びバイアス電圧がダイヤモンド結晶の生成・成長に及ぼす影響を調査した。なお、プラズマ7は、マイクロ波電源8により発生させた。
【0014】
500〜700℃の温度域全てにおいて、シリコン基板4上に微結晶質のダイヤモンド薄膜が形成された。基板温度600℃で成膜したダイヤモンド薄膜は、微結晶ダイヤモンドの割合が最も多く、微小硬度計(ナノインデンター)で測定したところダイヤモンドとほぼ同じ硬さ60GPaをもっていた。
−160V未満のバイアス電圧をシリコン基板4に印加した場合、微結晶ダイヤモンドの堆積が検出されなかった。バイアス電圧を−200〜−320Vにあげると、微結晶ダイヤモンド薄膜がシリコン基板4上に堆積した。しかし、バイアス電圧を−320V以上に上げると、応力の発生によってシリコン基板4が大きく反った。
【0015】
基板温度600℃,バイアス電圧−260Vで、バイアス印加時にシリコン基板4に流れる電流が4.0mA/cm2のとき、微結晶ダイヤモンド薄膜の生成・成長が最も好適に進行した。成膜されたダイヤモンド薄膜は、図2の原子間力顕微鏡写真にみられるように、ナノメーターオーダーの極めて平坦度の高い表面をもっていた。
面方位が(111)面のシリコン基板4上に成膜した微結晶ダイヤモンド薄膜は、図3のX線回折曲線にみられるように、回折角度2θが約44度及び約75度にピークがあり、他のピークは検出されなかった。2θ≒44度のピークはダイヤモンド(111)面に当たり、2θ≒75度のピークはダイヤモンド(220)面に当たる。図3の結果からも、得られた薄膜がダイヤモンド薄膜であることが判る。しかも、ピークの半値幅が広いことから、ダイヤモンドの結晶粒径がナノメータ程度と小さいことも判る。
【0016】
【発明の効果】
以上に説明したように、本発明においては、基板表面近傍にプラズマを発生させると共に基板に負バイアスを印加することにより、反応域に導入される原料メタンのプラズマ分解で生成した炭素の正イオンを基板表面に移行させ、ダイヤモンド結晶の生成・成長を促進させている。この方法によるとき、基板を500〜700℃の比較的低温に保持してダイヤモンドの結晶成長が進行するため、生成したダイヤモンドがナノメーターオーダーの微結晶となり、ダイヤモンド薄膜の平坦性が向上する。このようにして作製されたダイヤモンド薄膜は、超精密素子の書込みに適した極めて平坦度の高い表面をもち、電界効果トランジスタ等の電子デバイス,発光デバイス,高周波デバイス,電子放出デバイス,光学デバイス,工具保護膜等、広範な分野で使用される。
【図面の簡単な説明】
【図1】 本発明に従ったダイヤモンド薄膜作製用プラズマCVD装置の概略図
【図2】 実施例で作製されたダイヤモンド薄膜の原子間力顕微鏡写真
【図3】 実施例で作製されたダイヤモンド薄膜のX線回折曲線を示すグラフ
【符号の説明】
1:チャンバ 2:基板支持台 3:グラファイト電極 4:シリコン基板 5:石英板 6:負バイアス直流電源 7:プラズマ 8:マイクロ波電源
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for forming a microcrystalline diamond thin film with good flatness at a lower temperature than in the past.
[0002]
[Prior art]
Since diamond exhibits excellent insulating properties, light transmission, high temperature resistance, and mechanical strength, it has attracted attention as an alternative to silicon as an electronic device, functional thin film, optical window, low-field-driven electron-emitting device, protective film, etc. Has been. For this type of application, it is essential to produce a diamond film with a flat surface.
A conventional diamond thin film is formed by depositing diamond on a silicon substrate by a CVD method, a plasma CVD method or the like. However, the formed diamond thin film has surface irregularities on the order of microns, and does not have flatness suitable for making a fine device such as an electronic device or an optical element.
[0003]
For the production of a flat diamond thin film, it is important to control the growth nuclei in the initial deposition process, and the silicon substrate is roughened by grinding wheel polishing, etching, ultrasonic treatment or the like. For example, in Japanese Patent Application Laid-Open No. 5-97582, after forming fine recesses at a rate of 1 × 10 7 to 1 × 10 9 pieces / cm 2 on the surface of a silicon substrate by etching, a diamond thin film is formed on the silicon substrate. Heteroepitaxial growth.
[0004]
[Problems to be solved by the invention]
Due to the formation of fine irregularities, the initially flat silicon substrate becomes rough, making it difficult to apply to devices that require flatness, low electric field drive electron-emitting devices, and the like. In addition, since the roughening is required prior to the thin film growth, the manufacturing process is complicated. Further, when a diamond thin film is grown on a silicon substrate, the silicon substrate is kept at about 850 ° C. in the conventional method. Considering damage to the silicon substrate, diamond crystal grain size, etc., the substrate holding temperature is preferably as low as possible. However, if the substrate holding temperature is lowered to about 600 ° C., diamond nucleation does not occur, and the diamond thin film No longer accumulates or grows.
[0005]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem. By applying a negative bias to a substrate during diamond crystal growth, carbon positive ions generated by plasma decomposition of methane are applied to the substrate. The object is to form a microcrystalline diamond thin film having excellent flatness at low temperature without accelerating migration and deposition and requiring a roughening treatment of the substrate.
[0006]
In order to achieve the object, the low temperature film formation method of the present invention applies a negative bias of −200 to −320 V to a substrate held at 500 to 700 ° C., generates plasma near the substrate surface by microwave irradiation, The raw material methane is fed into the reaction zone, the positive ions of carbon generated by the plasma decomposition of the raw material methane are transferred to the substrate, and the current flowing through the substrate is adjusted to a current density of 1 to 5 mA / cm 2 to the substrate. It is characterized by controlling the supply amount of positive ions of carbon to be transferred .
In addition, the low-temperature film forming apparatus includes a substrate support placed in a chamber, an insulator surrounding the substrate set on the substrate support , a negative bias applied to the substrate, and a negative current that controls the current flowing through the substrate. A bias direct current power source and a microwave irradiation mechanism for generating plasma in the vicinity of the substrate surface during diamond crystal growth are provided.
[0007]
[Action]
The thin film grown by vapor phase is improved in flatness by reducing the crystal grain size. The crystal grain size increases as the substrate temperature during film formation increases, and decreases as the substrate temperature decreases. However, in the microwave plasma CVD method using methane CH 4 as a raw material, when the substrate temperature is lowered to about 600 ° C., diamond nucleation and crystal growth do not occur. ing.
[0008]
In contrast, in the present invention, a negative bias is applied to the substrate during crystal growth and plasma is generated in the vicinity of the substrate surface to feed raw material methane into the reaction zone, thereby plasma-decomposing methane and positively generating the generated carbon. Ions are efficiently transferred and deposited on the substrate. When a portion other than the substrate is covered with an insulator, it is possible to prevent carbon positive ions from flowing in the portion other than the substrate, and it is possible to control only the current flowing through the substrate. As a result, by controlling the current flowing through the substrate, the amount of carbon ions implanted into the substrate is accurately controlled, facilitating low-temperature nucleation of diamond.
[0009]
By applying a negative bias to the substrate and utilizing the plasma decomposition reaction in this way, it is possible to form a diamond thin film even at a low temperature of about 600 ° C., which was conventionally considered not to cause diamond nucleation and crystal growth. Become. As the film formation temperature is lowered, the precipitated diamond crystal grains become nanometer-order microcrystals. Further, since the silicon substrate does not need to be roughened, the flatness of the substrate is maintained and the flatness of the diamond thin film is improved.
[0010]
[Embodiment]
In forming a diamond thin film according to the present invention, for example, a negative bias applied microwave plasma CVD apparatus schematically shown in FIG. 1 is used.
In this plasma CVD apparatus, a substrate support 2 is placed in a chamber 1 made of stainless steel, for example, a silicon substrate 4 is placed on the substrate support 2 via a graphite electrode 3, and a quartz plate is surrounded around the silicon substrate 4. Surrounded by 5 (insulator). The substrate is not limited to silicon, and other semiconductor materials or metal substrates can be used.
[0011]
A negative bias is applied to the silicon substrate 4 by connecting the grounded chamber 1 and the graphite electrode 3 to a negative bias DC power source 6. Since the portion of the substrate support 2 other than the silicon substrate 4 is covered with the quartz plate 5, all current flows to the silicon substrate 4 when a bias is applied, and the current flowing to the silicon substrate 4 can be managed by bias voltage control. Further, the microwave generated from the microwave power source 8 is modulated by the modulator 9 and sent to the chamber 1 through the waveguide 10 and the mode converter 11 to generate the plasma 7 near the surface of the silicon substrate 4. Reference numeral 12 indicates a dummy load attached to the microwave power source 8.
When of H 2 to feed methane CH 4 negative bias flow toward the silicon substrate 4, which is applied as a carrier gas, the raw material methane CH 4 is decomposed in contact with the plasma 7, the generated carbon atoms are positively charged. Carbon positive ions are pulled by the negatively applied silicon substrate 4 and are deposited and grown as a diamond thin film.
[0012]
When depositing the microcrystalline diamond, it is preferable to maintain the bias voltage applied to the silicon substrate 4 at -200 to -320V. When the bias voltage is less than −200 V, sufficient nucleation is not performed and microcrystalline diamond is not deposited. On the other hand, when the bias voltage exceeds −320 V, the carbon ions become excessive to generate stress and cause warpage of the silicon substrate 4.
The current flowing through the substrate is preferably adjusted in a current density range of 1 to 5 mA / cm 2 in order to uniformly nucleate diamond. When the current density is less than 1 mA / cm 2, the density of carbon ions decreases and sufficient nucleation does not occur. On the contrary, when the current density exceeds 5 mA / cm 2 , the density of carbon ions becomes excessive, so that carbon enters between Si atoms and causes stress.
[0013]
【Example】
Using the microwave plasma CVD apparatus shown in FIG. 1, diamond was synthesized from the raw material methane CH 4 . A microwave power source (1000 W) having a frequency of 2.45 GHz was used as an excitation source.
The silicon substrate 4 set in the chamber 1 is held in a temperature range of 500 to 700 ° C., and methane CH 4 (raw material) and hydrogen H 2 (carrier) are fed into the reaction region at flow rates of 12 sccm and 300 sccm, respectively, and the substrate temperature and bias The effect of voltage on the formation and growth of diamond crystals was investigated. The plasma 7 was generated by a microwave power source 8.
[0014]
A microcrystalline diamond thin film was formed on the silicon substrate 4 in the entire temperature range of 500 to 700 ° C. The diamond thin film formed at a substrate temperature of 600 ° C. had the highest proportion of microcrystalline diamond, and had a hardness of 60 GPa that was almost the same as diamond as measured with a micro hardness meter (nanoindenter).
When a bias voltage of less than −160 V was applied to the silicon substrate 4, deposition of microcrystalline diamond was not detected. When the bias voltage was increased to -200 to -320 V, a microcrystalline diamond thin film was deposited on the silicon substrate 4. However, when the bias voltage was increased to −320 V or more, the silicon substrate 4 warped greatly due to the generation of stress.
[0015]
When the substrate temperature was 600 ° C., the bias voltage was −260 V, and the current flowing through the silicon substrate 4 at the time of bias application was 4.0 mA / cm 2 , the generation and growth of the microcrystalline diamond thin film proceeded most suitably. The formed diamond thin film had a surface with extremely high flatness on the order of nanometers as seen in the atomic force micrograph of FIG.
The microcrystalline diamond thin film formed on the (111) plane silicon substrate 4 has peaks at diffraction angles 2θ of about 44 degrees and about 75 degrees as seen in the X-ray diffraction curve of FIG. Other peaks were not detected. The peak at 2θ≈44 degrees corresponds to the diamond (111) plane, and the peak at 2θ≈75 degrees corresponds to the diamond (220) plane. From the result of FIG. 3, it can be seen that the obtained thin film is a diamond thin film. Moreover, since the half width of the peak is wide, it can be seen that the crystal grain size of diamond is as small as nanometers.
[0016]
【The invention's effect】
As described above, in the present invention, by generating plasma in the vicinity of the substrate surface and applying a negative bias to the substrate, the positive ions of carbon generated by plasma decomposition of the raw material methane introduced into the reaction zone are generated. It moves to the substrate surface and promotes the formation and growth of diamond crystals. According to this method, since the crystal growth of diamond proceeds while holding the substrate at a relatively low temperature of 500 to 700 ° C., the generated diamond becomes nanometer-order microcrystals and the flatness of the diamond thin film is improved. The diamond thin film thus produced has a surface with extremely high flatness suitable for writing of ultra-precision elements, and includes electronic devices such as field effect transistors, light-emitting devices, high-frequency devices, electron-emitting devices, optical devices, and tools. Used in a wide range of fields such as protective films.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a plasma CVD apparatus for producing a diamond thin film according to the present invention. FIG. 2 is an atomic force microscope photograph of the diamond thin film produced in the example. FIG. 3 is a diagram of the diamond thin film produced in the example. Graph showing X-ray diffraction curve 【Explanation of symbols】
1: Chamber 2: Substrate support 3: Graphite electrode 4: Silicon substrate 5: Quartz plate 6: Negative bias DC power supply 7: Plasma 8: Microwave power supply

Claims (2)

500〜700℃に保持した基板に−200〜−320Vの負バイアスを印加し、マイクロ波照射により基板表面近傍にプラズマを発生させ、原料メタンを反応域に送り込み、原料メタンのプラズマ分解で生成した炭素の正イオンを基板に移行させ、且つ基板に流す電流を電流密度:1〜5mA/cm 2 の範囲で調整することにより基板に移行する炭素の正イオンの供給量を制御することを特徴とする微結晶ダイヤモンド薄膜の低温成膜法。 A negative bias of −200 to −320 V was applied to the substrate maintained at 500 to 700 ° C., plasma was generated near the substrate surface by microwave irradiation, raw material methane was sent to the reaction zone, and generated by plasma decomposition of raw material methane. The amount of carbon positive ions transferred to the substrate is controlled by transferring carbon positive ions to the substrate and adjusting the current flowing through the substrate in a current density range of 1 to 5 mA / cm 2. Low temperature film formation method for microcrystalline diamond thin film. チャンバ内に配置した基板支持台と、基板支持台にセットされる基板の周囲を取り囲む絶縁体と、基板に負バイアスを印加し、基板に流れる電流を制御する負バイアス直流電源と、ダイヤモンド結晶成長中に基板表面近傍にプラズマを発生させるマイクロ波照射機構を備え、原料メタンのプラズマ分解で生成した炭素の正イオンを基板に移行させることを特徴とする微結晶ダイヤモンド薄膜の低温成膜装置。A substrate support placed in the chamber, an insulator surrounding the substrate set on the substrate support, a negative bias DC power source that applies a negative bias to the substrate and controls the current flowing through the substrate, and diamond crystal growth An apparatus for forming a microcrystalline diamond thin film at a low temperature, comprising a microwave irradiation mechanism for generating plasma in the vicinity of the substrate surface and transferring positive ions of carbon generated by plasma decomposition of raw material methane to the substrate.
JP2000036510A 2000-02-15 2000-02-15 Low-temperature deposition method and apparatus for microcrystalline diamond thin film Expired - Fee Related JP3874984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036510A JP3874984B2 (en) 2000-02-15 2000-02-15 Low-temperature deposition method and apparatus for microcrystalline diamond thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036510A JP3874984B2 (en) 2000-02-15 2000-02-15 Low-temperature deposition method and apparatus for microcrystalline diamond thin film

Publications (2)

Publication Number Publication Date
JP2001226194A JP2001226194A (en) 2001-08-21
JP3874984B2 true JP3874984B2 (en) 2007-01-31

Family

ID=18560553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036510A Expired - Fee Related JP3874984B2 (en) 2000-02-15 2000-02-15 Low-temperature deposition method and apparatus for microcrystalline diamond thin film

Country Status (1)

Country Link
JP (1) JP3874984B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268272B1 (en) * 2004-05-27 2013-05-31 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Nano-crystal diamond film manufacturing method thereof and device using nano-crystal diamond film
JP4639334B2 (en) * 2005-03-11 2011-02-23 独立行政法人物質・材料研究機構 Diamond film, manufacturing method thereof, electrochemical device, and manufacturing method thereof
JP4654383B2 (en) * 2005-03-11 2011-03-16 独立行政法人物質・材料研究機構 Stencil mask and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001226194A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
WO2013013419A1 (en) Method for preparing graphene nano belt on insulating substrate
WO2012067112A1 (en) Method for producing epitaxial silicon carbide single crystal substrate
JPH0477711B2 (en)
JP3728467B2 (en) Method for forming single crystal diamond film
JPH06172088A (en) Oriented diamond film and its formation
JP2004176132A (en) Nanodiamond film, and production method therefor
JP2000219597A (en) Diamond thin film or cbn, bcn or cn thin film, reforming method of these thin films, and reform, forming and processing methods of these thin films
JP3121102B2 (en) Flat diamond crystal and method for forming the same
US5200231A (en) Method of manufacturing polycrystalline diamond layers
JP3874984B2 (en) Low-temperature deposition method and apparatus for microcrystalline diamond thin film
JP3861346B2 (en) Diamond synthesis method
US5654044A (en) Diamond film deposition on graphite
JPH08506455A (en) Substrate temperature controlled plasma deposition method
JPH03141198A (en) Production of polycrystal diamond layer
JP2001506572A (en) Method of forming diamond film by vapor phase synthesis
JP3822059B2 (en) Method of warping deformation of silicon substrate
WO2008035468A1 (en) THIN NANODIAMOND FILM HAVING n-TYPE CONDUCTIVITY AND PROCESS FOR PRODUCING THE SAME
TWI429779B (en) Method of diamond nucleation
JPH05339730A (en) Forming method of diamond coating film
CN111593318A (en) Diamond nanocrystalline/nitrogen-doped silicon carbide interface phase n-type semiconductor composite film and preparation method thereof
JP3185289B2 (en) Diamond deposition method
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JPS61201698A (en) Diamond film and its production
KR19980030530A (en) High Directional Diamond Film CVD Equipment and Film Formation Method
JP2780497B2 (en) Method for forming diamond film on Si substrate by CVD method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees