JPH04119998A - Production of large-diameter silicon carbide whisker - Google Patents

Production of large-diameter silicon carbide whisker

Info

Publication number
JPH04119998A
JPH04119998A JP2235852A JP23585290A JPH04119998A JP H04119998 A JPH04119998 A JP H04119998A JP 2235852 A JP2235852 A JP 2235852A JP 23585290 A JP23585290 A JP 23585290A JP H04119998 A JPH04119998 A JP H04119998A
Authority
JP
Japan
Prior art keywords
silicon carbide
group
silicon
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2235852A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsutsui
筒井 博
Nobuhide Ikeyama
池山 信秀
Keiichiro Kiba
木庭 敬一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP2235852A priority Critical patent/JPH04119998A/en
Publication of JPH04119998A publication Critical patent/JPH04119998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a large-diameter silicon carbide whisker in high yield by using a multicomponent catalyst as a combination of specified metals to form a product nucleus on a whisker forming substrate prior to the reaction. CONSTITUTION:A large-diameter silicon carbide whisker is produced by the following five processes 1-5. (1) A multicomponent catalyst contg. >=2 kinds of metals selected from a group (group A) consisting of copper and the iron, nickel, cobalt, rhodium, palladium, osmium, iridium and platinum as group VIII metals and >=1 kind of metal selected from a group (group B) consisting of molybdenum, ruthenium, rhenium and tungsten in the molar ratio (group A/group B)=0.5 to 10.0 as the effective components is deposited on a substrate in a reaction system, (2) gaseous silicon sulfide is introduced to form a silicon- based nucleus on the substrate, (3) a gaseous hydrocarbon is introduced and subjected to a reaction to convert the silicon-based nucleus into a silicon carbide nucleus, (4) a silicon carbide whisker forming catalyst is additionally deposited, and (5) a hydrocarbonic compd. and silicon sulfide are introduced and subjected to the reaction to grow a silicon carbide whisker on the silicon carbide nucleus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種複合材料の補強材として有用な炭化ケイ
素ウィスカーの製造方法、さらに詳しくは、ウィスカー
の成長過程を制御することによる径の太い炭化ケイ素ウ
ィスカーの製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing silicon carbide whiskers useful as reinforcing materials for various composite materials, and more specifically, a method for producing silicon carbide whiskers useful as reinforcing materials for various composite materials. The present invention relates to a method for producing silicon carbide whiskers.

(従来の技術〕 炭化ケイ素ウィスカーは、高い強度と弾性率を有し、高
温における金属との反応性か低い、酸化雰囲気下での耐
熱性か高い、溶融金属との濡れ性がよいなと、複合材料
の補強材として優れた特性を有しており、広い分野にお
いて活用か期待されている材料である。
(Prior art) Silicon carbide whiskers have high strength and elastic modulus, low reactivity with metals at high temperatures, high heat resistance in oxidizing atmospheres, and good wettability with molten metals. It has excellent properties as a reinforcing material for composite materials, and is a material that is expected to be used in a wide range of fields.

従来、炭化ケイ素ウィスカーの製造方法として、固相法
、気相法など種々の方法が知られている。
Conventionally, various methods such as a solid phase method and a gas phase method are known as methods for producing silicon carbide whiskers.

これらの方法の中で、硫化ケイ素と炭化水素化合物を気
相で反応させる気相法が注目されており、例えば特開昭
63−206399および特開昭63−319300に
は、硫化ケイ素ガスを1.130〜1,500℃に保持
された反応器にキャリアガスを介して導入し、空間に浮
遊した生成核の存在下に炭化水素化合物と接触させるこ
とにより炭化ケイ素ウィスカーを析出、成長させる方法
が提案されている。また、この方法においては、生成核
材として鉄、ニッケル、チタン、マンガン、コバルト、
銅、バナジウム、クロム、アルミニウムおよびシリコン
なとの金属またはその化合物か有効であることも開示さ
れている。
Among these methods, a gas phase method in which silicon sulfide and a hydrocarbon compound are reacted in the gas phase has attracted attention. There is a method of precipitating and growing silicon carbide whiskers by introducing them into a reactor maintained at 130 to 1,500°C via a carrier gas and bringing them into contact with hydrocarbon compounds in the presence of product nuclei floating in the space. Proposed. In addition, in this method, iron, nickel, titanium, manganese, cobalt,
It is also disclosed that metals or compounds thereof such as copper, vanadium, chromium, aluminum and silicon are useful.

一方、本発明者らは、硫化ケイ素と炭化水素化合物とを
気相で反応させる際の触媒として、鉄、ニッケル、コバ
ルト、ロジウム、パラジウム、オスミウム、イリジウム
、白金および銅よりなる群から選ばれる二種類以上の金
属とモリブデン、ルテニウム、レニウムおよびタングス
テンよりなる群から選ばれる一種以上の金属とを有効成
分とする多元触媒か特に有効であることを見いたし、先
に出願した(特願平1−271552)。
On the other hand, the present inventors have discovered that a catalyst selected from the group consisting of iron, nickel, cobalt, rhodium, palladium, osmium, iridium, platinum, and copper can be used as a catalyst for reacting silicon sulfide and a hydrocarbon compound in the gas phase. We found that a multi-component catalyst containing as active ingredients more than one type of metal and one or more metals selected from the group consisting of molybdenum, ruthenium, rhenium and tungsten was particularly effective, and we filed an application earlier (Patent Application No. 271552).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、複合材料用の補強材として用いらゎる炭化ケ
イ素ウィスカーのうち、1aN、強化金属(FMR)用
の補強材としては従来の細い径のものて良好な補強効果
が得られるが、繊維強化セラミックス(FRC)用の補
強材としては1μm以上の太い径の炭化ケイ素ウィスカ
ーの方が靭性改良の面て好ましい効果が得られるとの報
告(例えば、上野和夫、袖岡賢;窯業協会誌、94,9
81(19sa> >かあり、また、作業環境上の観点
からも径の太い炭化ケイ素ウィスカーの製造方法が望ま
れている。
By the way, among the silicon carbide whiskers used as reinforcing materials for composite materials, conventional thin diameter ones can provide a good reinforcing effect as reinforcing materials for 1aN and reinforcing metals (FMR), but fiber-reinforced whiskers It has been reported that as a reinforcing material for ceramics (FRC), silicon carbide whiskers with a thick diameter of 1 μm or more are more effective in improving toughness (for example, Kazuo Ueno, Ken Sodeoka; Journal of the Ceramics Association, 94, 9
81 (19sa>>>), and from the viewpoint of the working environment, a method for producing silicon carbide whiskers with a large diameter is desired.

しかしなから、前記従来技術で得られる炭化ケイ素ウィ
スカーは、0.5μm以下の径のものが大部分であり、
1μm以上の径のものは極小量しか得られていない。本
発明の目的は、前記従来技術では有効に製造し得なかっ
た、平均1μm以上の太い径の炭化ケイ素ウィスカーを
高収率で得ることかできる工業的に有利な製造方法を提
供することにある。
However, most of the silicon carbide whiskers obtained by the conventional technique have a diameter of 0.5 μm or less,
Only a very small amount of particles with a diameter of 1 μm or more has been obtained. An object of the present invention is to provide an industrially advantageous manufacturing method capable of obtaining silicon carbide whiskers having a large diameter of 1 μm or more on average in a high yield, which could not be effectively manufactured using the conventional techniques. .

〔課題を解決すための手段〕[Means to solve the problem]

本発明者らは、硫化ケイ素と炭化水素化合物との反応に
より径の太い炭化ケイ素ウィスカーを製造する方法につ
いて鋭意検討の結果、反応に先立ち、特定の金属類を組
み合わせた多元触媒を用いて、ウィスカー生成基板上に
太い切り林状の生成核を形成しておくことにより前記目
的が達成できることを見いたし、本発明を完成した。
The present inventors have conducted intensive studies on a method for producing large-diameter silicon carbide whiskers by reacting silicon sulfide with a hydrocarbon compound. The present invention was completed based on the finding that the above object can be achieved by forming thick, forest-shaped production nuclei on a production substrate.

本発明は、炭化水素化合物および硫化ケイ素を金属触媒
の存在下に気相て反応させて炭化ケイ素ウィスカーを製
造する方法において、 ■反応系内の基板上に、銅および周期律表第■族に属す
る金属である鉄、ニッケル、コバルト、ロジウム、パラ
ジウム、オスミウム、イリジウムおよび白金よりなる群
(A群)がら選ばれる二種以上の金属と、モリブデン、
ルテニウム、レニウム、およびタングステンよりなる群
(B群)がら選ばれる一種貝トの金属とをモル比A群/
B群=0.5〜10.0の割合で有効成分として含有す
る多元触媒を相持させたのち、 ■硫化ケイ素ガスを導入して該基板上にケイ素質の核を
生成させ、 ■次いで炭化水素ガスを導入して反応させることによっ
て該ケイ素質の核を炭化ケイ素の核に変化せしめ、 ■つづいて、炭化ケイ素ウィスカー生成用の触媒を追加
担持させ、この後、 ■原料の炭化水素化合物と硫化ケイ素を導入して反応さ
せ、前記炭化ケイ素の核を生成核として炭化ケイ素ウィ
スカーを成長させる、 という工程を包含することを特徴とする径の太い炭化ケ
イ素ウィスカーの製造方法である。本発明によれば、従
来技術では得られながった平均直径1.0〜50μm、
アスペクト比1000以上の高純度炭化ケイ素ウィスカ
ーを製造することかできる。
The present invention provides a method for producing silicon carbide whiskers by reacting a hydrocarbon compound and silicon sulfide in the presence of a metal catalyst in a gas phase. Two or more metals selected from the group (group A) consisting of metals iron, nickel, cobalt, rhodium, palladium, osmium, iridium, and platinum, and molybdenum,
A metal selected from the group consisting of ruthenium, rhenium, and tungsten (group B) in a molar ratio of group A/
After a multi-component catalyst containing as an active ingredient at a ratio of Group B = 0.5 to 10.0 is supported, (1) silicon sulfide gas is introduced to generate silicon nuclei on the substrate, and (2) hydrocarbons are added. By introducing a gas and causing a reaction, the silicon core is changed into a silicon carbide core. Next, a catalyst for producing silicon carbide whiskers is additionally supported, and after that, the raw material hydrocarbon compound and sulfidation are performed. This method of producing silicon carbide whiskers with a large diameter includes the steps of introducing silicon, causing a reaction, and growing silicon carbide whiskers using the silicon carbide nuclei as production nuclei. According to the present invention, an average diameter of 1.0 to 50 μm, which could not be obtained with the conventional technology,
High purity silicon carbide whiskers with an aspect ratio of 1000 or more can be produced.

本発明の方法による製造工程は大きく2つの工程に分け
られる。第1に、炭化ケイ素ウィスカーの生成種を形成
する工程、第2に、該生成種を用いて炭化ケイ素ウィス
カーを成長させる工程である。本発明の最も重要な特徴
は上記第1工程にあり、この工程により径の太いウィス
カーが成長し得る太い切り林状の生成種が形成される。
The manufacturing process according to the method of the present invention can be broadly divided into two steps. The first step is to form a silicon carbide whisker seed, and the second step is to grow silicon carbide whiskers using the generated seed. The most important feature of the present invention lies in the first step, which forms a seed in the form of a thick cut forest on which whiskers with a large diameter can grow.

以下、本発明の製造法をプロセスにしたがって説明する
Hereinafter, the manufacturing method of the present invention will be explained according to the process.

まず、反応に先立ち、反応器内の基板上にケイ素質の核
の生成を経て炭化ケイ素の核(すなわち、炭化ケイ素ウ
ィスカーの生成種、以下生成核という。)を生成させる
ための触媒(以下、生成核形成触媒という。)を担持さ
せる。この触媒としては、銅および周期律表第■族に属
する金属である鉄、ニッケル、コバルト、ロジウム、パ
ラジウム、オスミウム、イリジウム、白金よりなる群(
A群)から選ばれる二種以上の金属とモリブテン、ルテ
ニウム、レニウムおよびタングステンよりなる群(B群
)から選ばれる一種以上の金属とを有効成分とする多元
触媒を使用する。この多元触媒は各金属成分の単体金属
またはこわらの金属の酸化物、炭化物、硫化物、ハロゲ
ン化物、硫酸塩、硝酸塩などの無機化合物あるいは一般
式M(C2H5)て表されるメタロセンなどの有機化合
物を担体である基板上に混合付着させたのち熱分解反応
および/または還元反応により各金属の混合物あるいは
一部合金の形として担持させる。
First, prior to the reaction, a catalyst (hereinafter referred to as a catalyst) for generating silicon carbide nuclei (i.e., silicon carbide whisker generation species, hereinafter referred to as generation nuclei) through the generation of silicon nuclei on a substrate in a reactor. (referred to as a nucleation catalyst) is supported. This catalyst is a group consisting of copper and metals belonging to Group I of the periodic table, such as iron, nickel, cobalt, rhodium, palladium, osmium, iridium, and platinum.
A multi-component catalyst containing as active ingredients two or more metals selected from group A) and one or more metals selected from the group consisting of molybdenum, ruthenium, rhenium, and tungsten (group B) is used. This multi-component catalyst is composed of inorganic compounds such as oxides, carbides, sulfides, halides, sulfates, and nitrates of individual metals or stiff metals, or organic compounds such as metallocenes represented by the general formula M (C2H5). After the compounds are mixed and deposited on a substrate, which is a carrier, they are supported in the form of a mixture or a partial alloy of each metal through a thermal decomposition reaction and/or a reduction reaction.

各金属の使用割合は、A群の金属とB群の金属の比率が
モル比で0.5:1〜10:1の範囲内で基板上に担持
されるような割合がよい。また好ましくはA群中の最大
成分と残りの成分の比率かモル比て10:1以下となる
ような範囲の割合である。金属成分の構成比率か前記の
範囲を外れると生成種の形成か不十分で径の太い炭化ケ
イ素ウィスカーを高収率で得ることかできない。これら
の多元触媒の中で、A群の金属として鉄(Fe)および
ニッケル(Ni)を使用し、B群の金属としてモリブデ
ン(Mo)を使用した三元触媒が、反応性も高く、取り
扱いも容易で特に優れた組み合わせである。生成核形成
触媒を担持させる基板(担体)の材質としては、生成種
の形成および炭化ケイ素ウィスカーの生成反応に悪影響
をおよぼすものでなければ特に制限はなく、アルミナ、
ムライトなどのセラミックス材料あるいは黒鉛、ガラス
状炭素などの炭素材料などが用い得るか、その中でムラ
イト系のセラミックスなどのS i O2成分を含有す
る材料か特に好適である。これは、材料の構成成分の一
部である5in2か生成種の形成および炭化ケイ素ウィ
スカーの生成に好結果を与えるためと推定される。炭化
ケイ素ウィスカーは担体上に形成された生成核上て生成
し、成長するので、担体の形状としては得られたウィス
カーの単離の容易なものがよい。通常は反応器の器壁を
そのまま利用すればよく、反応容積を大きくする場合に
はムライト製ポールなどの簡単な構造の充填物を入れる
か、管状の反応器を組み合わせた多管反応器を使用すれ
ばよい。本発明の方法で使用する反応装置としては特に
限定はないが、例えば、第1図に示すような炭化水素化
合物、硫化ケイ素および触媒成分の導入管と排ガスの導
出管を備えた反応管を、縦型の電気炉中に設置した構成
ものか好適に用いられる。
The ratio of each metal to be used is preferably such that the ratio of metals of group A to metals of group B is supported on the substrate within a molar ratio of 0.5:1 to 10:1. Preferably, the ratio is such that the molar ratio of the largest component in Group A to the remaining components is 10:1 or less. If the composition ratio of the metal components is out of the above range, the formation of generated species will be insufficient and it will not be possible to obtain silicon carbide whiskers with a large diameter in a high yield. Among these multi-way catalysts, three-way catalysts that use iron (Fe) and nickel (Ni) as group A metals and molybdenum (Mo) as group B metals have high reactivity and are easy to handle. This is an easy and particularly excellent combination. The material of the substrate (carrier) on which the nucleation catalyst is supported is not particularly limited as long as it does not adversely affect the formation of the nucleation species and the silicon carbide whisker production reaction, and examples include alumina,
Ceramic materials such as mullite or carbon materials such as graphite and glassy carbon can be used, and among these, materials containing SiO2 components such as mullite ceramics are particularly preferred. This is presumed to be because it gives favorable results to the formation of 5in2 species, which are part of the constituent components of the material, and to the formation of silicon carbide whiskers. Since silicon carbide whiskers are produced and grow on nuclei formed on a carrier, the shape of the carrier is preferably one that allows the resulting whiskers to be easily isolated. Normally, the wall of the reactor can be used as is, but if the reaction volume is to be increased, a simple structure such as a mullite pole can be used, or a multi-tubular reactor combined with tubular reactors can be used. do it. Although there are no particular limitations on the reaction apparatus used in the method of the present invention, for example, a reaction tube equipped with an inlet tube for hydrocarbon compounds, silicon sulfide, and catalyst components and an outlet tube for exhaust gas as shown in FIG. A structure installed in a vertical electric furnace is preferably used.

生成核形成触媒の担持方法としては、前記B群の金属の
単体またはその金属化合物を担体上に予め担持させてお
き、A群の各金属の単体またはその金属化合物を1,1
00〜1,500℃の高温度に保持された反応器内へ導
入し、担体Eに担持させる。この場合、フェロセン、ニ
ラケロセンなどの昇華性のある物質は蒸気圧を利用し、
加熱状態て窒素などの不活性ガスや水素などの還元性ガ
スをキャリアガスとして系内に導入して担持させる。蒸
気圧の低い化合物の場合には溶液あるいはスラリーの形
で反応器内へ噴霧する方法が好適である。各成分はそれ
ぞれ単独で反応器内へ導入してもよいが、予め混合した
状態で導入してもよい。各種化合物の形で反応器内へ担
持されたA群の金属成分は、還元性ガスによって還元さ
れ、金属の形でB群の金属と共に触媒作用を示すものと
思われる。生成核形成用触媒の担持量は、担体の基材単
位面積当たりA群金属は80〜400mg/m2.B群
金属は80〜280mg/m2が好ましい。A群金属の
担持量が80mg/m2未満ては径の太い生成核が得ら
れにくいためウィスカーの径を太くする効果が少なく、
また400m g / m 2を超えてもそれ以上の効
果はない。B群金属は使用量が80rr+g/m2未満
になるか280 m g / m 2を超えた場合には
ウィスカーの径を太くする効果は著しく低下する。
As a method for supporting the nucleation catalyst, the simple substance of the metal of Group B or its metal compound is supported on the carrier in advance, and the simple substance of each metal of Group A or its metal compound is
The mixture is introduced into a reactor maintained at a high temperature of 00 to 1,500°C, and supported on carrier E. In this case, sublimable substances such as ferrocene and nirakerosene utilize vapor pressure,
In a heated state, an inert gas such as nitrogen or a reducing gas such as hydrogen is introduced into the system as a carrier gas and supported. In the case of compounds with low vapor pressure, it is preferable to spray them into the reactor in the form of a solution or slurry. Each component may be introduced into the reactor individually, or may be introduced in a pre-mixed state. It is believed that the group A metal components supported in the reactor in the form of various compounds are reduced by the reducing gas and exhibit catalytic activity together with the group B metals in the form of metals. The supported amount of the nucleation catalyst is 80 to 400 mg/m2 of Group A metal per unit area of the base material of the carrier. The amount of group B metal is preferably 80 to 280 mg/m2. If the amount of Group A metal supported is less than 80 mg/m2, it is difficult to obtain a nucleus with a large diameter, so there is little effect of increasing the diameter of the whisker.
Moreover, even if it exceeds 400 mg/m2, there is no further effect. When the amount of Group B metal used is less than 80 rr+g/m2 or exceeds 280 mg/m2, the effect of increasing the whisker diameter is significantly reduced.

次に、前記生成核形成触媒を担持させた基板上に必要に
よりキャリアガスて希釈した硫化ケイ素ガスつづいて炭
化水素ガスを導入し、生成核を形成させる。ここで使用
するガスは、後記の炭化ケイ素ウィスカーの生成反応の
場合と同様のものを使用し、導入の方法もそれに準して
行えばよい。
Next, a silicon sulfide gas diluted with a carrier gas if necessary, followed by a hydrocarbon gas are introduced onto the substrate supporting the nucleation catalyst to form nucleations. The gas used here is the same as in the case of the silicon carbide whisker production reaction described later, and the method of introduction may be carried out in accordance therewith.

まずキャリアガス中に0.5〜4Vo1%の硫化ケイ素
ガスを含む混合ガスを1,250〜1.450℃に保持
した反応器内に反応帯域における通ガス速度0.02−
0.10cm/secで2〜4時間を要し、硫化ケイ素
の総供給量か生成核形成触媒の1〜30倍量(モル比換
算)となるように導入して基板上にケイ素質の核を生成
させる。硫化ケイ素の量か生成核形成触媒に対して、1
倍量未満では効果がなく、また30倍量を超えてもそれ
以上の効果はない。次いてキャリアガス中に5〜30V
o1%の炭化水素ガスを含む混合ガスを同一温度て通ガ
ス速度0.06〜0.24cm/seeで0.5〜1.
0時間を要し、炭化水素の総供給量か硫化ケイ素のそれ
に対し1〜10倍量(モル比換算)となるように導入し
て、先に形成させたケイ素質の核を炭化ケイ素の核(生
成核)に変化させる。炭化水素の引か硫化ケイ素に対し
て、1倍量未満ては炭化ケイ素核の形成が不十分てあり
、また10イ8量を超えてもそれ以上の効果はない。こ
の生成核は、顕微鏡観察によれば、直径1μm以上の切
り4状の形態を有するものか主体であり、炭化ケイ素ウ
ィスカーはこの切り株か成長するような形で生成してい
くのて太い径のウィスカーを得ることかてきる。
First, a mixed gas containing silicon sulfide gas of 0.5 to 4 Vo1% in the carrier gas was introduced into a reactor maintained at 1,250 to 1.450°C at a gas flow rate of 0.02-
It takes 2 to 4 hours at a rate of 0.10 cm/sec, and the total amount of silicon sulfide supplied is 1 to 30 times the amount (in terms of molar ratio) of the generated nucleation catalyst to form silicon nuclei on the substrate. to generate. The amount of silicon sulfide or nucleation catalyst is 1
Less than twice the amount has no effect, and more than 30 times the amount has no further effect. Then 5-30V into the carrier gas
A mixed gas containing 0.1% hydrocarbon gas was heated at the same temperature at a gas passing rate of 0.06 to 0.24 cm/see at a rate of 0.5 to 1.0 cm.
The previously formed silicon cores are converted into silicon carbide cores by introducing hydrocarbons in an amount 1 to 10 times (in terms of molar ratio) the total amount of hydrocarbons supplied or that of silicon sulfide. (generation nucleus). If the amount of the hydrocarbon is less than 1 times the amount of silicon sulfide, the formation of silicon carbide nuclei will be insufficient, and if the amount exceeds 10-8, no further effect will be obtained. According to microscopic observation, these generated nuclei mainly have a cut-off shape with a diameter of 1 μm or more, and silicon carbide whiskers are generated in the form of growing from these cut-outs, so they have a large diameter. You can also get whiskers.

次に、このようにして生成核を形成した基板上に炭化ケ
イ素ウィスカー生成反応用の触媒(反応触媒)を追加担
持させる。ここて、追加担持とは本工程を前述生成核形
成の工程て用いた生成核形成触媒とは別に炭化ケイ素ウ
ィスカーを製造する毎に、反応触媒を新たに担持させる
ことをいう。すなわち、前記の生成核形成触媒も炭化ケ
イ素ウィスカー生成反応の触媒として機能するか、反応
を円滑に進行させるためにはこの段階て触媒を追加する
のが好ましいのである。−旦形成させた生成核は、生成
した炭化ケイ素ウィスカーを回収したあともそのまま残
っており、反応触媒を追加するだけでそのまま縁り返し
使用することかできる。
Next, a catalyst for the silicon carbide whisker production reaction (reaction catalyst) is additionally supported on the substrate on which the production nuclei have been formed in this manner. Here, additional support means that a reaction catalyst is newly supported each time silicon carbide whiskers are produced, in addition to the nucleation catalyst used in the above-mentioned nucleation step in this step. That is, it is preferable that the nucleation catalyst described above also functions as a catalyst for the silicon carbide whisker production reaction, or that a catalyst is added at this stage in order to make the reaction proceed smoothly. - The generated nuclei remain as they are even after the generated silicon carbide whiskers are collected, and can be reused as they are by simply adding a reaction catalyst.

反応触媒としては、前記B群の金属とA群の金属の中か
ら選ばれる1種以上を適当な化合物の形で導入し担持さ
せる。例えば、鉄またはニッケルの場合にはフェロセン
あるいはニラケロセンの形て80℃付近に加温した水素
ガスをキャリアーとして導入し、またコバルトの場合に
は塩化コバルトを250℃付近に加温した窒素ガスをキ
ャリアーとして導入すればよい。追加する触媒の使用量
は、反応させる硫化ケイ素1モルに対し金属成分の合計
量て0.0002〜0.001モルか好ましい。使用量
か0.0002モル未満ては炭化ケイ素ウィスカーの収
率が低く、また0、001モルを超えてもそわ以1の効
果はない。
As the reaction catalyst, one or more selected from the metals of group B and metals of group A are introduced and supported in the form of a suitable compound. For example, in the case of iron or nickel, hydrogen gas in the form of ferrocene or nirakerosene heated to around 80°C is introduced as a carrier, and in the case of cobalt, nitrogen gas heated to around 250°C in cobalt chloride is introduced as a carrier. It can be introduced as . The amount of the additional catalyst used is preferably 0.0002 to 0.001 mol in total of the metal components per 1 mol of silicon sulfide to be reacted. If the amount used is less than 0.0002 mol, the yield of silicon carbide whiskers will be low, and if it exceeds 0,001 mol, there will be no other effect.

次に反応帯域の温度を1,130〜1,500℃、好ま
しくは1.200〜1,450℃とした反応器内へ原料
の炭化水素化合物および硫化ケイ素を導入して反応を開
始させる。本発明の方法において、炭化ケイ素ウィスカ
ー製造用原料として使用する炭化水素化合物としては、
メタン、エタン、プロパンなとのパラフィン系炭化水素
化合物、エチレン、プロピレンなとのオレフィン系炭化
水素化合物、アセチレン、アリレンなとのアセチレン系
炭化水素化合物、ヘンセン、トルエンなとの芳香族炭化
水素化合物、シクロパラフィン、シクロオレフィンなと
の脂環族炭化水素化合物あるいはこれらの混合物か挙げ
られる。
Next, the raw material hydrocarbon compound and silicon sulfide are introduced into a reactor whose reaction zone temperature is 1,130 to 1,500°C, preferably 1,200 to 1,450°C, and the reaction is started. In the method of the present invention, hydrocarbon compounds used as raw materials for producing silicon carbide whiskers include:
Paraffinic hydrocarbon compounds such as methane, ethane, and propane; olefinic hydrocarbon compounds such as ethylene and propylene; acetylenic hydrocarbon compounds such as acetylene and arylene; aromatic hydrocarbon compounds such as Hensen and toluene; Examples include alicyclic hydrocarbon compounds such as cycloparaffins and cycloolefins, or mixtures thereof.

炭化水素化合物は、水素なとの還元性ガスまたはこれら
の還元性ガスを窒素などの不活性ガスで希釈した混合物
よりなるキャリアガスとともに、反応器内に導入される
。キャリアガスとしては水素ガスまたは水素と窒素の混
合ガスが特に好ましい。また、硫化ケイ素は、予めフェ
ロシリコンと硫黄とを反応させるなどの方法で製造した
ものを加熱気化させ、キャリアガスとともに系内へ導入
することによって供給される。あるいは、この硫化ケイ
素は、金属ケイ素を反応器の1,000〜1.450℃
に保持された導入管の先端部に保持し、キャリアガスて
希釈した硫化水素ガスを導入して反応させることによっ
て生成させれば、別に硫化ケイ素の製造装置や気化装置
を設ける必要がないので好都合である。
The hydrocarbon compound is introduced into the reactor together with a carrier gas consisting of a reducing gas such as hydrogen or a mixture of these reducing gases diluted with an inert gas such as nitrogen. As the carrier gas, hydrogen gas or a mixed gas of hydrogen and nitrogen is particularly preferred. Further, silicon sulfide is supplied by heating and vaporizing silicon sulfide produced in advance by a method such as reacting ferrosilicon and sulfur, and introducing the same into the system together with a carrier gas. Alternatively, this silicon sulfide can be heated to 1,000 to 1,450°C in a reactor.
If hydrogen sulfide gas diluted with a carrier gas is introduced into the tip of an inlet tube held at the tip of the inlet tube and generated by reaction, there is no need to install a separate silicon sulfide production device or vaporization device, which is convenient. It is.

炭化水素化合物および硫化ケイ素を反応器へ導入させる
ためのキャリアガスとしては、窒素のような活性の低い
ガスまたは不活性ガスで希釈されていでもよい水素なと
の還元性ガスを用いるか、このうち水素または水素と窒
素の混合ガスが特に好ましい。
As a carrier gas for introducing hydrocarbon compounds and silicon sulfide into the reactor, a less active gas such as nitrogen or a reducing gas such as hydrogen, which may be diluted with an inert gas, or a reducing gas such as hydrogen, which may be diluted with an inert gas, may be used. Particularly preferred is hydrogen or a mixed gas of hydrogen and nitrogen.

炭化水素化合物と硫化ケイ素の使用割合は、硫化ケイ素
1モルに対し炭化水素化合物1〜10モルの範囲が好ま
しい。炭化水素化合物のモル比が1未満では反応率が低
くなり、また、10モル比を超えても反応率はそれ以上
向上せず、炭化水素化合物のロスが多くなる。
The ratio of the hydrocarbon compound and silicon sulfide used is preferably in the range of 1 to 10 moles of hydrocarbon compound per 1 mole of silicon sulfide. If the molar ratio of the hydrocarbon compound is less than 1, the reaction rate will be low, and if the molar ratio exceeds 10, the reaction rate will not improve any further, and the loss of the hydrocarbon compound will increase.

反応器内へ導入する原料混合物の濃度および通ガス速度
は反応器の大きさ、形状、反応温度などの他の条件との
組み合わせで適宜定められる。通常、原料混合物および
キャリアガスを含む全ガス中の炭化水素化合物の濃度は
1〜5mo 1%、硫化ケイ素の濃度は5〜30mo1
%の範囲とするのか好ましい。
The concentration of the raw material mixture introduced into the reactor and the gas passing rate are appropriately determined in combination with other conditions such as the size and shape of the reactor, and the reaction temperature. Usually, the concentration of hydrocarbon compounds in the total gas including the raw material mixture and carrier gas is 1-5 mo 1%, and the concentration of silicon sulfide is 5-30 mo 1.
It is preferable to set it in the range of %.

原料混合物の反応帯域における滞留時間を左右する通ガ
ス速度は、0.06〜0.24cm/secとする。通
ガス速度か0.06cm/see未満では単位時間当た
りの炭化ケイ素ウィスカーの生成量か少なく、また、0
.24cm/secを超えると炭化ケイ素ウィスカーの
収率が大幅に低下する。通常、炭化ケイ素ウィスカーは
0.5〜1.0時間で目的の大きさまで成長し、常法に
従って回収され得る。
The gas passing rate, which influences the residence time of the raw material mixture in the reaction zone, is 0.06 to 0.24 cm/sec. When the gas flow rate is less than 0.06 cm/see, the amount of silicon carbide whiskers produced per unit time is small;
.. If it exceeds 24 cm/sec, the yield of silicon carbide whiskers will decrease significantly. Typically, silicon carbide whiskers grow to a desired size in 0.5 to 1.0 hours, and can be recovered by conventional methods.

本発明の方法においては、炭化ケイ素ウィスカーは、予
め反応器内の基板上に形成された生成量の上に成長して
いくのて、従来の方法ては得ることが難しかった太い径
のウィスカーを高収率で得ることかできる。
In the method of the present invention, silicon carbide whiskers grow on top of the amount previously formed on the substrate in the reactor, resulting in thick whiskers that are difficult to obtain using conventional methods. It can be obtained in high yield.

本発明の方法によって得られる炭化ケイ素ウィスカーは
、ウィスカー中に触媒粒子の混入がほとんど無く高純度
で、直径が1〜5.0μm、長さ1.000〜1o、o
ooAImかつアスペクト比1.000以上の形状を有
しており、繊維強化プラスチックス、繊維強化金属ある
いは繊維強化セラミックスなとの各種複合材料として好
適である。
The silicon carbide whiskers obtained by the method of the present invention have high purity with almost no catalyst particles mixed in the whiskers, and have a diameter of 1 to 5.0 μm and a length of 1.000 to 1000 μm.
It has a shape with ooAIm and an aspect ratio of 1.000 or more, and is suitable for various composite materials such as fiber-reinforced plastics, fiber-reinforced metals, and fiber-reinforced ceramics.

〔実 施 例〕〔Example〕

以下、実施例により本発明の方法をさらに具体的に説明
する。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

触媒の使用比率を変え実施例1〜3および比較例1〜3
をそれぞれ表1に示す条件に基つき下記の手順にしたが
って実施した。なお条件により下記の手順の全ては実施
されていない。
Examples 1 to 3 and Comparative Examples 1 to 3 by changing the ratio of catalyst used
were carried out according to the following procedures based on the conditions shown in Table 1. Note that all of the following procedures were not carried out due to conditions.

第1図に示すような、縦型電気炉1中に、上、下端をシ
リコンゴム栓2,3でシールした内径52mm、長さ1
,500mmのムライト製反応管4を設置し、内径10
mmのアルミナ管を上端のゴム栓に4本(導入管5〜8
)、下端にゴム栓に1本(排ガス導出管9)取り付けた
ものを反応器とした。
As shown in Fig. 1, a vertical electric furnace 1 with an inner diameter of 52 mm and a length of 1 is sealed at the upper and lower ends with silicone rubber plugs 2 and 3.
, a 500 mm mullite reaction tube 4 was installed, with an inner diameter of 10
Four mm alumina tubes are attached to the rubber plugs at the upper end (introduction tubes 5 to 8
), one rubber plug (exhaust gas outlet pipe 9) was attached to the lower end to form a reactor.

1底屈m悲息1 反応器を第2図に示すような温度分布となるように加熱
しておき、充分量のフェロセンおよびニラケロセンを5
0m1の容器に入れ、80℃に加温しておき、キャリヤ
ガスとしてsoml/minの水素を30分間通すこと
によって気化フェロセンおよびニラケロセンを導入管5
がら反応器内へ導入し、反応管内壁に所定量の鉄および
ニッケルを担持させた。モリブテン成分については、予
め二硫化モリブデンを導入管7の先端部に固定しておき
、この先端部を約1,100℃の温度域に保持し、フェ
ロセンおよびニラケロセンと同時に、導入管7から25
m1/minの窒素ガスを30分かけて導入することに
より反応器内へ導入し、所定量を担持させた。
1 Plantarflexion 1 Heating the reactor so that the temperature distribution is as shown in Figure 2, a sufficient amount of ferrocene and nilakerosene was added.
Vaporized ferrocene and nilakerosene were introduced into the inlet tube 5 by placing them in a 0 ml container and heating them to 80°C, and passing soml/min hydrogen as a carrier gas for 30 minutes.
was introduced into the reactor, and a predetermined amount of iron and nickel were supported on the inner wall of the reaction tube. Regarding the molybdenum component, molybdenum disulfide is fixed in advance at the tip of the introduction tube 7, and this tip is maintained at a temperature of about 1,100°C.
Nitrogen gas was introduced into the reactor at a rate of m1/min over 30 minutes, and a predetermined amount was supported.

j 生成核形成触媒を担持させた反応器を、第2図のような
温度分布に加熱しておき、生成核の形成を行フた。まず
、導入管8の先端部に金属ケイ素を固定しておき、この
先端部を1,200℃の温度領域に保持し、導入管8よ
り1.5ml/minの硫化水素と75m1/minの
水素の混合ガスを3時間を要して導入することにより硫
化ケイ素を生成させなからケイ素質の核を生成させた。
j The reactor supporting the nucleation catalyst was heated to a temperature distribution as shown in FIG. 2, and the nucleation was completed. First, metal silicon is fixed to the tip of the introduction tube 8, and this tip is maintained in a temperature range of 1,200°C. By introducing the mixed gas over a period of 3 hours, silicon sulfide was not produced, but silicon cores were produced.

次に、導入管6より10m1/minのメタンと66.
5ml/minの水素よりなる混合ガスを0.5時間を
要して導入し、炭化ケイ素の生成核を形成させた。
Next, 66.
A mixed gas consisting of hydrogen at a rate of 5 ml/min was introduced over 0.5 hours to form silicon carbide nuclei.

又椋違]←装置) 生成核形成に用いたフェロセンおよび二・ソケロセンの
導入装置を60℃に加温しておき、50m 1 / m
 i nの水素を30分間通すことによって気化フェロ
センおよびニラケロセンを導入管5から反応器内へ導入
し、反応管内壁に所定量の鉄およびニッケルを担持させ
た。
The device for introducing ferrocene and di-sokerocene used for nucleation was heated to 60°C, and the inlet was heated to 50 m 1 / m.
Vaporized ferrocene and nilakerosene were introduced into the reactor from the introduction tube 5 by passing hydrogen of i.

反−一一又 反応触媒を担持させ、第2図のような温度分布に加熱さ
ねた反応器内に、気体状のメタンおよび硫化ケイ素(S
iS)をキャリアガスとともに2時間を要して導入し、
反応させた。メタンは20m1/minのメタンガスを
115m1/minの水素ガスとともに導入管6より導
入し、硫化ケイ素は、導入管8の先端部に金属ケイ素を
固定しておき、この先端部を1,200℃の温度領域に
保持し、導入管8より3 m 1 / m i nの硫
化水素と15m1/minの水素の混合ガスを導入する
ことにより硫化ケイ素を生成させなから導入した。
Gaseous methane and silicon sulfide (S
iS) was introduced with a carrier gas over a period of 2 hours,
Made it react. For methane, 20 m1/min of methane gas and 115 m1/min of hydrogen gas are introduced from the introduction pipe 6. For silicon sulfide, metallic silicon is fixed at the tip of the introduction pipe 8, and the tip is heated to 1,200°C. While maintaining the temperature in the temperature range, a mixed gas of 3 m 1 /min of hydrogen sulfide and 15 m 1 /min of hydrogen was introduced from the inlet pipe 8 without producing silicon sulfide.

反応終了後、室温まで冷却し、生成したウィスカーを回
収した。得られた生成物は、X線回折測定の結果、β型
の炭化ケイ素ウィスカーであることが確認された。
After the reaction was completed, the mixture was cooled to room temperature and the generated whiskers were collected. As a result of X-ray diffraction measurement, the obtained product was confirmed to be β-type silicon carbide whiskers.

実施例および比較例の結果を表1に示す。表1の結果か
ら本発明の方法に基づ〈実施例1〜3ては、従来の生成
核を形成させない方法に比較して著しく太い径の炭化ケ
イ素ウィスカーか高収率て得られたことかわかる。なお
、ここで示した収率は、次の式により計算した。
Table 1 shows the results of Examples and Comparative Examples. From the results in Table 1, it can be seen that based on the method of the present invention (Examples 1 to 3), silicon carbide whiskers with significantly larger diameters were obtained at a higher yield than in the conventional method that does not form nuclei. Recognize. Note that the yield shown here was calculated using the following formula.

週率(%)”((SiCウィスカー収量)/(消費Si
量から計算したSiC 量))X100 〔発明の効果〕 本発明の方法によりば、従来の方法に比較して太い径の
炭化ケイ素ウィスカーを高収率て得ることができる。ま
た、−皮形成させた生成核は、生成したウィスカーを回
収したのち、反応用触媒を追加するだけでそのまま繰り
返し使用が可能であり、本発明の方法は工業的に極めて
有利な方法ということができる。
Weekly rate (%)” ((SiC whisker yield)/(Si consumption
SiC amount calculated from the amount)) In addition, the formed core can be used repeatedly by simply adding a reaction catalyst after collecting the generated whiskers, and the method of the present invention is industrially extremely advantageous. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に用いることのできる反応器の
一例を示す装置の模式断面図、第2図は実施例において
加熱された反応器内の温度分布の一例を示すグラフであ
る。 1・・・縦型電気炉、2.3・・・シリコンゴム栓、4
・・・反応管、5〜8・・・導入管、9・・・排ガス導
出管。
FIG. 1 is a schematic cross-sectional view of an apparatus showing an example of a reactor that can be used in carrying out the present invention, and FIG. 2 is a graph showing an example of the temperature distribution inside the heated reactor in an example. 1...Vertical electric furnace, 2.3...Silicone rubber stopper, 4
...Reaction tube, 5-8...Introduction pipe, 9...Exhaust gas outlet pipe.

Claims (1)

【特許請求の範囲】 1、炭化水素化合物および硫化ケイ素を金属触媒の存在
下に気相で反応させて炭化ケイ素ウィスカーを製造する
方法において、下記の工程をその順で包含することを特
徴とする径の太い炭化ケイ素ウィスカーの製造方法。 (1)反応系内の基板上に、銅および周期律表第VIII族
に属する金属である鉄、ニッケル、コバルト、ロジウム
、パラジウム、オスミウム、イリジウムおよび白金より
なる群(A群)から選ばれる二種以上の金属と、モリブ
デン、ルテニウム、レニウム、およびタングステンより
なる群(B群)から選ばれる一種以上の金属とをモル比
A群/B群=0.5〜10.0の割合で有効成分として
含有する多元触媒を担持させる工程、 (2)硫化ケイ素ガスを導入して該基板上にケイ素質の
核を生成させる工程、 (3)炭化水素ガスを導入して反応させることによって
該ケイ素質の核を炭化ケイ素の核に変化せしめる工程、 (4)炭化ケイ素ウィスカー生成用の触媒を追加担持さ
せる工程、 (5)原料の炭化水素化合物と硫化ケイ素を導入して反
応させ、前記炭化ケイ素の核を生成核として炭化ケイ素
ウィスカーを成長させる工程。
[Claims] 1. A method for producing silicon carbide whiskers by reacting a hydrocarbon compound and silicon sulfide in the gas phase in the presence of a metal catalyst, characterized by including the following steps in that order: A method for producing silicon carbide whiskers with a large diameter. (1) Two metals selected from the group consisting of copper and metals belonging to Group VIII of the periodic table, such as iron, nickel, cobalt, rhodium, palladium, osmium, iridium, and platinum (group A), are placed on the substrate in the reaction system. Active ingredients include one or more metals and one or more metals selected from the group consisting of molybdenum, ruthenium, rhenium, and tungsten (group B) at a molar ratio of group A/group B = 0.5 to 10.0. (2) A step of introducing silicon sulfide gas to generate silicon nuclei on the substrate; (3) Introducing a hydrocarbon gas and causing a reaction to generate the silicon core. (4) A step of additionally supporting a catalyst for producing silicon carbide whiskers; (5) A step of introducing and reacting a raw material hydrocarbon compound with silicon sulfide to form a silicon carbide core. A process of growing silicon carbide whiskers using nuclei as generation nuclei.
JP2235852A 1990-09-07 1990-09-07 Production of large-diameter silicon carbide whisker Pending JPH04119998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235852A JPH04119998A (en) 1990-09-07 1990-09-07 Production of large-diameter silicon carbide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235852A JPH04119998A (en) 1990-09-07 1990-09-07 Production of large-diameter silicon carbide whisker

Publications (1)

Publication Number Publication Date
JPH04119998A true JPH04119998A (en) 1992-04-21

Family

ID=16992211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235852A Pending JPH04119998A (en) 1990-09-07 1990-09-07 Production of large-diameter silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPH04119998A (en)

Similar Documents

Publication Publication Date Title
US7431965B2 (en) Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
Li et al. Metallic catalysts for structure-controlled growth of single-walled carbon nanotubes
US5500200A (en) Fibrils
JP3930810B2 (en) Synthesis of nanoscale carbon materials
Ledoux et al. Carbon nanostructures with macroscopic shaping for catalytic applications
JP2944246B2 (en) Method for producing coiled carbon fiber
US20020172767A1 (en) Chemical vapor deposition growth of single-wall carbon nanotubes
JPS6249363B2 (en)
US4492681A (en) Method for the preparation of silicon carbide fibers
JP2020508959A (en) Method for producing multi-walled carbon nanotubes using a continuous process
JPWO2007088829A1 (en) Synthesis method of carbon nanohorn carrier and carbon nanotube
EP0174622B1 (en) A process for preparing fine fibers
JP2007261895A (en) Method and apparatus for manufacturing carbon nanotube
JPH04119998A (en) Production of large-diameter silicon carbide whisker
JP3628290B2 (en) Method for producing catalytic carbon nanofibers by decomposition of hydrocarbon and catalyst thereof
US20190055128A1 (en) Method of producing fibrous carbon nanostructures
JPS58110493A (en) Production of graphite whisker
JP2002180252A (en) Method of manufacturing carbon nanotube
JPH04119999A (en) Production of large-diameter silicon carbide whisker
WO2003037792A1 (en) Large-scale synthesis of single-walled carbon nanotubes by group viiib catalysts promoted by group vib metals
JPH04198099A (en) Production of silicon carbide whisker having thick diameter
JPH03137098A (en) Production of silicon carbide whisker
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
JPH05124899A (en) Production of silicon nitride whisker
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method