JPH04112903A - Method and device for running control of combined cycle power generation plant - Google Patents

Method and device for running control of combined cycle power generation plant

Info

Publication number
JPH04112903A
JPH04112903A JP23017690A JP23017690A JPH04112903A JP H04112903 A JPH04112903 A JP H04112903A JP 23017690 A JP23017690 A JP 23017690A JP 23017690 A JP23017690 A JP 23017690A JP H04112903 A JPH04112903 A JP H04112903A
Authority
JP
Japan
Prior art keywords
water level
condenser
hot well
condensate
lower space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23017690A
Other languages
Japanese (ja)
Other versions
JP2593577B2 (en
Inventor
Takayuki Nagashima
孝幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2230176A priority Critical patent/JP2593577B2/en
Publication of JPH04112903A publication Critical patent/JPH04112903A/en
Application granted granted Critical
Publication of JP2593577B2 publication Critical patent/JP2593577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To dispense with the deaeration of condensate by composing a lower space in a condenser of an isolating valve disposed outside the condenser and a partition member disposed inside the condenser to hold the lower space at a high degree of vacuum and prevent oxygen in the atmosphere from dissolution in the condensate. CONSTITUTION:The interior of a condenser 11 in a combined cycle power generation plant is defined into an upper space A for condensing exhaust of a steam turbine 9 and a lower space B for accumulating condensate in the air tight manner by a partition member 21. Both spaces A, B are connected to each other through a communicating pipe 22 provided with an isolating valve 23 drivably opened and closed by an isolating valve driving device 35. An air ejector 17 is provided to communicate to both upper and lower spaces A, B. When a predetermined load condition is obtained in the process of stopping the generating plant, a water level set value of a hot well 13 is changed from normal water level to banking water level, the isolating valve 23 is closed after stopping the running of a condensation pump 14 and the hot well 13 is shut off from the atmospheric circumstance to controllably enter a hot banking.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービンプラントに係り、さらに詳しくは
蒸気タービンプラントの停止に際し、復水器内のホット
ウェル領域を、大気環境から隔離し、これにより復水の
溶存酸素濃度を低く保ちながら次のプラントの起動にお
ける復水の脱気のために費やす時間を大幅に短縮するの
に適したコンバインドサイクル発電プラントの運転制御
方法およびその運転制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a steam turbine plant, and more specifically, when the steam turbine plant is shut down, the hot well area in the condenser is A combined cycle power plant operation control method suitable for keeping the dissolved oxygen concentration of the condensate low while significantly reducing the time spent degassing the condensate at the next plant start-up; and The present invention relates to the operation control device.

(従来の技術) 近年、コンバインドサイクル発電プラントは、卓越した
負荷追随性と、高い熱効率とを併せて実現し得る発電方
式としての評価が定着している。
(Prior Art) In recent years, combined cycle power generation plants have been well-regarded as a power generation method that can achieve both outstanding load followability and high thermal efficiency.

そして、これらのプラント特性に一層の磨きをかける発
電プラントの運用方法あるいは機器の改良に不断の努力
が傾けられている。
Continuous efforts are being made to improve the operating methods and equipment of power plants to further refine these plant characteristics.

発電プラントの運用方法の面で目立つ動きは、ベースロ
ードのための運用から毎日の起動停止操作を想定する運
用、すなわちデイリースタートストップ(DajIy−
8tart−8top)のための運用(以下DSS運用
という)への動きであり、さらに、蒸気タービン系の機
器の改良もこの動きに沿ったものとなっている。
A noticeable change in the way power plants are operated is from base load operations to operations that assume daily start-stop operations, or daily start-stop operations.
8tart-8top) (hereinafter referred to as DSS operation), and improvements in steam turbine system equipment are also in line with this movement.

ここで第5図と第6図を参照して従来のコンバインドサ
イクル発電プラントの一例を説明する。
An example of a conventional combined cycle power plant will now be described with reference to FIGS. 5 and 6.

まず、圧縮機1で加圧された空気は燃焼器2に導かれ、
ここで燃焼系統(図示せず)から供給される燃料と混合
されて高温の燃焼ガスとなる。この燃焼ガスはガスター
ビン系の作動媒体としてガスタービン3に導かれ、そこ
で膨張を遂げて仕事を行なう。燃焼ガスは膨張後も高温
(約550’C)を保ち、ガスタービン3から排熱回収
熱交換器(HR5G)4に送られて蒸気タービン系の熱
源媒体としての役割を果たす。その後、排気として大気
中に放出される。
First, air pressurized by the compressor 1 is led to the combustor 2,
Here, it is mixed with fuel supplied from a combustion system (not shown) to become high-temperature combustion gas. This combustion gas is guided to the gas turbine 3 as a working medium of the gas turbine system, where it expands and performs work. The combustion gas maintains a high temperature (approximately 550'C) even after expansion, and is sent from the gas turbine 3 to the exhaust heat recovery heat exchanger (HR5G) 4, where it serves as a heat source medium for the steam turbine system. It is then released into the atmosphere as exhaust gas.

一方、蒸気タービン系では、後記する復水器から導かれ
る給水か低圧節炭器5Cを経て低圧蒸気ドラム6Cに、
さらに給水ポンプ7bで昇圧された給水が中圧節炭器5
bを経て中圧蒸気ドラム6bに、また、給水ポンプ7a
で昇圧された給水が高圧第1および第2節炭器5a、5
a’ を経て高圧蒸気ドラム6aにそれぞれ供給される
。各蒸気ドラム6a、6b、6cから抽出された給水は
、それぞれ蒸発器8a、8b、8cに導かれ、排熱回収
熱交換器4内に流されているガスタービン3の排ガスに
よって加熱されて蒸気となる。この蒸気はそれぞれ蒸気
タービン9a、9b、9cに導入され、そこで膨張を遂
げて仕事を行なう。この蒸気タービン9a、9b、9c
の仕事と、先のガスタービン3の仕事とは、これらの原
動機に直結された発電機10において電気出力に変換さ
れる。
On the other hand, in the steam turbine system, water supplied from a condenser (described later) passes through a low-pressure economizer 5C and is fed to a low-pressure steam drum 6C.
Furthermore, the water whose pressure has been increased by the water supply pump 7b is supplied to the medium pressure economizer 5.
b to the medium pressure steam drum 6b, and also to the water supply pump 7a.
The pressurized feed water is supplied to the high pressure first and second economizers 5a and 5.
a' to the high-pressure steam drums 6a. The feed water extracted from each steam drum 6a, 6b, 6c is guided to an evaporator 8a, 8b, 8c, respectively, and is heated by the exhaust gas of the gas turbine 3 flowing into the exhaust heat recovery heat exchanger 4 to generate steam. becomes. This steam is introduced into steam turbines 9a, 9b, and 9c, respectively, where it is expanded to perform work. These steam turbines 9a, 9b, 9c
The work of the gas turbine 3 and the work of the gas turbine 3 are converted into electrical output in the generator 10 directly connected to these prime movers.

さらに、蒸気タービン9a、9b、9cからの排気は復
水器11に導かれ、そこで復水器11の管束12を構成
する伝熱管内を通る冷却水によって冷却され、凝縮して
水に還る。
Furthermore, the exhaust gas from the steam turbines 9a, 9b, and 9c is guided to the condenser 11, where it is cooled by cooling water passing through the heat transfer tubes forming the tube bundle 12 of the condenser 11, and is condensed and returned to water.

この凝縮した水は復水器11のホットウェル13に落下
して復水としてそこに溜められる。この後、復水は復水
器ポンプ人口弁20を経て復水ポンプ14によって抽出
され、グランド蒸気コンデンサ15を通し復水再循環弁
18bを経て再び低圧節炭器5cに送られる。
This condensed water falls into the hot well 13 of the condenser 11 and is stored there as condensate. Thereafter, the condensate is extracted by the condensate pump 14 via the condenser pump valve 20, passed through the gland steam condenser 15, and sent back to the low pressure economizer 5c via the condensate recirculation valve 18b.

一方、グランド蒸気コンデンサ15は各蒸気タービン9
a、9b、9cのグランドから漏出する蒸気をグランド
蒸気管16により収集し、ここで復水との熱交換により
蒸気を凝縮させて熱回収を果たすように構成されている
On the other hand, the ground steam condenser 15 is connected to each steam turbine 9.
The steam leaking from the glands a, 9b, and 9c is collected by a gland steam pipe 16, and the steam is condensed through heat exchange with condensed water to recover heat.

また、復水器11内で蒸気が凝縮するときに放出される
酸素などの不凝縮性ガスを抽出する空気抽出機17か空
気抽出弁17aを介して復水器11に接続され、プラン
ト運転中、復水器11の中の真空が維持される。さらに
、プラント運転中、復水の溶存酸素濃度を下げるために
復水の一部が復水再循環系統18を通して復水再循環弁
18aを経て復水器11に戻され、蒸気タービン9cか
らの排気で加熱しつつ、復水の脱気が行なわれる。
It is also connected to the condenser 11 via an air extraction valve 17a or an air extractor 17 that extracts non-condensable gas such as oxygen released when steam condenses in the condenser 11, and is connected to the condenser 11 during plant operation. , a vacuum in the condenser 11 is maintained. Furthermore, during plant operation, a portion of the condensate is returned to the condenser 11 through the condensate recirculation system 18 via the condensate recirculation valve 18a to reduce the dissolved oxygen concentration in the condensate, and is returned to the condenser 11 from the steam turbine 9c. The condensate is degassed while being heated by exhaust gas.

また系統の保有水が減少したときに純水を補給水タンク
27から補給する補給水管24が補給水弁24aを経て
復水器11に連設されている。
Further, a make-up water pipe 24 for replenishing pure water from a make-up water tank 27 when the water held in the system decreases is connected to the condenser 11 via a make-up water valve 24a.

また、ホットウェル13の水位か高い場合には、スピル
オーバー弁39か開き、ホットウェル13内の復水はス
ピルオーバー系統25よりブローされるようになってい
る。さらに、補助蒸気ライン19が補助蒸気弁19aを
経て復水器11に連設され、脱気を行う。
Further, when the water level in the hot well 13 is high, the spillover valve 39 is opened, and the condensate in the hot well 13 is blown out from the spillover system 25. Further, an auxiliary steam line 19 is connected to the condenser 11 via an auxiliary steam valve 19a to perform deaeration.

(発明か解決しようとする課題) ところで、DSS運用に付随するプラントの停止および
起動操作はコンバインドサイクル発電プラントの特性で
ある負荷追従性を高める上で、とくに起動操作について
は、これに要する時間を最短に保つことが求められてい
る。この起動のための所要時間が置引く原因の一つの系
内の保有水である復水器11のホットウェル13内に溜
められた復水の溶存酸素濃度がプラント停止中に上昇し
、脱気のために長い処理時間かかかるという問題がある
。一方、排熱回収熱交換器4に備えられる各蒸気ドラム
6a、6b、6cでは、プラントの起動時に大量の給水
が系外から注入されねばならないが、この時、給水中の
溶存酸素濃度か高くなることから排熱回収熱交換器4の
起動条件に合わせて給水の脱気か欠かせなくなり、その
処理時間が置引いている。以下、これらの問題について
詳細に説明する。まず、順序として停止操作から説明す
るO 発電プラントの停止指令が与えられると発電機10の負
荷が低下し、その後、ガスタービン3の停止指令が出さ
れる。このガスタービン3の停止指令により、燃焼器2
へ供給される燃焼が絞られ、これに伴ない排熱回収熱交
換器4に流入するガス温度は急激に低下する。その結果
、蒸発器8a。
(Problem to be solved by the invention) By the way, the plant shutdown and startup operations that accompany DSS operation are important in improving the load followability, which is a characteristic of a combined cycle power plant. It is required to keep it as short as possible. One of the reasons why the time required for startup is delayed is that the dissolved oxygen concentration of the condensate stored in the hot well 13 of the condenser 11, which is the water retained in the system, increases while the plant is stopped, and deaeration occurs. There is a problem that it takes a long processing time. On the other hand, in each of the steam drums 6a, 6b, and 6c provided in the exhaust heat recovery heat exchanger 4, a large amount of feed water must be injected from outside the system when the plant is started, but at this time, the dissolved oxygen concentration in the feed water may be high. Therefore, it is essential to deaerate the feed water in accordance with the startup conditions of the exhaust heat recovery heat exchanger 4, and the processing time is reduced. These problems will be explained in detail below. First, the stopping operation will be explained in order. When a command to stop the power generation plant is given, the load on the generator 10 is reduced, and then a command to stop the gas turbine 3 is issued. By this command to stop the gas turbine 3, the combustor 2
The combustion supplied to the exhaust heat recovery heat exchanger 4 is throttled down, and the temperature of the gas flowing into the exhaust heat recovery heat exchanger 4 decreases rapidly. As a result, the evaporator 8a.

8b、8cの管内での蒸発現象が急激に衰え、蒸気の一
部が水に還ることにより、排熱回収熱交換器4の蒸気ド
ラム6a、6b、6cの水位か急速に低下していく。第
6図は、上記の各操作を経た場合にプラントの各部で圧
力、温度、水位等の変動が生じた様子を時系列に示した
ものである。ここでドラム水位は標準水位(NWL)か
ら下がり始め、僅かに低水位(LWL)よりも高い水位
に変化する。ちなみに、排熱回収熱交換器4の系内の急
変動による圧力、温度のバランスの崩れを防止するため
に蒸気ドラム6a、6b、6cの水位は標準水位から停
止水位に切換えられる。
The evaporation phenomenon in the pipes 8b and 8c rapidly declines, and a portion of the steam returns to water, so that the water level in the steam drums 6a, 6b, and 6c of the exhaust heat recovery heat exchanger 4 rapidly decreases. FIG. 6 shows in chronological order how the pressure, temperature, water level, etc. fluctuate in each part of the plant when the above operations are performed. Here, the drum water level begins to fall from the normal water level (NWL) and changes to a water level slightly higher than the low water level (LWL). Incidentally, in order to prevent pressure and temperature imbalance due to sudden fluctuations within the system of the exhaust heat recovery heat exchanger 4, the water levels of the steam drums 6a, 6b, and 6c are switched from the standard water level to the stop water level.

発電機10の負荷がマイナスになると発電機10か解列
され、ガスタービン3はさらに燃料が絞られて回転数が
低下し、この後、燃料注入は零となって消火される。
When the load on the generator 10 becomes negative, the generator 10 is disconnected, the fuel in the gas turbine 3 is further throttled and the rotational speed is reduced, and thereafter, the fuel injection is reduced to zero and the gas turbine 3 is extinguished.

消火後一定の時間が経過するとガスタービン3の回転数
が数10回転になり、これ以後ターニング運転に移行す
る。ターニング運転への移行と同時に給水ポンプ7a、
7b等の運転が停止され、さらに、空気抽出機17の運
転か停止されて復水器11の真空が破壊される。この状
態で第6図の操作手順に示されるホットバンキングに入
る。
After a certain period of time has elapsed after the fire is extinguished, the rotational speed of the gas turbine 3 reaches several tens of revolutions, after which it shifts to turning operation. At the same time as the transition to turning operation, the water supply pump 7a,
7b, etc. are stopped, and furthermore, the operation of the air extractor 17 is stopped to break the vacuum in the condenser 11. In this state, hot banking shown in the operating procedure of FIG. 6 is entered.

ホットバンキング中は、排熱回収熱交換器4の出口のガ
スダンパ(図示せず)も閉じられ1、可能な限り排熱回
収熱交換器4からの熱放散は抑えられているが、温度、
圧力は徐々に低下する。この温度の低下により排熱回収
熱交換器4内に保有されている缶水は比容積が小さくな
り体積の減少か起こる。このため、ホットバンキング後
の起動(翌日の朝の起動)の時には、かなり蒸気ドラム
6a6b、cの水位が低下し、時には第6図に示される
低水位を下回ることもある。このままでは排熱回収熱交
換器4は運転できないので、蒸気ドラム6a、6b、6
cの水位を起動水位まで上昇させなければならない。こ
の水位調整に必要な給水は排熱回収熱交換器4が大型に
なり、保有水量が増大した場合に10Tr1以上という
非常に大きな量となる。この給水の補給は、復水器11
に備えられる補給水管24を通して補給水タンク27か
ら純水を注入して行なわれるが、純水の溶存酸素濃度は
300 ppb程度であり、後記する値の復水と混ざり
合うとさらにこの値はより大きくなり、結果的に脱気時
間を長引かせる原因となっている。
During hot banking, a gas damper (not shown) at the outlet of the exhaust heat recovery heat exchanger 4 is also closed 1, and heat dissipation from the exhaust heat recovery heat exchanger 4 is suppressed as much as possible, but the temperature
The pressure gradually decreases. Due to this temperature drop, the specific volume of the canned water held in the exhaust heat recovery heat exchanger 4 becomes smaller, resulting in a decrease in volume. Therefore, at the time of start-up after hot banking (start-up in the morning of the next day), the water level in the steam drums 6a6b, 6c drops considerably, sometimes falling below the low water level shown in FIG. Since the exhaust heat recovery heat exchanger 4 cannot be operated in this state, the steam drums 6a, 6b, 6
The water level at c must be raised to the starting water level. The water supply required for this water level adjustment becomes extremely large, 10 Tr1 or more, when the exhaust heat recovery heat exchanger 4 becomes large and the amount of water held increases. This supply water is supplied by the condenser 11
This is done by injecting pure water from the make-up water tank 27 through the make-up water pipe 24 provided at This results in a longer degassing time.

一方、起動操作は、次のように進められる。On the other hand, the startup operation proceeds as follows.

先ず復水器11の真空度を上昇させる。ここで復水器1
1は真空が破壊されているので、ホットウェル13に溜
っている復水の溶存酸素濃度はプラント運転時の7pI
)bから8000〜10000ppbになってしまって
いる。そこで、復水器11の真空度が所定の値になった
ところで復水ポンプ14を運転し、復水器11のホット
ウェル13に溜められた復水の溶存酸素濃度−が規定値
(例えば80ppb以下)になるまで復水再循環系統1
8を通して復水を再循環させ溶存酸素濃度を低下させる
ことになる。しかし、プラントが大型になればなるほど
系統内の保有水量が多くなり長い時間をかけて脱気しな
ければならない。
First, the degree of vacuum in the condenser 11 is increased. Here condenser 1
1, the vacuum is broken, so the dissolved oxygen concentration of the condensate accumulated in hot well 13 is 7 pI during plant operation.
) b to 8,000 to 10,000 ppb. Therefore, when the degree of vacuum in the condenser 11 reaches a predetermined value, the condensate pump 14 is operated, and the dissolved oxygen concentration of the condensate stored in the hot well 13 of the condenser 11 is set to a specified value (for example, 80 ppb). Condensate recirculation system 1 until below)
8 to recirculate the condensate to reduce the dissolved oxygen concentration. However, the larger the plant, the larger the amount of water held in the system, which requires a longer period of time to degas.

例えば、近年計画されている大容量のコンバインドサイ
クル発電プラントでは、この脱気に必要な時間が1〜2
時間にもなり、プラント起動に長時間を費やすことにな
る。
For example, in the large-capacity combined cycle power plants that are being planned in recent years, the time required for this degassing is 1 to 2 hours.
It also takes a long time to start up the plant.

そこで、本発明の目的は、プラントの起動に備えて復水
器のホットウェルに保有される復水の溶存酸素温度を極
力低く保って電力需要側の要求に素早く対応できるコン
バインドサイクル発電プラントの運転制御方法およびそ
の運転制御装置を提供することにある。
Therefore, an object of the present invention is to operate a combined cycle power generation plant that can quickly respond to demands from the power demand side by keeping the dissolved oxygen temperature of condensate water stored in the hot well of the condenser as low as possible in preparation for plant startup. An object of the present invention is to provide a control method and an operation control device thereof.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、蒸気タービンの排気を凝縮させて復水として
回収する復水ポンプと復水器を備えた蒸気タービンなら
びにガスタービンとを組合せたコンバインドサイクル発
電プラントの運転制御方法およびその運転制御装置にお
いて、復水器の内部を蒸気タービンの排気を凝縮させる
管束を収容する上部空間と、凝縮した復水を溜めておく
ホットウェルを収容する下部空間とに気密を保持して区
画し、上部空間と下部空間との間に連絡管を接続し、連
絡管に開閉自在な隔離弁を配設し、さらに空気抽出機を
上部空間と下部空間の双方と連絡可能に設け、発電プラ
ントの停止過程において予め定められた負荷状態となっ
たとき、ホットウェルの水位設定値を通常水位からバン
キング水位に変更し、復水ポンプの運転か停止した後に
隔離弁を閉じてホットウェルを大気環境から遮断してホ
ットバンキングに入ることを特徴とする。
(Means for Solving the Problems) The present invention provides a combined cycle power plant that combines a steam turbine and a gas turbine equipped with a condensate pump and a condenser that condense the exhaust gas of a steam turbine and recover it as condensate. In the operation control method and the operation control device, the upper space of the condenser accommodates a tube bundle for condensing the exhaust gas of a steam turbine, and the lower space accommodates a hot well for storing condensed water, which are airtight. A connecting pipe is connected between the upper space and the lower space, an isolation valve that can be opened and closed is installed in the connecting pipe, and an air extractor can be connected to both the upper space and the lower space. When a predetermined load condition occurs during the power plant shutdown process, the hot well water level setting is changed from the normal water level to the banking water level, and after the condensate pump has stopped operating, the isolation valve is closed and the hot well is turned off. The feature is that the well is isolated from the atmospheric environment and entered into hot banking.

(作 用) 本発明によれば、発電プラントの運転停止に臨んで、隔
離弁か閉じられ、復水器の下部空間の真空が停止後も引
続き保たれる。これによりホットウェル内の復水が酸素
と接触する機会が全くなくなり、運転中の溶存酸素濃度
7 ppbか維持される。
(Function) According to the present invention, when the power plant is shut down, the isolation valve is closed, and the vacuum in the space below the condenser is maintained even after the shutdown. This eliminates any opportunity for the condensate in the hot well to come into contact with oxygen, and the dissolved oxygen concentration during operation is maintained at 7 ppb.

次のプラントの起動時には復水の水位が純水によって補
給され、この補給水と同し量の復水をホットウェルに残
すように復水器内の復水の水位の設定を切換えて高い復
水水位を維持する。
When the next plant is started up, the condensate level is replenished with pure water, and the setting of the condensate water level in the condenser is changed so that the same amount of condensate as this make-up water remains in the hot well. Maintain water level.

一方、プラントの起動時においては復水器の上部空間の
真空度レベルをその下部空間と同等なレベルを維持する
ようにホットウェル水位を上昇させ、その後、ホットウ
ェルの水位設定を通常運転中の水位に切換えてホットウ
ェルから抽出された復水を排ガスボイラに導く。
On the other hand, when starting up the plant, the hot well water level is raised to maintain the vacuum level in the upper space of the condenser at the same level as the lower space, and then the hot well water level is set to the same level as during normal operation. The water level is switched to direct the condensate extracted from the hot well to the exhaust gas boiler.

(実施例) 以下、本発明のコンバインドサイクル発電プラントの実
施例を第1図について説明する。なお、ここでは第5図
に示した従来のコンバインドサイクル発電プラントと同
一の部分には同一の符号を付してその説明を省略する。
(Example) Hereinafter, an example of the combined cycle power plant of the present invention will be described with reference to FIG. Here, the same parts as in the conventional combined cycle power plant shown in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted.

第1図に示すように、復水器11の内部は仕切部材21
により蒸気タービン9の排気を凝縮させる上部空間Aと
凝縮した復水を溜めておく下部空間Bとに気密に保持し
て区画されている。この上部空間Aと下部空間Bとの間
には唯一の復水のための連絡通路となる連絡管22が接
続され、この連絡管22には隔離弁駆動装置35によっ
て駆動開閉自在な隔離弁23が設けられる。また、区画
された上部空間Aには管束12が収容され、また下部空
間Bにはホットウェル13が形成されている。また、復
水器11の下部空間Bには、補給水流量調節弁36と補
給水ポンプ26を介して補給水タンク27に通じる補給
水系統24と補助蒸気弁19aをもつ補助蒸気系統19
とが連結され、ホットウェル13の水位調整および脱気
を行なえるようになっている。さらに、復水器11の下
部空間Bの上部に脱気装置40を配設し、ホットウェル
13からの復水と蒸気タービン9a、9b。
As shown in FIG. 1, inside the condenser 11 is a partition member 21.
The space is airtightly divided into an upper space A in which the exhaust gas of the steam turbine 9 is condensed and a lower space B in which condensed water is stored. A communication pipe 22 serving as the only communication passage for condensate is connected between the upper space A and the lower space B, and an isolation valve 23 that can be driven open and closed by an isolation valve drive device 35 is connected to the communication pipe 22. is provided. Further, a tube bundle 12 is accommodated in the divided upper space A, and a hot well 13 is formed in the lower space B. Further, in the lower space B of the condenser 11, a makeup water system 24 communicating with a makeup water tank 27 via a makeup water flow rate control valve 36 and a makeup water pump 26, and an auxiliary steam system 19 having an auxiliary steam valve 19a.
The water level of the hot well 13 can be adjusted and degassed. Further, a deaerator 40 is disposed above the lower space B of the condenser 11, and the condensate from the hot well 13 and the steam turbines 9a, 9b are separated.

9cのグランドからの漏出水ならびに補給水タンク27
からの補給水とがこの脱気装置40の上部から供給され
て、これを通過する間に補助蒸気系統19からの加熱蒸
気により加熱され強制的に脱気が行われる。この構成を
とることにより真空状態下で加熱蒸発により脱気が極め
て効率よく行われるとともに、復水器11周りの構成が
極めてコンパクト化される。さらに、復水再循環系統1
8が復水再循環弁18aを介して補給水系統24と合流
している。また、復水再循環時に排出系統を閉じる仕切
弁39aが管路に設けられている。
Leakage water from the 9c gland and make-up water tank 27
Make-up water is supplied from the upper part of this deaerator 40, and while passing through this, it is heated by heated steam from the auxiliary steam system 19 and is forcibly degassed. By adopting this configuration, deaeration can be performed extremely efficiently by heating and evaporation under vacuum conditions, and the configuration around the condenser 11 can be made extremely compact. Furthermore, condensate recirculation system 1
8 joins the makeup water system 24 via a condensate recirculation valve 18a. Furthermore, a gate valve 39a that closes the discharge system during condensate recirculation is provided in the pipe line.

空気抽出機17は、上部空間Aおよび下部空間Bの双方
と連絡しており、双方の経路には空気抽出弁17a、1
7bが設けられている。
The air extraction machine 17 is in communication with both the upper space A and the lower space B, and air extraction valves 17a and 1 are provided in both paths.
7b is provided.

また、蒸気タービン9の主蒸気流量は、蒸気流量検出器
29により検出され、信号発生器30aへ送られる。こ
の信号発生器30aは、入力信号がある一定値以下また
はある一定値以上になったときに信号を出力し加算器4
0aへ入力するようになっている。一方、中央制御装置
(図示なし)からは、発電プラントの停止操作開始によ
り停止指令信号発生器41から停止指令信号SPが送ら
れ、この停止指令信号SPと先の主蒸気流量に対応する
信号とが加算器40aに入力され、その出力がホットウ
ェル水位設定値切換え器31aに入力される。この水位
設定値切換え器31aには、さらに、通常水位信号発生
器43aからの通常水位信号(NWL)とバンキング水
位信号発生器44aからのバンキング水位信号(BWL
)が入力され、設定条件に応じて、加算器40aがらの
信号または通常水位信号(NWL)あるいはバンキング
水位信号(BWL)のいづれかが選択されて、偏差信号
発生器32aへ送られる。さらに、復水器11のホット
ウェル13の水位は、水位検出器28により検出され、
電気信号に変換されて、設定水位との偏差をみるため偏
差信号発生器32gへ送られる。この偏差信号を信号発
生器30d、変換器47aを経て弁駆動装置33aへ送
り、これを駆動して補給水弁36を開閉し補給水タンク
27から補給水ポンプ26を介して補給水を復水器11
の下部空間Bへ導入をするようになっている。なお、変
換器47aでは、先の偏差信号を補給水弁36の弁開度
に適した量に変換する(以下、各変換器47b、47c
についても同一の機能をもつ)。また、復水ポンプ14
の回転数信号は速度変換器34を経て信号発生器30h
へ送られ、先の停止指令信号SPと加算器40bで加算
されて変換器47cを経て、隔離弁駆動装置35に送ら
れる。
Further, the main steam flow rate of the steam turbine 9 is detected by the steam flow rate detector 29 and sent to the signal generator 30a. This signal generator 30a outputs a signal when the input signal is below a certain value or above a certain value, and outputs a signal to the adder 4.
It is designed to be input to 0a. On the other hand, from the central control device (not shown), a stop command signal SP is sent from the stop command signal generator 41 when the power plant starts to shut down, and this stop command signal SP and a signal corresponding to the previous main steam flow rate are combined. is input to the adder 40a, and its output is input to the hot well water level set value switch 31a. The water level set value switch 31a further includes a normal water level signal (NWL) from a normal water level signal generator 43a and a banking water level signal (BWL) from a banking water level signal generator 44a.
) is input, and either the signal from the adder 40a, the normal water level signal (NWL), or the banking water level signal (BWL) is selected and sent to the deviation signal generator 32a, depending on the setting conditions. Furthermore, the water level of the hot well 13 of the condenser 11 is detected by a water level detector 28,
It is converted into an electric signal and sent to the deviation signal generator 32g to check the deviation from the set water level. This deviation signal is sent to the valve driving device 33a via the signal generator 30d and the converter 47a, which is driven to open and close the make-up water valve 36 to condense make-up water from the make-up water tank 27 via the make-up water pump 26. Vessel 11
It is designed to be introduced into the lower space B of the. Note that the converter 47a converts the previous deviation signal into an amount suitable for the valve opening degree of the make-up water valve 36 (hereinafter, each converter 47b, 47c
(also has the same function). In addition, the condensate pump 14
The rotational speed signal is sent to the signal generator 30h via the speed converter 34.
The signal is added to the previous stop command signal SP by an adder 40b, and sent to the isolation valve driving device 35 via a converter 47c.

また、復水器11の上部空間Aに接続された復水器圧力
計37の信号は信号発生器30b。
Further, a signal from a condenser pressure gauge 37 connected to the upper space A of the condenser 11 is output from a signal generator 30b.

30fを介して、一方、復水器11のホットウェル13
の水位は水位検出器28から信号発生器30gを介して
、さらに復水ポンプ14の回転数信号は速度変換器34
から信号発生器30hを介してそれぞれ起動指令信号発
生器42からの起動指令信号STとのAND条件で動作
する論理回路49bに送られる。この論理回路49bの
出力信号は、ガスタービン着火信号発生器45からのガ
スタービン着火信号GTIとOR条件で動作する論理回
路48に入力され、その出力はホットウェル水位設定値
切換え器31bに送られる。さらに偏差信号発生器32
a、32bにより発生した設定値水位信号とホットウェ
ル水位信号との偏差信号により信号発生器30d、30
eおよび変換器47a、47bを介して補給水弁36と
スピルオーバー系統25に通じるスピルオーバー弁39
とが弁駆動装置33a、33bによりそれぞれ駆動され
る。また、起動指令信号STと信号発生器30b、30
fを介した圧力計37の圧力信号とのAND条件により
作動する論理回路49bにより遮断弁駆動装置35が動
作し、隔離弁23が開閉されるようになっている。なお
、通常水位信号発生器43a、4Bbから通常水位信号
(NWL)が、また、バンキング水位信号発生器44a
144bからバンキング水位信号BWLが出力され、そ
れぞれホットウェル水位設定値切換え器31a131b
に入力されるようになっている。
30f, while the hot well 13 of the condenser 11
The water level is sent from the water level detector 28 via the signal generator 30g, and the rotation speed signal of the condensate pump 14 is sent to the speed converter 34.
The signals are sent from the signal generator 30h to the logic circuit 49b which operates under an AND condition with the start command signal ST from the start command signal generator 42, respectively. The output signal of this logic circuit 49b is input to a logic circuit 48 that operates under an OR condition with the gas turbine ignition signal GTI from the gas turbine ignition signal generator 45, and its output is sent to the hot well water level set value switch 31b. . Furthermore, the deviation signal generator 32
The signal generators 30d and 30 are generated by the deviation signal between the set value water level signal and the hot well water level signal generated by a and 32b.
spillover valve 39 that communicates with make-up water valve 36 and spillover system 25 via e and converters 47a, 47b;
and are driven by valve drive devices 33a and 33b, respectively. In addition, the start command signal ST and the signal generators 30b, 30
The shutoff valve driving device 35 is operated by a logic circuit 49b operated by an AND condition with the pressure signal of the pressure gauge 37 via f, and the isolation valve 23 is opened and closed. Note that the normal water level signal (NWL) is sent from the normal water level signal generators 43a and 4Bb, and the banking water level signal generator 44a
Banking water level signal BWL is output from 144b, and hot well water level setting value switch 31a131b, respectively.
It is now entered into

次に、本発明の第1実施例のコンバインドサイクル発電
プラントの運転方法を第1図および第2図について説明
する。
Next, a method of operating a combined cycle power plant according to a first embodiment of the present invention will be explained with reference to FIGS. 1 and 2.

まず発電プラントの停止指令が出されプラントの負荷が
停止してくると、それに伴ない主蒸気流量も低下してく
る。主蒸気流量がある程度低下してくると(例えば、定
格流量の20%)、蒸気流量検出器29からの信号によ
り信号発生器30aから信号が発生される。
First, when a power plant shutdown command is issued and the load on the plant stops, the main steam flow rate also decreases. When the main steam flow rate decreases to a certain degree (for example, 20% of the rated flow rate), a signal from the steam flow rate detector 29 causes the signal generator 30a to generate a signal.

この信号と停止指令信号のAND条件によりポットウェ
ル水位信号切換え器31a、31bによりホットウェル
12の水位が通常水位(NWL)からこれよりも高い位
置にあるバンキング水位(BWL)へと切換えられる。
Based on the AND condition of this signal and the stop command signal, the water level of the hot well 12 is switched from the normal water level (NWL) to the banking water level (BWL) located at a higher position by the pot well water level signal switchers 31a and 31b.

一方、この際、ポットウェル13の水位は通常水位なの
で水位検出器28により検出された水位信号と設定値信
号の間に偏差ができ偏差信号発生器32aがら出力信号
が出される。この出力信号は変換器47aを介して弁駆
動装置33aへ送られ、これにより補給水弁36の弁開
度を開動作させ、補給水を復水器11の下部空間B内に
導入させる。復水器11内に導入された補給水は脱気装
置4oと補助蒸気系統19からの補助蒸気とで脱気され
て系統内の復水となりホットウェル13内に溜まる。こ
の動作はホットウニ13の水位がバンキング水位になる
まで続く。
On the other hand, at this time, since the water level of the pot well 13 is a normal water level, there is a deviation between the water level signal detected by the water level detector 28 and the set value signal, and an output signal is output from the deviation signal generator 32a. This output signal is sent to the valve driving device 33a via the converter 47a, thereby opening the make-up water valve 36 and introducing the make-up water into the lower space B of the condenser 11. The make-up water introduced into the condenser 11 is degassed by the deaerator 4o and auxiliary steam from the auxiliary steam system 19, and becomes condensed water in the system and accumulates in the hot well 13. This operation continues until the water level of the hot sea urchin 13 reaches the banking water level.

ホットウェル13の水位がバンキング水位になルト、さ
らにプラントの負荷は低下しやがてガスタービン3が停
止される。ガスタービン3が停止すると、排熱回収熱交
換器4への入熱が急速に低下し、これにより蒸発器8a
、8b、8c内の蒸気が収縮し排熱回収熱交換器4の蒸
気ドラム6a。
When the water level of the hot well 13 reaches the banking water level, the load on the plant further decreases and the gas turbine 3 is eventually stopped. When the gas turbine 3 stops, the heat input to the exhaust heat recovery heat exchanger 4 rapidly decreases, which causes the evaporator 8a to
, 8b, 8c is contracted to form the steam drum 6a of the exhaust heat recovery heat exchanger 4.

6b、6cの水位は急速に低下する。これに対して給水
を送り出すため復水器11のホットウェル13の水位も
低下するが、その水位がバンキング水位となっているの
で、補給水か流入し水位を一定に保つ。この時は蒸気タ
ービン9の排気だけでは十分な補給水の脱気が期待でき
ないので補助蒸気も同様に補助蒸気系統19から復水器
11の下部空間Bに導入される。
The water levels of 6b and 6c drop rapidly. In response to this, the water level in the hot well 13 of the condenser 11 also decreases in order to send out the supply water, but since that water level is the banking water level, make-up water flows in to keep the water level constant. At this time, sufficient degassing of make-up water cannot be expected from the exhaust of the steam turbine 9 alone, so auxiliary steam is similarly introduced into the lower space B of the condenser 11 from the auxiliary steam system 19.

この後、ガスタービン3が消火され回転数が低下して(
るとターニング運転となり復水ポンプ14も停止されホ
ットバンキングにはいる。
After this, the gas turbine 3 is extinguished and the rotational speed decreases (
Then, turning operation starts, the condensate pump 14 is also stopped, and hot banking is started.

復水ポンプ3が停止されると復水ポンプ14の速度変換
器34からの信号により信号発生器30hから復水器停
止信号が発生され、この停止信号とプラント停止指令信
号のAND条件をとる調理回路49bにより、隔離弁駆
動装置35か駆動され、隔離弁23の弁開度が閉となり
復水器11の下部空間Bは復水をバンキング水位に保有
したまま、真空状態でバンキングに入る。バンキング状
態では復水器11の上部空間Aは真空破壊され大気と接
するか隔離弁23で仕切られた下部空間Bは真空のまま
である。これにより復水を大気と接触させずに脱気した
ままでバンキングできる。
When the condensate pump 3 is stopped, a condenser stop signal is generated from the signal generator 30h based on a signal from the speed converter 34 of the condensate pump 14, and a cooking operation is performed that takes the AND condition of this stop signal and the plant stop command signal. The isolation valve driving device 35 is driven by the circuit 49b, and the opening degree of the isolation valve 23 is closed, and the lower space B of the condenser 11 enters the banking in a vacuum state while holding the condensate at the banking water level. In the banking state, the vacuum in the upper space A of the condenser 11 is broken, and the lower space B, which is in contact with the atmosphere or partitioned off by the isolation valve 23, remains in vacuum. This allows banking with the condensate deaerated without contacting the atmosphere.

ホットバンキング中に排熱回収熱交換2:A4は放熱に
より圧力、温度か低下してくるので、次の起動時には蒸
気ドラムの水位が低水位以下にまで下かっていることが
ある。このままでは排熱回収熱交換器4は運転できない
ので、次の起動においては排熱回収熱交換器4に給水を
して蒸気ドラム6a、6b、  6cの水位を起動水位
に上昇させねばならない。この水位調整に必要な給水は
排熱回収熱交換器4か大型になりその保有水量か増大す
ると10−以上という非常に大きな二となる。
During hot banking, the pressure and temperature of the exhaust heat recovery heat exchange 2:A4 decrease due to heat radiation, so the water level in the steam drum may drop below the low water level at the next startup. Since the exhaust heat recovery heat exchanger 4 cannot be operated in this state, at the next startup, water must be supplied to the exhaust heat recovery heat exchanger 4 to raise the water level of the steam drums 6a, 6b, and 6c to the startup water level. The water supply necessary for this water level adjustment becomes a very large amount of 10- or more when the exhaust heat recovery heat exchanger 4 becomes large and its water capacity increases.

次の起動においては、ます復水ポンプ14か起動され蒸
気タービン9のグランド部を蒸気ンールレながら空気抽
出機17により復水器11の真空度か規定値以上に上昇
し真空が確立したところで圧力計37からの圧力信号と
起動指令とのAND条件をとる論理回路49bにより変
換器47cを介して隔離弁駆動装置35か作動されて隔
離弁23か開かれる。これにより上部空間Aと下部空間
Bとが連通する。そして排熱回収熱交換器4の水位調整
のため復水が送り出される。この排熱回収熱交換器4へ
の給水によりホットウェル13の水位はバンキング水位
から低下する。そして排熱回収熱交換器4の水位調整が
完了したところで、ガスタービン3が起動されると、最
初のパージ運転により排熱回収熱交換器4が冷却され、
さらに多くの給水がホットウェル13から排熱回収熱交
換器4側へ給水される。この時、ホットウェル13の水
位はバンキング水位から通常水位程度に低下している。
At the next start-up, the condensate pump 14 is started, and while steam is flowing through the gland of the steam turbine 9, the air extractor 17 raises the vacuum level of the condenser 11 to a specified value or higher, and once the vacuum is established, the pressure gauge A logic circuit 49b which takes an AND condition between the pressure signal from 37 and the activation command operates the isolation valve driving device 35 via the converter 47c, and the isolation valve 23 is opened. This allows upper space A and lower space B to communicate with each other. Condensate is then sent out to adjust the water level of the exhaust heat recovery heat exchanger 4. By supplying water to the exhaust heat recovery heat exchanger 4, the water level in the hot well 13 is lowered from the banking water level. When the gas turbine 3 is started after the water level adjustment of the exhaust heat recovery heat exchanger 4 is completed, the exhaust heat recovery heat exchanger 4 is cooled by the first purge operation.
Even more water is supplied from the hot well 13 to the exhaust heat recovery heat exchanger 4 side. At this time, the water level of the hot well 13 has decreased from the banking water level to about the normal water level.

ガスタービン3か起動し、復水ポンプ14も起動し、ホ
ットウェル13の実水位か通常水位以下になるか、また
は、ガスタービン3か着火されたかで、設定値切換器3
1bに信号か送られホットウェル13の水位設定値かバ
ンキング水位から通常水位に切換えられる。
When the gas turbine 3 starts, the condensate pump 14 also starts, and the actual water level of the hot well 13 becomes lower than the normal water level, or the gas turbine 3 is ignited.
A signal is sent to 1b to switch the water level setting value of the hot well 13 from the banking water level to the normal water level.

この水位設定値とホットウェル水位からの信号が偏差信
号発生器32bで比較され、ホットウェル13の水位が
高い場合にはスピルオーバー弁39が開き、ホットウェ
ル13内の復水はスピルオーバー系統25よりブローさ
れる。一方、ホットウェル13の水位が通常水位より低
い場合には補給水弁36が開き、補給水が補給水タンク
27から復水器11内に導入され、ホットウェル13の
水位は通常水位に保たれ負荷運転に移行する。
This water level set value and the signal from the hot well water level are compared by the deviation signal generator 32b, and if the water level of the hot well 13 is high, the spillover valve 39 is opened and the condensate in the hot well 13 is blown out from the spillover system 25. be done. On the other hand, when the water level of the hot well 13 is lower than the normal water level, the make-up water valve 36 opens and make-up water is introduced into the condenser 11 from the make-up water tank 27, and the water level of the hot well 13 is maintained at the normal water level. Shift to load operation.

このように本実施例のコンバインドサイクル発電プラン
トでは復水器11の外部に配設した隔離弁23と仕切部
材21とにより下部空間Bの真空が保持されるので、酸
素か復水に溶は込まず、プラントの起動において復水の
脱気に費やされた時間1〜2時間を一切なくすことかで
きる。
In this way, in the combined cycle power plant of this embodiment, the vacuum in the lower space B is maintained by the isolation valve 23 and the partition member 21 arranged outside the condenser 11, so that oxygen is dissolved in the condensate. First, the 1 to 2 hours spent degassing condensate during plant start-up can be completely eliminated.

また、プラントの停止時にホットウェル13の水位を上
昇させ脱気した復水を系統内に多く保有することかでき
るので、排熱回収熱交換器4の起動に際して外部から高
濃度の溶存酸素を含む補給水を導入する必要がなくなる
ので、さらにプラントの起動時間を短縮することかでき
る。
In addition, when the plant is stopped, the water level in the hot well 13 is raised and a large amount of degassed condensate can be retained in the system, so when the exhaust heat recovery heat exchanger 4 is started up, it is possible to contain high concentration of dissolved oxygen from the outside. Since there is no need to introduce make-up water, the start-up time of the plant can be further shortened.

次に本発明のコンバインドサイクル発電プラントの他の
実施例を第3図から第4図について説明する。
Next, another embodiment of the combined cycle power generation plant of the present invention will be described with reference to FIGS. 3 and 4.

第3図に示す実施例は、バンキング水位と通常水位との
切換え信号に発電機10の負荷の低下によるガスタービ
ン3の回転数信号G T rpmとその停止指令信号S
PとのAND条件により動作する論理回路49aを用い
たものである。その他の構成は先の実施例のものと同じ
である。なお、回転数信号G T rpIQはGT回転
数信号発生器46より出力され、信号発生器30eを介
してOR動作をする論理回路48に入力される。
In the embodiment shown in FIG. 3, the rotation speed signal G T rpm of the gas turbine 3 due to a decrease in the load of the generator 10 and the stop command signal S are added to the switching signal between the banking water level and the normal water level.
This uses a logic circuit 49a that operates under an AND condition with P. The other configurations are the same as those of the previous embodiment. Note that the rotational speed signal G T rpIQ is output from the GT rotational speed signal generator 46, and is inputted via the signal generator 30e to a logic circuit 48 that performs an OR operation.

第4図に示す実施例は、上記実施例の運転制御装置をホ
ットウェルの隔離装置のない従来のコンバインドサイク
ル発電プラントで復水器11の真空を保持したままホッ
トバンキングを行う場合に適用したものである。
In the embodiment shown in FIG. 4, the operation control device of the above embodiment is applied to a conventional combined cycle power plant without a hot well isolation device, in which hot banking is performed while maintaining the vacuum of the condenser 11. It is.

〔発明の効果〕〔Effect of the invention〕

本発明のコンバインドサイクル発電プラントによれば、
復水器外部に配設した隔離弁と復水器内部に配設した仕
切り部材とにより復水器の下部空間が高真空度に保持さ
れるので、大気中の酸素が復水中に溶は込まない。その
ため、発電プラントの起動時において、復水の脱気に費
されていた時間を解消できるようになる。
According to the combined cycle power generation plant of the present invention,
The space below the condenser is maintained at a high degree of vacuum by the isolation valve placed outside the condenser and the partition member placed inside the condenser, preventing oxygen from the atmosphere from dissolving into the condensate. do not have. Therefore, it becomes possible to eliminate the time spent degassing condensate when starting up a power generation plant.

また、発電プラントの停止時に復水器のホットウェルの
水位を上昇させ脱気した復水をプラントの系統内に多量
に保有することができるようになる。そのため、排ガス
ボイラの起動に際して外部から高濃度の溶存酸素を含む
補給水を導入することか不要となるので、プラントの起
動時間をさらに短縮できる効果かある。
Furthermore, when the power generation plant is stopped, the water level in the hot well of the condenser is raised, and a large amount of degassed condensate can be stored in the plant system. Therefore, it is not necessary to introduce make-up water containing a high concentration of dissolved oxygen from the outside when starting up the exhaust gas boiler, which has the effect of further shortening the start-up time of the plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のコンバインドサイクル発電プ
ラントの運転制御装置の構成図、第2図は本発明の実施
例のコンバインドサイクル発電プランドの停止・起動特
性の説明図、第3図から第4図は本発明の他の実施例の
コンバインドサイクル発電プラントの運転制御装置の構
成図、第5図は従来のコンバインドサイクル発電プラン
トの概略系統図、第6図はその停止・起動特性の説明図
である。 1・・・圧縮機、2・・・燃焼器、3・・・ガスタービ
ン、4・・・排熱回収熱交換器、5a、5b、5c・・
・節炭器、6 a 、  6 b 、  6 c−蒸気
ドラム、7a、7b。 ・・・給水ポンプ、8a、8b、8c・・・蒸発器、9
g。 9b、9c・・・蒸気タービン、10・・・発電機、1
1・・・復水器、12・・・復水器管束、13・・・ホ
ットウェル、14・・・復水ポンプ、15・・・グラン
ド蒸気コンデンサ、16・・・グランド蒸気管、17・
・・空気抽出機、18・・・復水再循環系統、19・・
・補助蒸気系統、20・・・復水ポンプ人口弁、21・
・・仕切部材、22・・・連絡管、23・・・隔離弁、
24・・・補給水系統、25・・・スピルオーバー系統
、35・・・隔離弁駆動装置、A・・・上部空間、B・
・・下部空間。 出願人代理人  佐  藤  −雄 第2図
FIG. 1 is a configuration diagram of an operation control device of a combined cycle power plant according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the stop/start characteristics of a combined cycle power plant according to an embodiment of the present invention, and FIGS. Fig. 4 is a configuration diagram of an operation control device of a combined cycle power plant according to another embodiment of the present invention, Fig. 5 is a schematic system diagram of a conventional combined cycle power plant, and Fig. 6 is an explanatory diagram of its stop/start characteristics. It is. 1...Compressor, 2...Combustor, 3...Gas turbine, 4...Exhaust heat recovery heat exchanger, 5a, 5b, 5c...
- Economizer, 6a, 6b, 6c - Steam drum, 7a, 7b. ...Water pump, 8a, 8b, 8c...Evaporator, 9
g. 9b, 9c... Steam turbine, 10... Generator, 1
DESCRIPTION OF SYMBOLS 1... Condenser, 12... Condenser tube bundle, 13... Hot well, 14... Condensate pump, 15... Grand steam condenser, 16... Grand steam pipe, 17...
... Air extraction machine, 18 ... Condensate recirculation system, 19 ...
・Auxiliary steam system, 20...Condensate pump population valve, 21・
... Partition member, 22 ... Communication pipe, 23 ... Isolation valve,
24... Makeup water system, 25... Spillover system, 35... Isolation valve drive device, A... Upper space, B.
・Lower space. Applicant's agent Mr. Sato - Figure 2

Claims (1)

【特許請求の範囲】 1、蒸気タービンの排気を凝縮させて復水として回収す
る復水ポンプと復水器を備えた蒸気タービンならびにガ
スタービンとを組合せたコンバインドサイクル発電プラ
ントの運転制御方法において、前記復水器の内部を蒸気
タービンの排気を凝縮させる管束を収容する上部空間と
、凝縮した復水を溜めておくホットウェルを収容する下
部空間とに気密を保持して区画し、前記上部空間と前記
下部空間との間に連絡管を接続し、前記連絡管に開閉自
在な隔離弁を配設し、さらに空気抽出機を前記上部空間
および前記下部空間の双方と連絡可能に設け、発電プラ
ントの停止過程において予め定められた負荷状態となっ
たとき、前記ホットウェルの水位設定値を通常水位から
バンキング水位に切換え、前記復水ポンプの運転が停止
した後に前記隔離弁を閉じて前記ホットウェルを大気環
境から遮断してホットバンキングに入ることを特徴とす
るコンバインドサイクル発電プラントの運転方法。 2、蒸気タービンの排気を凝縮させて復水として回収す
る復水ポンプと復水器を備えた蒸気タービンならびにガ
スタービンとを組合せたコンバインドサイクル発電プラ
ントの運転制御方法において、前記復水器の内部を蒸気
タービンの排気を凝縮させる管束を収容する上部空間と
、凝縮した復水を溜めておくホットウェルを収容する下
部空間とに気密を保持して区画し、前記上部空間と前記
下部空間との間に連絡管を接続し、前記連絡管に開閉自
在な隔離弁を配設し、さらに空気抽出機を前記上部空間
および前記下部空間の双方と連絡可能に設け、発電プラ
ントの停止過程において予め定められた負荷状態となっ
たとき、前記ホットウェルの水位設定値を通常水位から
バンキング水位に切換え、前記復水ポンプの運転が停止
した後に前記隔離弁を閉じて前記ホットウェルを大気環
境から遮断してホットバンキングに入り、また、発電プ
ラントの起動時において前記復水ポンプを起動して前記
上部空間の真空度を規定値以上に上昇させてから前記下
部空間との間の前記隔離弁を開いて双方の空間を連絡さ
せた後、前記ホットウェルの実水位が通常水位以下にな
るかあるいは予め定められた負荷状態となったとき、前
記ホットウェルの水位設定値をバンキング水位から通常
水位に切換えることを特徴とするコンバインサイクル発
電プラントの運転方法。 3、蒸気タービンの排気を凝縮させて復水として回収す
る復水ポンプと復水器を備えた蒸気タービンならびにガ
スタービンとを組合せたコンバインドサイクル発電プラ
ントの運転制御装置において、前記復水器の内部を蒸気
タービンの排気を凝縮させる管束を収容する上部空間と
、凝縮した復水を溜めておくホットウェルを収容する下
部空間とに気密を保持して区画し、前記上部空間と前記
下部空間との間に連絡管を接続し、前記連絡管に開閉自
在な隔離弁を配設するとともに、空気抽出機を前記上部
空間および前記下部空間の双方と連絡可能に設け、発電
プラントの停止過程において予め定められた負荷状態と
なったとき前記ホットウェルの水位設定値を通常水位か
らバンキング水位に切換える装置と、前記復水ポンプの
運転が停止した後に前記隔離弁を閉じる装置とを配設し
たことを特徴とするコンバインドサイクル発電プラント
の運転制御装置。 4、蒸気タービンの排気を凝縮させて復水として回収す
る復水ポンプと復水器を備えた蒸気タービンならびにガ
スタービンとを組合せたコンバインドサイクル発電プラ
ントの運転制御装置において、前記復水器の内部を蒸気
タービンの排気を凝縮させる管束を収容する上部空間と
、凝縮した復水を溜めておくホットウェルを収容する下
部空間とに気密を保持して区画し、前記上部空間と前記
下部空間との間に連絡管を接続し、前記連絡管に開閉自
在な隔離弁を配設するとともに、空気抽出機を前記上部
空間および前記下部空間の双方と連絡可能に設け、発電
プラントの停止過程において予め定められた負荷状態と
なったとき前記ホットウェルの水位設定値を通常水位か
らバンキング水位に切換える装置と、前記復水ポンプの
運転が停止した後に前記隔離弁を閉じる装置とを配設し
、さらに、発電プラントの起動時において前記復水ポン
プを起動して前記上部空間の真空度を規定値以上に上昇
させてから前記隔離弁を開く装置と、前記ホットウェル
の実水位が通常水位以下になるかあるいは予め定められ
た負荷状態となったとき前記ホットウェルの水位設定値
をバンキング水位から通常水位に切換える装置とを配設
したことを特徴とするコンバインドサイクル発電プラン
トの運転制御装置。
[Claims] 1. A method for controlling the operation of a combined cycle power plant that combines a steam turbine and a gas turbine equipped with a condensate pump and a condenser that condense exhaust gas from a steam turbine and recover it as condensate, The interior of the condenser is airtightly divided into an upper space that accommodates a tube bundle for condensing exhaust gas of a steam turbine, and a lower space that accommodates a hot well that stores condensed water, and the upper space is airtightly divided. and the lower space, a connecting pipe is provided with an isolation valve that can be opened and closed freely, and an air extractor is provided so as to be able to communicate with both the upper space and the lower space. When a predetermined load condition is reached during the stop process of the hot well, the water level set value of the hot well is switched from the normal water level to the banking water level, and after the operation of the condensate pump is stopped, the isolation valve is closed and the hot well is stopped. A method of operating a combined cycle power plant characterized by shutting off the power from the atmospheric environment and entering hot banking. 2. In a method for controlling the operation of a combined cycle power plant that combines a steam turbine and a gas turbine equipped with a condensate pump and a condenser that condense exhaust gas from a steam turbine and recover it as condensate, the inside of the condenser The space is airtightly divided into an upper space for accommodating a tube bundle for condensing the exhaust gas of the steam turbine, and a lower space for accommodating a hot well for storing condensed water, and the upper space and the lower space are separated. A communication pipe is connected between them, an isolation valve that can be opened and closed is disposed in the communication pipe, and an air extractor is provided so as to be able to communicate with both the upper space and the lower space, and the air extractor is provided in a manner that is predetermined during the shut down process of the power generation plant. When the load state is reached, the water level setting value of the hot well is switched from the normal water level to the banking water level, and after the operation of the condensate pump is stopped, the isolation valve is closed to isolate the hot well from the atmospheric environment. and enters hot banking, and when the power generation plant is started up, the condensate pump is started to raise the degree of vacuum in the upper space to a specified value or more, and then the isolation valve between the lower space and the lower space is opened. After connecting both spaces, when the actual water level of the hot well becomes below the normal water level or reaches a predetermined load state, the water level setting value of the hot well is switched from the banking water level to the normal water level. A method of operating a combined cycle power generation plant characterized by: 3. In an operation control device for a combined cycle power plant that combines a steam turbine and a gas turbine that are equipped with a condensate pump and a condenser that condense the exhaust gas of the steam turbine and recover it as condensate, the inside of the condenser The space is airtightly divided into an upper space for accommodating a tube bundle for condensing the exhaust gas of the steam turbine, and a lower space for accommodating a hot well for storing condensed water, and the upper space and the lower space are separated. A connecting pipe is connected between the connecting pipes, and an isolation valve that can be opened and closed is provided in the connecting pipe, and an air extractor is provided so as to be able to communicate with both the upper space and the lower space. A device for switching the water level setting value of the hot well from a normal water level to a banking water level when the load state is reached, and a device for closing the isolation valve after the operation of the condensate pump is stopped. This is an operation control device for a combined cycle power generation plant. 4. In an operation control device for a combined cycle power plant that combines a steam turbine and a gas turbine, which are equipped with a condensate pump and a condenser that condense the exhaust gas of the steam turbine and recover it as condensate, the inside of the condenser The space is airtightly divided into an upper space for accommodating a tube bundle for condensing the exhaust gas of the steam turbine, and a lower space for accommodating a hot well for storing condensed water, and the upper space and the lower space are separated. A connecting pipe is connected between the connecting pipes, and an isolation valve that can be opened and closed is provided in the connecting pipe, and an air extractor is provided so as to be able to communicate with both the upper space and the lower space. a device for switching the water level setting value of the hot well from a normal water level to a banking water level when the load state is reached, and a device for closing the isolation valve after the operation of the condensate pump is stopped, and further, A device for opening the isolation valve after starting the condensate pump to increase the degree of vacuum in the upper space to a specified value or more when starting up the power generation plant; Alternatively, an operation control device for a combined cycle power generation plant, comprising a device for switching the water level setting value of the hot well from the banking water level to the normal water level when a predetermined load state is reached.
JP2230176A 1990-08-31 1990-08-31 Operation control method and operation control device for combined cycle power plant Expired - Lifetime JP2593577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230176A JP2593577B2 (en) 1990-08-31 1990-08-31 Operation control method and operation control device for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230176A JP2593577B2 (en) 1990-08-31 1990-08-31 Operation control method and operation control device for combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH04112903A true JPH04112903A (en) 1992-04-14
JP2593577B2 JP2593577B2 (en) 1997-03-26

Family

ID=16903798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230176A Expired - Lifetime JP2593577B2 (en) 1990-08-31 1990-08-31 Operation control method and operation control device for combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2593577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114703A (en) * 2012-12-06 2014-06-26 Ihi Corp Waste heat power generator
CN115654666A (en) * 2022-09-30 2023-01-31 宁波奥克斯电气股份有限公司 Control method and control device for preventing water blowing of air conditioner and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226500A (en) * 2004-02-10 2005-08-25 Chugoku Electric Power Co Inc:The Method for stopping power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616287A (en) * 1984-03-09 1986-01-11 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン,“エス.エヌ.ウ.セ.エム.ア−.” Chemically acid cleaning bath for heat resistant alloy product
JPS6189486A (en) * 1984-10-09 1986-05-07 Hitachi Ltd Condenser in combined plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616287A (en) * 1984-03-09 1986-01-11 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン,“エス.エヌ.ウ.セ.エム.ア−.” Chemically acid cleaning bath for heat resistant alloy product
JPS6189486A (en) * 1984-10-09 1986-05-07 Hitachi Ltd Condenser in combined plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114703A (en) * 2012-12-06 2014-06-26 Ihi Corp Waste heat power generator
CN115654666A (en) * 2022-09-30 2023-01-31 宁波奥克斯电气股份有限公司 Control method and control device for preventing water blowing of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2593577B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
US6851266B2 (en) Method for maintaining a combined-cycle power station at readiness
JP4540472B2 (en) Waste heat steam generator
US6422022B2 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US5095706A (en) Start-up method of steam turbine plant and condenser employed for said method
KR102101460B1 (en) Method for operating a power plant
JPH03124902A (en) Combined cycle power plant and operating method therefor
CA2055323C (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
JPH04112903A (en) Method and device for running control of combined cycle power generation plant
JPH0694379A (en) Condenser and driving method therefor
JP4452328B2 (en) Combined power plant
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP2812751B2 (en) Steam turbine equipment and its steam supply method
JPH10317916A (en) Thermal power plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPH03275905A (en) Operation of steam turbine plant
JP2020125700A (en) Power generation facility, power generation facility control device, and power generation facility control method
JPH03275904A (en) Starting method of steam turbine plant and condenser used therefor
JPH07217803A (en) Method and equipment for starting waste heat boiler with at least two separating pressure device
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP2001090507A (en) Electric power plant
JP2006312882A (en) Steam turbine power generation plant and its operation method
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JP2764825B2 (en) Power plant and start-up method thereof