JP2006312882A - Steam turbine power generation plant and its operation method - Google Patents

Steam turbine power generation plant and its operation method Download PDF

Info

Publication number
JP2006312882A
JP2006312882A JP2005134939A JP2005134939A JP2006312882A JP 2006312882 A JP2006312882 A JP 2006312882A JP 2005134939 A JP2005134939 A JP 2005134939A JP 2005134939 A JP2005134939 A JP 2005134939A JP 2006312882 A JP2006312882 A JP 2006312882A
Authority
JP
Japan
Prior art keywords
condenser
air
steam turbine
load
turbine power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134939A
Other languages
Japanese (ja)
Inventor
Yuji Otsuka
祐司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2005134939A priority Critical patent/JP2006312882A/en
Publication of JP2006312882A publication Critical patent/JP2006312882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam turbine power generation plant capable of further reducing the minimum load and enlarging operation mode without making a large modification and review of the design. <P>SOLUTION: A condenser vacuum adjustment device 22 for adjusting the vacuum of a condenser 10 is constructed to inject air into the condenser 10 during operation in a range between the preset maximum load and minimum load when reduction of the minimum load is commanded. By thus intentionally reducing the vacuum of the condenser 10, an amount of evaporation in a boiler 1 of the steam turbine power generation plant is increased and the minimum feedwater flow rate of the boiler is ensured so that the minimum load can be further reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は蒸気タービン発電プラント及びその運転方法に係り、特に、抽出空気配管を介して復水器内に空気を給排することで復水器内の真空度を制御して蒸気タービンのラビング振動を防止し、かつ発電プラントの最低運用負荷を引下げ得る蒸気タービン発電プラント及びその運転方法に関する。   The present invention relates to a steam turbine power plant and a method for operating the same, and more particularly, by controlling the degree of vacuum in the condenser by supplying and discharging air into the condenser via an extraction air pipe, and rubbing vibration of the steam turbine. The present invention relates to a steam turbine power plant that can prevent the occurrence of power failure and reduce the minimum operating load of the power plant, and an operation method thereof.

一般に、蒸気タービン発電プラントにおいて、部分負荷運用時や、冷却水が低下する冬季運転時には、復水器の真空度が定格真空度以上の高真空度に達してタービンケーシング等を負圧によって変形させることがある。そのため、タービンラビング振動が発生し、タービントリップに至ることがある。このような高真空度に復水器内が至らないように、例えば特許文献1に示すように、復水器の真空度を調整する真空度調整装置を設けている。   In general, in a steam turbine power plant, during partial load operation or during winter operation when cooling water decreases, the vacuum level of the condenser reaches a high vacuum level higher than the rated vacuum level, and the turbine casing and the like are deformed by negative pressure. Sometimes. As a result, turbine rubbing vibrations may occur, leading to a turbine trip. In order to prevent the inside of the condenser from reaching such a high degree of vacuum, for example, as shown in Patent Document 1, a vacuum degree adjusting device for adjusting the vacuum degree of the condenser is provided.

特開平5−113294号公報JP-A-5-113294

上記従来の技術は、復水器の高真空による蒸気タービンのラビング振動防止を主とするものであり、運転モードの拡大についての配慮がなされていなかった。即ち、近年、蒸気タービン発電プラントの運用負荷の増大を図るために、最高負荷と最低負荷を定めた通常モードの運転を行うように定められていても、最低負荷をさらに引下げる要求がある。そのために、蒸気タービン発電プラントの各部の大幅な改造や設計の見直しが必要になる問題がある。   The above-described conventional technique mainly prevents the rubbing vibration of the steam turbine due to the high vacuum of the condenser, and no consideration has been given to the expansion of the operation mode. That is, in recent years, in order to increase the operation load of the steam turbine power plant, there is a demand to further reduce the minimum load even if it is determined to perform the normal mode operation in which the maximum load and the minimum load are determined. Therefore, there is a problem that each part of the steam turbine power plant needs to be remodeled or the design must be reviewed.

本発明の目的は、大幅な改造や設計の見直しを行うことなく、最低負荷をさらに引下げて運転モードの拡大を行うことができる蒸気タービン発電プラントを提供することにある。   An object of the present invention is to provide a steam turbine power plant that can further reduce the minimum load and expand the operation mode without performing significant modifications or design revisions.

本発明は上記目的を達成するために、復水器の真空度を調整する復水器真空度調整装置を、予め設定された最高負荷と最低負荷の範囲で運転中に、最低負荷の引下げ指令があったとき、前記復水器内に空気を注入するように構成したのである。   In order to achieve the above object, the present invention is directed to a command for lowering the minimum load during operation of a condenser vacuum degree adjusting device for adjusting the vacuum degree of the condenser in a range of preset maximum load and minimum load. When there is, air is injected into the condenser.

このように、復水器の真空度を故意的に低下させることで、蒸気タービン発電プラントのボイラの蒸発量を増加させてボイラの最低給水流量を確保し、最低負荷をさらに引下げることを可能としたのである。   In this way, by deliberately reducing the vacuum level of the condenser, it is possible to increase the amount of evaporation of the boiler of the steam turbine power plant to ensure the minimum feed water flow rate of the boiler and further reduce the minimum load It was.

以上説明したように本発明によれば、大幅な改造や設計の見直しを行うことなく、最低負荷をさらに引下げて運転モードの拡大を行うことができる蒸気タービン発電プラントを得ることができる。   As described above, according to the present invention, it is possible to obtain a steam turbine power plant that can further reduce the minimum load and expand the operation mode without performing significant remodeling or design review.

以下本発明による蒸気タービン発電プラントの一実施の形態を図1及び図2に示す再生・再熱式蒸気タービン発電プラントに基づいて説明する。   Hereinafter, an embodiment of a steam turbine power plant according to the present invention will be described based on the regenerative / reheat steam turbine power plant shown in FIGS. 1 and 2.

本実施の形態による蒸気タービン発電プラントは、大きくは、ボイラ1と、高圧タービン2と、この高圧タービン2と同軸の中圧タービン3及び低圧タービン4A,4Bと、前記高圧タービン2と同軸の発電機5とより構成されている。   The steam turbine power plant according to the present embodiment mainly includes a boiler 1, a high-pressure turbine 2, a medium-pressure turbine 3 and low-pressure turbines 4A and 4B that are coaxial with the high-pressure turbine 2, and power generation that is coaxial with the high-pressure turbine 2. And machine 5.

前記ボイラ1で発生した蒸気aは、配管6によって前記高圧タービン2に導入され、仕事をした後、一部は低温再熱蒸気bとして配管7を介してボイラ再熱器8に導入される。低温再熱蒸気bはボイラ再熱器8によって昇温され、高温再熱蒸気cとなって配管9を介して中圧タービン3に導入される。中圧タービン3で仕事をし終えた蒸気dは低圧タービン4A,4Bに導入されて仕事を行う。このように、蒸気を導入することで、高圧タービン2、中圧タービン3、低圧タービン4A,4Bは回転し、それにより発電機5を駆動して発電が行われる。低圧タービン4A,4Bで仕事をなし終えた蒸気の殆どは復水器10内に導入される。   The steam a generated in the boiler 1 is introduced into the high-pressure turbine 2 through a pipe 6 and after working, a part thereof is introduced into the boiler reheater 8 through the pipe 7 as low-temperature reheated steam b. The low-temperature reheat steam b is heated by the boiler reheater 8, becomes high-temperature reheat steam c, and is introduced into the intermediate pressure turbine 3 through the pipe 9. The steam d that has finished working in the intermediate pressure turbine 3 is introduced into the low pressure turbines 4A and 4B to perform work. In this way, by introducing the steam, the high-pressure turbine 2, the intermediate-pressure turbine 3, and the low-pressure turbines 4 </ b> A and 4 </ b> B rotate, thereby driving the generator 5 to generate power. Most of the steam that has finished work in the low-pressure turbines 4 </ b> A and 4 </ b> B is introduced into the condenser 10.

復水器10内に導入された蒸気は、冷却器11によって冷却され、復水eとなる。復水器10内の復水eは、復水ポンプ12にて昇圧され、配管13を経由し、低圧供給水加熱器14にて昇温される。この低圧供給水加熱器14は、低圧タービン4Aからの抽気fを配管15を介して導いて復水eを昇温させるものである。昇温された復水eは、中圧タービン3からの低温再熱蒸気gと共に脱気器16で脱酸素後、ボイラ給水ポンプ17で昇圧され、さらに、前記低温再熱蒸気bにより加熱される第2高圧給水加熱器18及び高圧タービン2からの抽気hにより加熱される第1高圧給水加熱器19で昇温された後、ボイラ1に給水される。   The steam introduced into the condenser 10 is cooled by the cooler 11 and becomes condensed water e. The condensate e in the condenser 10 is boosted by the condensate pump 12 and is heated by the low-pressure feed water heater 14 via the pipe 13. The low-pressure feed water heater 14 guides the bleed air f from the low-pressure turbine 4A through the pipe 15 to raise the temperature of the condensate e. The heated condensate e is deoxygenated by the deaerator 16 together with the low-temperature reheated steam g from the intermediate pressure turbine 3, then pressurized by the boiler feed pump 17, and further heated by the low-temperature reheated steam b. The temperature is raised by the first high-pressure feed water heater 19 heated by the second high-pressure feed water heater 18 and the extraction h from the high-pressure turbine 2, and then supplied to the boiler 1.

一方、前記復水器10は、抽出空気配管20を介して連結された空気抽出器21により、抽気することで所定の真空度を維持するようにしている。さらに、前記空気抽出器21の上流側の抽出空気配管20には、復水器真空度調整装置22が設けられており、部分負荷運用時や冷却水が低下する冬季運転時における復水器10の真空度の変化を調整している。   On the other hand, the condenser 10 maintains a predetermined degree of vacuum by extracting air with an air extractor 21 connected via an extraction air pipe 20. Further, the extraction air pipe 20 upstream of the air extractor 21 is provided with a condenser vacuum degree adjusting device 22, and the condenser 10 at the time of partial load operation or winter operation when cooling water is lowered. The change in the degree of vacuum is adjusted.

前記復水器真空度調整装置22は、空気吸込み口23を先端に備えた空気吸込み管24を前記抽出空気配管20の前記空気抽出器21よりも上流側に連結しており、この空気吸込み管24には復水器真空調整弁25と復水器真空調整止弁26とが空気流入方向の順に設けられている。前記復水器真空調整弁25は、圧力調整器27と圧力発信器28とによって開度を調整され、前記復水器真空調整止弁26は前記復水器真空調整弁25と電気的又は機械的に連動して開閉すると共に、緊急時には圧力スイッチ29の作動に伴って全閉するようにしている。前記圧力発信器28と圧力スイッチ29とは、配管30を介して復水器10内の圧力によって作動するように構成されている。   The condenser vacuum degree adjusting device 22 connects an air suction pipe 24 having an air suction port 23 at the tip thereof to an upstream side of the air extractor 21 of the extraction air pipe 20, and this air suction pipe 24 is provided with a condenser vacuum adjustment valve 25 and a condenser vacuum adjustment stop valve 26 in the order of the air inflow direction. The condenser vacuum adjustment valve 25 is adjusted in opening degree by a pressure regulator 27 and a pressure transmitter 28, and the condenser vacuum adjustment stop valve 26 is electrically or mechanically connected to the condenser vacuum adjustment valve 25. In conjunction with the operation, the pressure switch 29 is fully closed in an emergency. The pressure transmitter 28 and the pressure switch 29 are configured to be operated by the pressure in the condenser 10 through the pipe 30.

上記構成の復水器真空度調整装置22の運転は、図2及び図3に示すように、蒸気タービン発電プラントの通常運転時には、復水器10の真空度を維持するために、復水器10の胴体から抽出空気配管20を経由して空気抽出装置21によって復水器10内部の非凝縮ガスや微少な空気漏れを外部に放出している。一方、復水器10内の真空度が定格真空度以上の第1高真空度(例えば735mmHg)に達したことを圧力発信器28が検出すると、圧力発信器28は圧力調整器27を介して復水器真空調整弁25に開指令を与えて開かせ、さらに第1高真空度を超えて第2高真空度(例えば740mmHg)になった場合には、復水器真空調整弁25を全開するように弁開度を制御するように構成されている。このような復水器真空調整弁25に連動して復水器真空調整止弁26の開度も制御される。他方、復水器10内の真空度制御が不調となって真空度が低下した場合には、真空極低トリップを回避するために、圧力スイッチ29によって、復水器真空調整弁25との連動よりも優先させて復水器真空調整止弁26を強制的に閉じさせる(保護インターロック)。   As shown in FIGS. 2 and 3, the condenser vacuum degree adjusting device 22 having the above-described configuration is operated in order to maintain the degree of vacuum of the condenser 10 during normal operation of the steam turbine power plant. Non-condensable gas and minute air leakage inside the condenser 10 are discharged to the outside by the air extraction device 21 from the body 10 through the extraction air pipe 20. On the other hand, when the pressure transmitter 28 detects that the degree of vacuum in the condenser 10 has reached the first high vacuum level (for example, 735 mmHg) equal to or higher than the rated vacuum level, the pressure transmitter 28 is connected via the pressure regulator 27. When the condenser vacuum adjustment valve 25 is given an open command to be opened, and the first high vacuum degree is exceeded and the second high vacuum degree (eg, 740 mmHg) is reached, the condenser vacuum adjustment valve 25 is fully opened. In this way, the valve opening is controlled. The opening degree of the condenser vacuum adjustment stop valve 26 is also controlled in conjunction with such a condenser vacuum adjustment valve 25. On the other hand, when the degree of vacuum is lowered due to the malfunction of the degree of vacuum control in the condenser 10, the pressure switch 29 interlocks with the condenser vacuum adjustment valve 25 in order to avoid a vacuum extremely low trip. The condenser vacuum adjustment stop valve 26 is forcibly closed with priority over (protective interlock).

以上が予め設定された最高負荷(100%)と最低負荷(例えば30%)の範囲で運転が行われる第1運転である。   The above is the first operation in which the operation is performed in the range of the preset maximum load (100%) and minimum load (for example, 30%).

次に、上記第1運転中に最低負荷を引下げて運転することの要求があった場合の第2運転について、図4及び図5に基づいて説明する。   Next, the second operation when there is a request to reduce the minimum load during the first operation will be described with reference to FIGS. 4 and 5.

図3に示す通常運転モードでの第1運転をしているとき(図5のS10)に、通常運転モードで定めた最低負荷30%を、さらに引下げて例えば25%となるように、最低負荷運転の変更指示があった場合(図5のS11)には、25%の最低負荷運用モードの切替えを手動あるいは自動的に行う(図5のS12)。この切替えにより、例えば50%負荷以下である48%負荷から要求された25%負荷の間を真空度可変設定範囲となるように前記復水器真空調整弁25を開いて復水器10内へ空気を流入させて真空度を低下させる(図5のS13)。そして、変更要求があった25%の最低運用負荷に達したら、復水器真空調整弁25の開状態を維持する(図5のS14)。このように、復水器10の真空度を低下させることで、ボイラ1への給水流量を多くすることができ、設定された最低負荷をさらに引下げることができる。   When the first operation in the normal operation mode shown in FIG. 3 is performed (S10 in FIG. 5), the minimum load is set so that the minimum load 30% determined in the normal operation mode is further reduced to, for example, 25%. When there is an operation change instruction (S11 in FIG. 5), the 25% minimum load operation mode is switched manually or automatically (S12 in FIG. 5). By this switching, for example, the condenser vacuum adjustment valve 25 is opened and placed in the condenser 10 so that the vacuum degree variable setting range is between the 48% load, which is 50% load or less, and the required 25% load. Air is introduced to lower the degree of vacuum (S13 in FIG. 5). Then, when the minimum operating load of 25% at which the change request has been made is reached, the condenser vacuum adjustment valve 25 is kept open (S14 in FIG. 5). Thus, by reducing the vacuum degree of the condenser 10, the feed water flow rate to the boiler 1 can be increased, and the set minimum load can be further reduced.

このように、最低負荷の引下げ要求があった場合、復水器真空度調整装置22の復水器真空調整弁25を開いて復水器10の真空度を低下させることで、ボイラ1への給水流量を多くすることができるので、引下げた最低負荷での運転が可能となるのである。   In this way, when there is a request for lowering the minimum load, the condenser vacuum adjustment valve 25 of the condenser vacuum degree adjusting device 22 is opened to lower the vacuum degree of the condenser 10, so that the boiler 1 can be reduced. Since the feed water flow rate can be increased, the operation at the reduced minimum load becomes possible.

このように、最低負荷の引下げ要求に応じた運転中に、当所設定された通常運転範囲での運転に復帰する要求があった場合には、復水器真空調整弁25を閉じて空気抽出装置21を駆動させ、復水器10内の空気を抽出して所定の真空度に戻すことで復帰することができる。この復帰運転が本発明による第3の運転になる。   In this way, when there is a request to return to the operation within the normal operation range set in this place during the operation in response to the request for lowering the minimum load, the condenser vacuum adjustment valve 25 is closed and the air extraction device is closed. It can be restored by driving 21 and extracting the air in the condenser 10 to return it to a predetermined degree of vacuum. This return operation is the third operation according to the present invention.

尚、復水器10の真空度の低下させるため一例として、48%負荷〜25%負荷の間を真空度可変設定範囲となるように前記復水器真空調整弁25を開いて復水器10内へ空気を流入させるようにしたが、蒸気タービン発電プラントの容量や構成機器によっては、前記真空度可変設定範囲が48%負荷〜25%負荷以外になることは当然である。   In order to lower the vacuum degree of the condenser 10, as an example, the condenser vacuum adjustment valve 25 is opened so that the vacuum degree variable setting range is between 48% load and 25% load. Although air is allowed to flow in, the vacuum degree variable setting range is naturally other than 48% load to 25% load depending on the capacity of the steam turbine power plant and the components.

本発明による蒸気タービン発電プラントの一実施の形態を示すブロック図。1 is a block diagram showing an embodiment of a steam turbine power plant according to the present invention. 図1に示された復水器真空度調整装置の詳細図。FIG. 2 is a detailed view of the condenser vacuum degree adjusting device shown in FIG. 1. 図1に示された蒸気タービン発電プラントの通常運転モードにおける復水器真空度設定図。The condenser vacuum degree setting figure in the normal operation mode of the steam turbine power plant shown in FIG. 図1に示された蒸気タービン発電プラントの最低負荷引下げ後の運転モードにおける復水器真空度設定図。The condenser vacuum degree setting figure in the operation mode after the minimum load reduction of the steam turbine power plant shown in FIG. 図1に示された蒸気タービン発電プラントの最低負荷引下げ運転を示すフローチャート。The flowchart which shows the minimum load reduction operation | movement of the steam turbine power plant shown in FIG.

符号の説明Explanation of symbols

1…ボイラ、2…高圧タービン、3…中圧タービン、4A,4B…低圧タービン、5…発電機、8…ボイラ再熱器、10…復水器、11…冷却器、14…低圧供給水加熱器、16…脱気器、17…ボイラ給水ポンプ、18…第2高圧給水加熱器、19…第1高圧給水加熱器、20…抽出空気配管、21…空気抽出器、22…復水器真空度調整装置、23…空気吸込み口、24…空気吸込み管、25…復水器真空調整弁、26…復水器真空調整止弁、27…圧力調整器、28…圧力発信器、29…圧力スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... High pressure turbine, 3 ... Medium pressure turbine, 4A, 4B ... Low pressure turbine, 5 ... Generator, 8 ... Boiler reheater, 10 ... Condenser, 11 ... Cooler, 14 ... Low pressure feed water Heater, 16 ... deaerator, 17 ... boiler feed pump, 18 ... second high pressure feed water heater, 19 ... first high pressure feed water heater, 20 ... extraction air piping, 21 ... air extractor, 22 ... condenser Vacuum adjustment device, 23 ... Air suction port, 24 ... Air suction pipe, 25 ... Condenser vacuum adjustment valve, 26 ... Condenser vacuum adjustment stop valve, 27 ... Pressure regulator, 28 ... Pressure transmitter, 29 ... pressure switch.

Claims (4)

復水器を備えた蒸気タービン発電設備と、前記復水器内から抽出空気配管を介して空気を抽出する空気抽出装置と、この空気抽出装置の上流側の前記抽出空気配管に接続され前記復水器の真空度を調整する復水器真空度調整装置とを有する蒸気タービン発電プラントにおいて、前記復水器真空度調整装置は、予め設定された最高負荷と最低負荷の範囲で運転中に、最低負荷の引下げ指令があると、前記復水器内に空気を注入して前記最低負荷より低負荷での運転が行われるように構成されていることを特徴とする蒸気タービン発電プラント。   A steam turbine power generation facility equipped with a condenser, an air extraction device for extracting air from the condenser through an extraction air piping, and the extraction air piping upstream of the air extraction device and connected to the condenser In a steam turbine power plant having a condenser vacuum degree adjusting device for adjusting the vacuum degree of a water vessel, the condenser vacuum degree adjusting device is operating in a range of preset maximum load and minimum load, A steam turbine power plant configured to perform operation at a lower load than the minimum load by injecting air into the condenser when a minimum load reduction command is issued. 復水器を備えた蒸気タービン発電設備と、前記復水器内から抽出空気配管を介して空気を抽出する空気抽出装置と、この空気抽出装置の上流側の前記抽出空気配管に接続され前記復水器の真空度を調整する復水器真空度調整装置とを有する蒸気タービン発電プラントにおいて、前記復水器真空度調整装置は、予め設定された最高負荷と最低負荷の範囲で運転中に、最低負荷の引下げ指令があると、前記復水器内に空気を注入して前記最低負荷より低負荷での運転が行われるように構成されており、また前記空気抽出装置は、前記最低負荷より低負荷での運転が行われるときに、予め設定された最高負荷と最低負荷の範囲で運転する指令があると、前記復水器内の空気を抽出するように構成されていることを特徴とする蒸気タービン発電プラント。   A steam turbine power generation facility equipped with a condenser, an air extraction device for extracting air from the condenser through an extraction air piping, and the extraction air piping upstream of the air extraction device and connected to the condenser In a steam turbine power plant having a condenser vacuum degree adjusting device for adjusting the vacuum degree of a water vessel, the condenser vacuum degree adjusting device is operating in a range of preset maximum load and minimum load, When there is a command to lower the minimum load, air is injected into the condenser so that the operation is performed at a lower load than the minimum load. It is configured to extract air in the condenser when there is a command to operate in a range between a preset maximum load and minimum load when operation at a low load is performed. Steam turbine power generation plan . 復水器を備えた蒸気タービン発電設備と、前記復水器内から抽出空気配管を介して空気を抽出する空気抽出装置と、この空気抽出装置の上流側の前記抽出空気配管に接続され前記復水器の真空度を調整する復水器真空度調整装置とを有する蒸気タービン発電プラントの運転方法において、予め設定された最高負荷と最低負荷の範囲で運転する第1運転と、この第1運転中に、最低負荷の引下げ指令があると、前記復水器真空度調整装置によって前記復水器内に空気を注入して前記最低負荷より低負荷で運転する第2運転とで運転することを特徴とする蒸気タービン発電プラントの運転方法。   A steam turbine power generation facility equipped with a condenser, an air extraction device for extracting air from the condenser through an extraction air piping, and the extraction air piping upstream of the air extraction device and connected to the condenser In a method for operating a steam turbine power plant having a condenser vacuum degree adjusting device for adjusting a vacuum degree of a water vessel, a first operation that operates in a range between a preset maximum load and a minimum load, and the first operation. If there is a command to lower the minimum load, the operation is performed in the second operation in which air is injected into the condenser by the condenser vacuum degree adjusting device and the operation is performed at a load lower than the minimum load. A method of operating a steam turbine power plant. 復水器を備えた蒸気タービン発電設備と、前記復水器内から抽出空気配管を介して空気を抽出する空気抽出装置と、この空気抽出装置の上流側の前記抽出空気配管に接続され前記復水器の真空度を調整する復水器真空度調整装置とを有する蒸気タービン発電プラントの運転方法において、予め設定された最高負荷と最低負荷の範囲で運転する第1運転と、この第1運転中に、最低負荷の引下げ指令があると、前記復水器真空度調整装置によって前記復水器内に空気を注入して前記最低負荷より低負荷で運転する第2運転と、この第2運転中に、前記第1運転に復帰する指令があると、前記空気抽出装置を駆動して前記復水器内の空気を抽出して前記第1運転に復帰する第3運転とで運転することを特徴とする蒸気タービン発電プラントの運転方法。   A steam turbine power generation facility equipped with a condenser, an air extraction device for extracting air from the condenser through an extraction air piping, and the extraction air piping upstream of the air extraction device and connected to the condenser In a method for operating a steam turbine power plant having a condenser vacuum degree adjusting device for adjusting a vacuum degree of a water vessel, a first operation that operates in a range between a preset maximum load and a minimum load, and the first operation. If there is a command for lowering the minimum load, a second operation for injecting air into the condenser by the condenser vacuum degree adjusting device and operating at a lower load than the minimum load, and this second operation If there is a command to return to the first operation, the air extraction device is driven to extract the air in the condenser and to operate in the third operation to return to the first operation. Features of steam turbine power plant operation Law.
JP2005134939A 2005-05-06 2005-05-06 Steam turbine power generation plant and its operation method Pending JP2006312882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134939A JP2006312882A (en) 2005-05-06 2005-05-06 Steam turbine power generation plant and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134939A JP2006312882A (en) 2005-05-06 2005-05-06 Steam turbine power generation plant and its operation method

Publications (1)

Publication Number Publication Date
JP2006312882A true JP2006312882A (en) 2006-11-16

Family

ID=37534467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134939A Pending JP2006312882A (en) 2005-05-06 2005-05-06 Steam turbine power generation plant and its operation method

Country Status (1)

Country Link
JP (1) JP2006312882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032885A (en) * 2009-07-30 2011-02-17 Kawasaki Heavy Ind Ltd Device and method for adjusting vacuum of condenser, and steam turbine plant
EP3147467A1 (en) * 2015-09-24 2017-03-29 Siemens Aktiengesellschaft Power plant with vacuum brake

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032885A (en) * 2009-07-30 2011-02-17 Kawasaki Heavy Ind Ltd Device and method for adjusting vacuum of condenser, and steam turbine plant
EP3147467A1 (en) * 2015-09-24 2017-03-29 Siemens Aktiengesellschaft Power plant with vacuum brake

Similar Documents

Publication Publication Date Title
JP3800384B2 (en) Combined power generation equipment
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
KR102307255B1 (en) Condensate and feedwater system of steam power plant and operation method for the same
JP6071421B2 (en) Combined cycle plant, method for stopping the same, and control device therefor
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
JP5178575B2 (en) Power plant water supply apparatus and control method
JPH10169411A (en) Steam turbine plant
JP2006312882A (en) Steam turbine power generation plant and its operation method
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP5424711B2 (en) Steam turbine power generation system
JP2010270756A (en) Method for primary control of steam turbine device
JP5251311B2 (en) Power generation system
JP2511007B2 (en) Auxiliary steam device
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JP5832080B2 (en) Power generation system control device, power generation system, and power generation system control method
JPH08260907A (en) Steam storing electric power plant
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP6317652B2 (en) Plant control device and combined cycle power plant
JP2010223105A (en) Steam turbine system and method and program for controlling the same
JP2002227611A (en) Pressure fluidized bed boiler power generation plant and its controlling method
JP2001317707A (en) Water hammer preventing device for high pressure water supplying/heating device
JP2012087704A (en) Equipment of supplying working steam of steam air ejector
JP2003138907A (en) Control apparatus for steam turbine
JPH0320482Y2 (en)
KR101656579B1 (en) Supercritical pressure power plant and variable pressure operation control method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A521 Written amendment

Effective date: 20070214

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A7422