JPH04102375A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH04102375A
JPH04102375A JP22061290A JP22061290A JPH04102375A JP H04102375 A JPH04102375 A JP H04102375A JP 22061290 A JP22061290 A JP 22061290A JP 22061290 A JP22061290 A JP 22061290A JP H04102375 A JPH04102375 A JP H04102375A
Authority
JP
Japan
Prior art keywords
gate
oxide film
film
insulating film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22061290A
Other languages
Japanese (ja)
Inventor
Koji Mori
孝二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22061290A priority Critical patent/JPH04102375A/en
Publication of JPH04102375A publication Critical patent/JPH04102375A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a highly reliable TFT of high yield without lowering driving characteristics bar forming a gate insulating film of at least two-layer structure of oxide. CONSTITUTION:After an active layer 2 is formed on a quartz substrate 1, a first oxide film 3 and a second oxide film 4 are formed. A gate part is covered with a resist, a poly-Si gate electrode is dry-etched, gate SiO2 (both the two layers) is wet-etched and source/drain parts 2', 2'' are exposed. After P<+> is implanted, activation is performed. A layer insulating film 6 is deposited, a window is opened and an Al electrode 7 is attached. Generation of a pin hole is restrained through two oxide film formation processes and a highly reliable TFT having equivalent driving characteristics as a conventional one can be acquired.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、薄膜トランジスタ(TPT)に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to thin film transistors (TPTs).

〔従来技術〕[Prior art]

ゲート絶縁膜の耐圧性を向上させるためにゲート絶縁膜
をSi、 N4とSiO□とからなる二重構造とするこ
とは、すでに提案されている。
In order to improve the voltage resistance of the gate insulating film, it has already been proposed to form the gate insulating film into a double structure consisting of Si, N4 and SiO□.

(Y、 0hji、 T、 Kusaka、 A、 t
(iraiwa、 K、 Yagi、 K、 Muka
i and O,Kasahara :  ”Re1i
ability of nano−meterthユc
k  multi−1ayer  dielectri
c  on  poly−crystallinesi
licon、”  Proc、 of Interna
tional Re1iability Physic
s Symposium (1987)p、55)しか
しながら、多結晶シリコン(Poly Si)を基本材
料とした薄膜トランジスタ(TPT)のゲート絶縁膜で
あるSiO□上にSi、 N4を形成した場合、その製
膜方法がPCVD法のようなプラズマプロセスでは製膜
中の水素プラズマによりヒステリシスを生じさせ、トラ
ンジスタ動作に、誤動作を生じさせる。又窒化膜と酸化
膜とではエツチング方法が異るため、ゲート絶縁膜を加
工するさい、工程数の増加とそれにともなうエツチング
時の加工精度の低下から歩留りの低下が問題である。さ
らに、通常のTPTを駆動する場合、ゲート絶縁膜は薄
くてかつその容量が大きい程すぐれた開動特性を有する
が、Si3N4膜との2層構造は、 Si3N4層の容
量が5io2iの容量より大きいため、これを直列にし
たことに相当するこの構造は、容量の小さい3102層
の厚みが大きく影響することになる。そのため、SiO
□層を必要以上に薄くした2層構造にさぜるを得ない。
(Y, 0hji, T, Kusaka, A, t
(iraiwa, K., Yagi, K., Muka
i and O, Kasahara: ”Re1i
ability of nano-meter
k multi-1ayer dielectri
c on poly-crystallinesi
licon,” Proc, of Interna
tional Re1iability Physics
s Symposium (1987) p. 55) However, when Si and N4 are formed on SiO□, which is the gate insulating film of a thin film transistor (TPT) whose basic material is polycrystalline silicon (PolySi), the film formation method is In a plasma process such as the PCVD method, hydrogen plasma during film formation causes hysteresis, which causes malfunction in transistor operation. Furthermore, since the etching methods for the nitride film and the oxide film are different, when processing the gate insulating film, there is a problem of a decrease in yield due to an increase in the number of steps and a concomitant decrease in processing accuracy during etching. Furthermore, when driving a normal TPT, the thinner the gate insulating film and the larger the capacitance, the better the opening characteristics.However, in the two-layer structure with the Si3N4 film, the capacitance of the Si3N4 layer is larger than the capacitance of 5io2i. This structure, which is equivalent to arranging 3102 layers in series, is greatly influenced by the thickness of the 3102 layer, which has a small capacitance. Therefore, SiO
□It is unavoidable to create a two-layer structure where the layers are made thinner than necessary.

〔目   的〕〔the purpose〕

本発明の目的は、上記不具合をなくすると同時に、2層
構造にともなって薄膜トランジスタの駆動特性をおとす
ことなく、高信頼性、高歩留りな、TPTを形成する点
にある。
An object of the present invention is to eliminate the above-mentioned disadvantages and at the same time form a TPT with high reliability and high yield without degrading the driving characteristics of the thin film transistor due to the two-layer structure.

〔構  成〕〔composition〕

本発明は、絶縁基板上に設けた薄膜トランジスタのゲー
ト絶縁膜が少なくとも酸化物の2層構造であることを特
徴とする薄膜トランジスタに関する。なお1本発明にお
いては、前記ゲート絶縁膜の少なくとも活性層に近い側
の酸化物膜の厚さが500Å以下であることが好ましい
The present invention relates to a thin film transistor, in which a gate insulating film of the thin film transistor provided on an insulating substrate has at least a two-layer structure of oxide. Note that in the present invention, it is preferable that the thickness of at least the oxide film of the gate insulating film on the side closer to the active layer is 500 Å or less.

第4図に、従来構成であるSi、NJSi022層構造
でのTDDB(Time Depeudowt Die
lectric Breakdown)特性を示す。S
iO□単層と比較して2層構造では約4桁ストレス時間
に対する奉命が延びていることがわかる。
Figure 4 shows the conventional structure of TDDB (Time Depeudowt Die) with Si and NJSi022 layer structure.
electric breakdown) characteristics. S
It can be seen that the two-layer structure has a longer service life for stress time by about four orders of magnitude compared to the iO□ single layer.

本発明の構成を第1図に示す、 Po1ySiを基本材
料としたTPTのゲート絶縁膜を5in2の2層構造と
することで第4図に示したSi、N、/SiO2と同程
度の寿命とすることができる4図中で、上部ゲート絶縁
膜はECR、CVD等による堆積によって形成した5i
n2膜であり、下部ゲート絶縁膜は熱酸化膜あるいは陽
極酸化膜が好ましい。この場合艇動特性は下部ゲート絶
縁膜の膜質及び膜厚で大きく変わってくるため、この層
の最適化が重要である。第3図に全膜厚900人とした
場合のSiO□単層と2層(この場合下地が500人の
熱酸化膜)の場合の工。nとゲートリーク電流の比較を
示す。5in2を2層化することでゲートリーク電流は
従来より1桁以下低下している。輛動能力を示すIon
にライては7.95 X 10−’Aのものが5.5X
 10−’Aと約30%の低下があるものの実質、問題
のないレベルを維持できることが明らかとなった。ここ
では下地SiO□を500人としたが、さらにこれより
うすくした場合の方がIon及びゲートリーク電流は改
善の方向にむかい、より都合がいいことがわかった。こ
のことは、下地5in2膜はトランジスタ特性を保証す
る膜厚さえあれば、500Å以下で充分であることを意
味する(全5in2の厚さは一定)。これらの構成の形
成方法を第3図に示す。■絶縁基板1上に、Po1yS
i2を形成、加工後、■熱酸化膜3、DePOa化膜4
及びゲート電極5を順次堆積させ、■所定形状に加工後
、■イオン注入等の方法でゲートおよび/または、ソー
ス、ドレインに不純物を拡散、活性化を行なう、■そし
て眉間絶縁膜6を堆積し、コンタクトホール形成後、■
AQを堆積、加工して電極7を形成しTPTを完成する
The structure of the present invention is shown in FIG. 1. By making the TPT gate insulating film made of Po1ySi as a basic material into a 5in2 two-layer structure, it has a lifespan comparable to that of Si, N, /SiO2 shown in FIG. 4. In Figure 4, the upper gate insulating film is a 5i film formed by deposition by ECR, CVD, etc.
The lower gate insulating film is preferably a thermal oxide film or an anodic oxide film. In this case, since the floating characteristics vary greatly depending on the quality and thickness of the lower gate insulating film, it is important to optimize this layer. Figure 3 shows the process for SiO□ single layer and double layer (in this case, the base is a thermal oxide film of 500 layers) with a total film thickness of 900 layers. A comparison of n and gate leakage current is shown. By forming 5in2 into two layers, the gate leakage current is reduced by one order of magnitude or less compared to the conventional structure. Ion showing maneuverability
7.95 x 10-'A is 5.5 x
Although there was a decrease of about 30% to 10-'A, it became clear that it was possible to maintain a practically problem-free level. Here, the thickness of the underlying SiO□ was set at 500, but it was found that making it thinner than this would improve Ion and gate leakage current, which would be more convenient. This means that a base 5in2 film of 500 Å or less is sufficient as long as it has a thickness that guarantees transistor characteristics (the thickness of the entire 5in2 film is constant). A method of forming these structures is shown in FIG. ■PolyS on the insulating substrate 1
After forming and processing i2, ■ thermal oxide film 3, DePOa film 4
and the gate electrode 5 are sequentially deposited, 1) after being processed into a predetermined shape, 2) impurities are diffused and activated in the gate and/or source and drain by a method such as ion implantation, and 2) the glabella insulating film 6 is deposited. , After contact hole formation, ■
AQ is deposited and processed to form the electrode 7 and complete the TPT.

〔実施例〕〔Example〕

石英基板1上ニLPCVD法テロ20℃、0.1tor
r、5iH4100% テ約1000人(7)Poly
Siを堆積し、活性層2を形成後、Dry 02100
0’C11時!’flllテ約500人の熱酸化膜3を
形成する(第1の酸化膜3の形成)。そして低温酸化膜
(LTO)あるいは高温酸化膜(HTO)をLPCVD
法(Sil(4102: 80/20secM、約10
00人)により第2の酸化膜4を形成し、さらにさき程
と同一条件でPo1ySi 5を形成する。この場合、
膜厚のみ3000人と厚くしておく。次にレジストでゲ
ート部をカバーして、SFI; 30secM、0、1
Torr 1′Po1ySiゲート電極をドライエツチ
ングし、HF:H20=1:6.30″でゲート5iO
2(2層とも)をウェットエツチングしてソース、ドレ
イン部2′、2″を露出させる。そしてイオン注入でP
lをIE15■−2でインプラ後、900°C130分
の活性化を施こす6その後、同じ< LPCD法で5i
H4102=80/ 200secMで5000人の眉
間#l!縁膜6を堆積し、ウェットエツチング(前述と
同条件)でコンタクトホールをあける。−最後にAfl
をスパッタリングにより1μm厚に形成し、ドライエツ
チング(c2F6+5ic14系)で所定形状の電極7
に加工して完成する。
LPCVD method on quartz substrate 1 at 20℃, 0.1torr
r, 5iH4100% Te approximately 1000 people (7) Poly
After depositing Si and forming active layer 2, dry 02100
0'C11 o'clock! A thermal oxide film 3 of approximately 500 layers is formed (formation of the first oxide film 3). Then, low temperature oxide film (LTO) or high temperature oxide film (HTO) is formed by LPCVD.
method (Sil (4102: 80/20secM, approximately 10
A second oxide film 4 is formed using a method (000 persons), and a PolySi 5 is further formed under the same conditions as before. in this case,
Only the film thickness will be increased to 3,000 people. Next, cover the gate part with resist and perform SFI; 30secM, 0, 1
Torr 1'Po1ySi gate electrode was dry etched and the gate 5iO was etched with HF:H20=1:6.30''.
2 (both layers) are wet-etched to expose the source and drain parts 2' and 2''.Then, P is etched by ion implantation.
After implanting l with IE15■-2, activate it at 900°C for 130 minutes.
H4102=80/ 5000 people's eyebrows #l at 200secM! A rim film 6 is deposited and contact holes are made by wet etching (under the same conditions as described above). -Finally Afl
was formed to a thickness of 1 μm by sputtering, and an electrode 7 of a predetermined shape was formed by dry etching (c2F6+5ic14 system).
Process and complete.

〔効  果〕〔effect〕

本発明は、2層にするために2回の酸化膜形成工程を経
る。そのため、それぞれの層にピンホールがあっても1
回目の層と2回目の層では発生個所が異なるため、ピン
ホールの発生が抑制されることになる。これに対して1
層の場合は、いくら厚みを厚くしても、ピンホールを完
全になくすことはできない。
In the present invention, the oxide film forming process is performed twice in order to form two layers. Therefore, even if there are pinholes in each layer, 1
Since the locations where pinholes occur are different between the first layer and the second layer, the occurrence of pinholes is suppressed. 1 for this
In the case of layers, no matter how thick they are, pinholes cannot be completely eliminated.

本発明の薄膜トランジスタは、従来品に較べ高信頼性で
かつ従来と同等の駆動特性を有したTPTの提供が可能
となった。
The thin film transistor of the present invention makes it possible to provide a TPT that is more reliable than conventional products and has drive characteristics equivalent to conventional products.

本TPTは光読取り装置等の半導体装置として極めて有
用である。
This TPT is extremely useful as a semiconductor device such as an optical reader.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明TPTの基本構成を示す断面図、第2
図Aは、5in2単層(900人厚定形5in2の2層
(下層500人厚1上層400人厚1のそれぞれのIo
n(Nch)(X 10−’A 〕を示し、Bは1両者
のゲートリーク電流を示す。第3図は、本発明TPTの
製造工程例を■〜■で示す。第4図は、従来のSi3N
4/5i022層構造タイプのPo1y−5i上の各種
絶縁膜のTDDB特性例を示す。 1・・・絶縁基板    2・・・Po1ySi (活
性層)2’、2”・・・ソース、ドレイン部 3・・・熱酸化膜(下部ゲート絶縁膜)4・・Depo
酸化膜(上部ゲートM縁膜)5・・・ゲート電極   
6・・・層間絶縁膜7・・・11電極 特許出顕人 株式会社 第 図 第3 第4 図 ストレス1藺(Sl
FIG. 1 is a sectional view showing the basic configuration of the TPT of the present invention, and FIG.
Diagram A shows the Io
n (Nch) (X 10-'A ], and B indicates the gate leakage current of both. Fig. 3 shows an example of the manufacturing process of the TPT of the present invention with ■ to ■. Fig. 4 shows the conventional TPT. Si3N
Examples of TDDB characteristics of various insulating films on 4/5i022 layer structure type Po1y-5i are shown. 1... Insulating substrate 2... Po1ySi (active layer) 2', 2''... Source, drain part 3... Thermal oxide film (lower gate insulating film) 4... Depo
Oxide film (upper gate M edge film) 5...gate electrode
6... Interlayer insulating film 7... 11 Electrode Patented Kenjin Co., Ltd. Figure 3 Figure 4 Stress 1 (Sl

Claims (1)

【特許請求の範囲】 1、絶縁基板上に設けた薄膜トランジスタのゲート絶縁
膜が少なくとも酸化物の2層構造であることを特徴とす
る薄膜トランジスタ。 2、前記ゲート絶縁膜の少なくとも活性層に近い側の酸
化物膜の厚さが500Å以下であることを特徴とする請
求項1記載の薄膜トランジスタ。
[Scope of Claims] 1. A thin film transistor characterized in that a gate insulating film of the thin film transistor provided on an insulating substrate has at least a two-layer structure of oxide. 2. The thin film transistor according to claim 1, wherein the oxide film of the gate insulating film at least on the side closer to the active layer has a thickness of 500 Å or less.
JP22061290A 1990-08-22 1990-08-22 Thin film transistor Pending JPH04102375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22061290A JPH04102375A (en) 1990-08-22 1990-08-22 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22061290A JPH04102375A (en) 1990-08-22 1990-08-22 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH04102375A true JPH04102375A (en) 1992-04-03

Family

ID=16753703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22061290A Pending JPH04102375A (en) 1990-08-22 1990-08-22 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH04102375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591989A (en) * 1990-11-16 1997-01-07 Seiko Epson Corporation Semiconductor device having first and second gate insulating films
US5663077A (en) * 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
US6124153A (en) * 1995-07-14 2000-09-26 Samsung Electronics Co., Ltd. Method for manufacturing a polysilicon TFT with a variable thickness gate oxide
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591989A (en) * 1990-11-16 1997-01-07 Seiko Epson Corporation Semiconductor device having first and second gate insulating films
US5811323A (en) * 1990-11-16 1998-09-22 Seiko Epson Corporation Process for fabricating a thin film transistor
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5663077A (en) * 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
US5966594A (en) * 1993-07-27 1999-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6210997B1 (en) 1993-07-27 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6465284B2 (en) 1993-07-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6124153A (en) * 1995-07-14 2000-09-26 Samsung Electronics Co., Ltd. Method for manufacturing a polysilicon TFT with a variable thickness gate oxide

Similar Documents

Publication Publication Date Title
US6723624B2 (en) Method for fabricating n-type carbon nanotube device
JP2882410B2 (en) Method of fabricating MOS transistor gate with high germanium content
JPH0936380A (en) Polycrystal silicon thin film transistor and its manufacture
US20030211682A1 (en) Method for fabricating a gate electrode
JP3415496B2 (en) Semiconductor device and manufacturing method thereof
JPH04102375A (en) Thin film transistor
JPS6159873A (en) Thin film field effect transistor and manufacture thereof
US6429109B1 (en) Method to form high k dielectric and silicide to reduce poly depletion by using a sacrificial metal between oxide and gate
JPH06260644A (en) Manufacture of semiconductor device
JP3127866B2 (en) Method for manufacturing semiconductor device
JPH02143463A (en) Thin film transistor
JPH0360076A (en) Manufacture of vertical field effect transistor
JPS62290152A (en) Manufacture of semiconductor device
JPH11297988A (en) Manufacture of gate electrode which prevents spiking effect of metal silicide
JPH04328872A (en) Manufacture of polycrystalline thin film transistor and polycrystalline thin film transistor
KR101015143B1 (en) Method for reducing plasma damage to a gate oxide of semiconductor device
JPH01298758A (en) Manufacture of semiconductor device
JPS6097628A (en) Manufacture of semiconductor device
JPH0397271A (en) Image sensor
JPH0220059A (en) Thin film transistor
KR930004347B1 (en) Method of fabricating nonvolatile semiconductor memory device
JPS63119270A (en) Manufacture of thin film transistor
JPH04326731A (en) Formation method of insulating film
JPH03289139A (en) Manufacture of mos field-effect transistor
JP2000228525A (en) Polycrystal silicon thin-film transistor and manufacture thereof