JPH04102040A - Intermittently blow-out type apparatus for testing wind tunnel - Google Patents

Intermittently blow-out type apparatus for testing wind tunnel

Info

Publication number
JPH04102040A
JPH04102040A JP21933290A JP21933290A JPH04102040A JP H04102040 A JPH04102040 A JP H04102040A JP 21933290 A JP21933290 A JP 21933290A JP 21933290 A JP21933290 A JP 21933290A JP H04102040 A JPH04102040 A JP H04102040A
Authority
JP
Japan
Prior art keywords
wind tunnel
model
flutter
support metal
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21933290A
Other languages
Japanese (ja)
Inventor
Takeo Hashimoto
橋本 健雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21933290A priority Critical patent/JPH04102040A/en
Publication of JPH04102040A publication Critical patent/JPH04102040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent damage of a model to be inspected due to divergent vibration by storing the model in a storage box when occurrence of flutter is sensed by a signal from a supersonic sensor during test. CONSTITUTION:At the time of starting up a wind tunnel, a model 1 to be tested is stored in a storage box 2. When a startup determining device 8 with a signal from a pressure detector 7 as an input judges that startup of the wind tunnel is completed, a switch 13 is opened/closed by a controlling means 9 based on the output to control current from a power source 12, to operate a linear motor 5, to push a support metal 3 via a push rod 6, to put the model 1 in a wind tunnel 19 to be measured by a guide mechanism 4 and to fix the support metal 3 at the position. Then, when a flutter determining device 11 with a signal from a supersonic sensor 10 as an input judges that flutter has occurred, the motor 5 pulls the support metal 3 by the controlling means 9 via the rod 6 and slides the support metal 3 until the model 1 comes to a predetermined position, when the model 1 is stored in the storage box 2.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は1間欠吹出式風洞試験装置の起動時およびフ
ラッタ発生時に供試模型が破損することを防止する技術
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a technique for preventing a test model from being damaged when an intermittent blow-out type wind tunnel test apparatus is started up and when flutter occurs.

[従来の技術] 第6図は間欠吹出式風洞試験装置の一例であり2図にお
いて(15)は貯気槽、 (16)は元弁、  (17
)は圧力制御弁、  (18)は集合胴、 (19)は
計測胴。
[Prior art] Fig. 6 shows an example of an intermittent blowing wind tunnel test device. In Fig. 2, (15) is an air storage tank, (16) is a main valve, and (17)
) is the pressure control valve, (18) is the collection cylinder, and (19) is the measurement cylinder.

(20)は拡散胴である。第7図は超音速域で風洞試験
を行う場合の計測胴の状態を示し、(1)は供試模型、
 (21)は支持金具である。超音速試験時には、計測
胴は空気力学上の要求から第7図に示すようなノズル形
状となっており、その形状は所定の風速パラメータに適
合したものとなっている。
(20) is a diffusion cylinder. Figure 7 shows the state of the measurement shell when conducting a wind tunnel test in the supersonic speed range, and (1) shows the test model;
(21) is a support metal fitting. During the supersonic test, the measurement barrel has a nozzle shape as shown in FIG. 7 due to aerodynamic requirements, and the shape is adapted to predetermined wind speed parameters.

第8図は従来の模型支持装置の一例である。供試模型(
1)は、ボルト(22)により支持具(21)に固定さ
れ、さらにこの支持具(21)はボルト(23)により
計測胴(19)に固定される。
FIG. 8 shows an example of a conventional model support device. Test model (
1) is fixed to a support (21) by a bolt (22), and this support (21) is further fixed to a measurement cylinder (19) by a bolt (23).

[発明が解決しようとする課題] 間欠吹出式風洞試験装置で超音速風洞試験を実施する場
合、風洞起動時には集合胴(18)の内圧を設定する圧
力制御弁(17)が開き、集合胴(18)の圧力が上昇
し、それにより計測胴(19)のノズル部に衝撃波が発
生する。この衝撃波は非定常な流れとなって計測胴内を
下流へ移動する。ところで、計測胴内に固定された供試
模型(1)は、この衝撃波が通過する際に急激な圧力変
動を受け、非常に大きい振動荷重を受ける。
[Problems to be Solved by the Invention] When conducting a supersonic wind tunnel test using an intermittent blowing wind tunnel test device, the pressure control valve (17) that sets the internal pressure of the collecting shell (18) opens when the wind tunnel is started, and the collecting shell ( 18) increases, thereby generating a shock wave in the nozzle portion of the measurement cylinder (19). This shock wave becomes an unsteady flow and moves downstream within the measurement barrel. By the way, the test model (1) fixed in the measurement cylinder is subjected to rapid pressure fluctuations when this shock wave passes through, and is subjected to a very large vibration load.

一方1間欠吹出式風洞試験装置でフラッタ試験を行う場
合、空気力学及び弾性力学上の相似則により供試模型の
剛性を低くする必要がある。このため風洞起動前に供試
模型を計測胴内に固定する従来の方法によると、前記の
振動荷重により模型が破損するという課題があった。
On the other hand, when performing a flutter test using a single intermittent blow-out type wind tunnel test device, it is necessary to reduce the rigidity of the test model due to the laws of similarity in aerodynamics and elastic mechanics. Therefore, according to the conventional method of fixing the test model in the measurement shell before starting up the wind tunnel, there was a problem that the model was damaged by the vibration load mentioned above.

さらに試験中に一端フラッタが発生すると模型が発散的
振動を起こし、瞬時に破損するという課題があった。
Furthermore, if flutter occurred at one end during a test, the model would cause divergent vibrations, causing instant damage.

この発明はこのような課題を解決するためになされたも
ので、風洞起動の際の衝撃波通過時の振動荷重およびフ
ラッタ発生時の発散的振動から供試模型を保護し、破損
を防止することを目的とする。
This invention was made to solve these problems, and is designed to protect a test model from vibration loads when shock waves pass through when starting a wind tunnel and from divergent vibrations when flutter occurs, thereby preventing damage. purpose.

[課題を解決するための手段] この発明にかかる間欠吹出式風洞試験装置は。[Means to solve the problem] The intermittent blowing wind tunnel test device according to the present invention is as follows.

模型を計測胴外へ格納する手段と、模型を計測胴内へ投
入する手段と、計測胴内の圧力を検出する圧力検出器と
、風洞の起動完了を判定する手段と、模型に取付けた超
音波センサと、風洞壁に取付けた超音波発信器と、フラ
ッタ発生を判定する手段と、模型の投入を制御する手段
とを設けたものである。
A means for storing the model outside the measurement shell, a means for introducing the model into the measurement shell, a pressure detector for detecting the pressure inside the measurement shell, a means for determining whether wind tunnel startup has been completed, and a superstructure installed on the model. It is equipped with a sonic sensor, an ultrasonic transmitter attached to the wind tunnel wall, means for determining the occurrence of flutter, and means for controlling the injection of the model.

[作用] この発明においては、風洞起動時には供試模型を計測胴
外に格納し、圧力検出器からの信号により風洞起動が完
了したことを判定し、模型を自動的に計測胴内に投入し
、試験中には超音波センサからの信号によりフラッタの
発生を判定し自動的に模型を計測胴外へ格納することが
できる。
[Function] In this invention, when the wind tunnel is started, the test model is stored outside the measurement shell, and when it is determined that the wind tunnel startup has been completed based on a signal from the pressure detector, the model is automatically thrown into the measurement shell. During testing, the occurrence of flutter can be determined based on signals from the ultrasonic sensor, and the model can be automatically stored outside the measurement barrel.

[実施例] 第1図は、この発明の一実施例の全体構成図である。図
において(2)は供試模型を格納する格納箱、(5)は
模型を投入するためのリニアモータ。
[Embodiment] FIG. 1 is an overall configuration diagram of an embodiment of the present invention. In the figure, (2) is a storage box for storing the test model, and (5) is a linear motor for loading the model.

(7)は圧力検出器であり、この圧力検出器からの信号
を入力とする起動判定手段(8)により風洞が起動を完
了したことを判断し、その出力に基づき制御手段(9)
により開閉器(13)を開閉し電源(12)からの電流
を制御し、リニアモータ〔5)を動作させる。また、試
験中は超音波センサ[10)からの信号を入力とするフ
ラッタ判定手段(11)によりフラッタが発生したこと
を判定し、アチュエータ(5)を動作させるよう構成さ
れている。
(7) is a pressure detector, and the activation determination means (8) which inputs the signal from this pressure detector determines that the wind tunnel has completed activation, and based on the output, the control means (9)
The switch (13) is opened and closed to control the current from the power source (12), and the linear motor [5] is operated. Further, during the test, the flutter determining means (11) inputting a signal from the ultrasonic sensor [10] determines that flutter has occurred, and operates the actuator (5).

第2図fa)  (b)は第1図の実施例で使用される
模型支持装置(14)の構成図である。図において。
FIG. 2 fa) (b) is a block diagram of the model support device (14) used in the embodiment of FIG. 1. In fig.

供試模型(1)は支持金具(3)に固定される。この支
持金具(3)にはガイド機構(4)が取付けてあり、格
納箱(2)内をスライドできるようになっており、プッ
シュロッド(6)を介してリニアモータ(5)に連結さ
れている。第3図(a) (b)はこの発明の詳細な説
明する図である。上記のように構成された間欠吹出式風
洞試験装置においては、風洞起動時には第2図(a) 
 (b)に示すように供試模型(i>は格納箱(2)内
に格納されている。そして起動判定手段により風洞起動
が完了したと判断されると、第3図(a) [b)に示
すようにリニアモータ(5)がプッシュロッド(6)を
介して支持金具(3)を押し、供試模型(1)が所定の
位置に来るまで取付は金具(3)を矢印(ア)方向にス
ライドさせ、プッシュロッド(6)およびガイド機構(
4)により支持金具(3)を所定の位置で固定する。ま
た、試験中は第3図(a) (b)に示すように供試模
型(1)は計測胴内の所定の位置に固定されている。そ
してフラッタ判定手段によりフラッタ発生したと判断さ
れると、リニアモータ(5)がプッシュロッド(6)を
介して支持金具(3)を引き、供試模型(1)が所定の
位置に来るまで取付は金具(3)を矢印(イ)方向にス
ライドさせ供試模型(1)を格納箱(2)内に格納する
The test model (1) is fixed to a support fitting (3). A guide mechanism (4) is attached to this support fitting (3) so that it can slide inside the storage box (2), and is connected to a linear motor (5) via a push rod (6). There is. FIGS. 3(a) and 3(b) are diagrams explaining the invention in detail. In the intermittent blowing type wind tunnel test equipment configured as described above, when the wind tunnel is started, as shown in Fig. 2 (a)
As shown in (b), the test model (i>) is stored in the storage box (2).When the start-up determining means determines that the wind tunnel start-up is complete, the test model (i> ), the linear motor (5) pushes the support bracket (3) via the push rod (6), and the installation is done by moving the bracket (3) along the arrow (a) until the test model (1) is in the designated position. ) direction, push rod (6) and guide mechanism (
4) fix the support fitting (3) in a predetermined position. Furthermore, during the test, the test model (1) is fixed at a predetermined position within the measurement cylinder, as shown in FIGS. 3(a) and 3(b). When the flutter determining means determines that flutter has occurred, the linear motor (5) pulls the support fitting (3) via the push rod (6), and the test model (1) is mounted until it is in a predetermined position. Slide the metal fitting (3) in the direction of arrow (A) and store the test model (1) in the storage box (2).

第4図は風洞が起動完了したことを判定する判定動作の
説明図である。図においてt。は風洞起動を開始した時
刻、tlは風洞が起動完了した時刻、t2は時刻t1か
ら規定の時間Δt9例えば1秒が経過した時刻である。
FIG. 4 is an explanatory diagram of the determination operation for determining that the wind tunnel has completed startup. In the figure t. is the time when the wind tunnel started, tl is the time when the wind tunnel has completed starting, and t2 is the time when a prescribed time Δt9, for example, 1 second, has elapsed from time t1.

時刻t0に風洞の起動を開始すると、計測胴内の圧力は
大気圧p。からマツハ数に応じた所定の圧力p1まで急
激に上昇し9時刻t、に所定の圧力p1に静定する。起
動判定手段(8)は圧力検出器(7)からの信号により
計測胴内の圧力が所定の圧力に達し、その圧力が規定時
間Δtだけ保持された場合、風洞の起動が完了したと判
定し、信号を出力する。
When the wind tunnel is started at time t0, the pressure inside the measurement shell is atmospheric pressure p. The pressure increases rapidly from 1 to a predetermined pressure p1 corresponding to the Matsuha number, and statically settles to the predetermined pressure p1 at 9 time t. The activation determination means (8) determines that the wind tunnel has been activated when the pressure within the measurement shell reaches a predetermined pressure based on the signal from the pressure detector (7) and this pressure is maintained for a specified time Δt. , output a signal.

第5図(a)はドツプラ効果の説明図である。音源から
は一定の周波数f。の超音波が出ているとする。センサ
が矢印(ア)の方向に速度■で移動しているとき、セン
サで計測される周波数fは次式%式% ただし、■、は音速である。一方センサが矢印(イ)の
方向に速度■で移動しているとき、センサで計測される
周波数fは。
FIG. 5(a) is an explanatory diagram of the Doppler effect. A constant frequency f from the sound source. Suppose that an ultrasonic wave is emitted. When the sensor is moving in the direction of arrow (A) at a speed ■, the frequency f measured by the sensor is expressed by the following formula: % where ■ is the speed of sound. On the other hand, when the sensor is moving in the direction of arrow (a) at speed ■, the frequency f measured by the sensor is.

f”fo  (V、−V)/V。f”fo  (V, -V)/V.

で与えられる。したがって、音源の周波数と音速が既知
であれば9周波数fよりセンサの移動速度■を知ること
ができる。
is given by Therefore, if the frequency and sound speed of the sound source are known, the moving speed of the sensor (2) can be known from the 9 frequency f.

第5図(b)はフラッタが発生したことを判定する判定
動作の説明図である。図においてt3はフラッタが発生
した時刻、t4は超音波センサからの信号が規定の周波
数f1をはじめて越えた時刻である。超音波センサから
の信号の周波数は模型の変形速度に対応し、この周波数
がある値より大きくなると模型は破損する。フラッタ判
定手段(11)は超音波センサからの信号周波数が規定
の値f、を越えた場合、フラッタが発生したと判定し、
信号を出力する。
FIG. 5(b) is an explanatory diagram of the determination operation for determining that flutter has occurred. In the figure, t3 is the time when flutter occurs, and t4 is the time when the signal from the ultrasonic sensor exceeds the specified frequency f1 for the first time. The frequency of the signal from the ultrasonic sensor corresponds to the rate of deformation of the model, and if this frequency exceeds a certain value, the model will be damaged. The flutter determining means (11) determines that flutter has occurred when the signal frequency from the ultrasonic sensor exceeds a specified value f,
Output a signal.

[発明の効果] 以上のようにこの発明によれば、風洞起動時には供試模
型を計測胴外へ格納し、また風洞が起動完了したことを
自動的に判定して供試模型を計測胴内に投入し、さらに
試験中にフラッタが発生した場合にはそれを自動的に判
定し、供試模型を計測胴外へ格納するように構成したの
で、起動の際の衝撃波通過時およびフラッタ発生時に供
試模型に振動荷重がかかり破損することを防止できる効
果がある。
[Effects of the Invention] As described above, according to the present invention, the test model is stored outside the measurement shell when the wind tunnel is started, and it is automatically determined that the wind tunnel has started, and the test model is stored inside the measurement shell. In addition, if flutter occurs during the test, it is automatically determined and the test model is stored outside the measurement barrel, so it is configured to automatically detect the occurrence of flutter during the test and store the test model outside the measurement cylinder. This has the effect of preventing damage to the test model due to vibration load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の構成を示す図、第2図
(a)は模型支持装置の一部欠載の上面図、第2図(b
)は第2図(a)に示したものの一部欠載の側面図、第
3図(a)は模型支持装置の動作を説明する一部欠載の
上面図、第3図(b)は第3図(a)に示したものの一
部欠載の側面図、第4図は起動判定手段の動作説明用線
図、第5図(a)はドツプラ効果の説明図、第5図(b
)はフラッタ判定手段の動作説明線図、第6図は間欠吹
出式風洞試験装置の一構成例を示す図、第7図は超音速
試験を行う場合の計測胴の状態を示す図、第8図は従来
の模型支持装置の一例を示す図である。 図中、(1)は供試模型、(2)は格納箱、(3)は支
持金具、(4)はガイド機構、(5)はリニアモータ、
(6)はプッシュロッド、(7)は圧力検出器。 (8)は起動判定手段、(9)は制御手段、 (10)
は超音波センサ、  (11)はフラッタ判定手段、 
 (12)は電源、 (13)は開閉器、 (14)は
模型支持装置、 (15)は貯気槽、 f16)元弁、
 (17)は圧力制御弁、 (18)は集合胴、  (
19)は計測胴、  (20)は拡散胴、 (21)は
支持金具、  (22H23)はボルト、  (24)
は超音波発信器である。 なお1図中、同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG.
) is a partially missing side view of the one shown in FIG. 2(a), FIG. 3(a) is a partially missing top view illustrating the operation of the model support device, and FIG. 3(b) is a partially missing side view. FIG. 4 is a diagram for explaining the operation of the activation determination means; FIG. 5(a) is a diagram for explaining the Doppler effect; FIG.
) is a diagram explaining the operation of the flutter determination means, FIG. 6 is a diagram showing an example of the configuration of an intermittent blow-out wind tunnel test device, FIG. 7 is a diagram showing the state of the measurement shell when performing a supersonic test, and FIG. The figure shows an example of a conventional model support device. In the figure, (1) is the test model, (2) is the storage box, (3) is the support metal fittings, (4) is the guide mechanism, (5) is the linear motor,
(6) is a push rod, and (7) is a pressure detector. (8) is the activation determination means, (9) is the control means, (10)
is an ultrasonic sensor, (11) is a flutter determination means,
(12) is the power supply, (13) is the switch, (14) is the model support device, (15) is the air storage tank, f16) is the main valve,
(17) is the pressure control valve, (18) is the collecting cylinder, (
19) is the measurement cylinder, (20) is the diffusion cylinder, (21) is the support fitting, (22H23) is the bolt, (24)
is an ultrasonic transmitter. In addition, in FIG. 1, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 超音速域の試験を行う間欠吹出式風洞試験装置において
、供試模型と、前記供試模型を格納する格納箱と、前記
供試模型を支持し格納箱内をスライド可能な支持金具と
、前記支持金具の移動をガイドし且つ支持金具を支える
ガイド機構と、前記支持金具を駆動するリニアモータと
、前記支持金具と前記アクチュエータの間に取付けられ
、前記アクチュエータの動力を前記支持金具に伝えるプ
ッシュロッドと、風洞壁に取付けられた圧力検出器と、
前記圧力検出器からの信号により風洞の起動完了を判定
する起動判定装置と、前記供試模型に取付けられた超音
波センサと、風洞壁に取付けられた超音波発信器と、前
記超音波センサからの信号によりフラツタの発生を判定
するフラツタ判定装置と、前記判定装置およびフラツタ
判定装置からの信号により前記アクチュエータを動作さ
せる制御装置とを備えたことを特徴とする間欠吹出式風
洞試験装置。
An intermittent blowing wind tunnel test device for conducting tests in the supersonic speed range, comprising: a test model; a storage box for storing the test model; a support fitting that supports the test model and is slidable inside the storage box; a guide mechanism that guides the movement of the support metal fitting and supports the support metal fitting; a linear motor that drives the support metal fitting; and a push rod that is attached between the support metal fitting and the actuator and transmits the power of the actuator to the support metal fitting. and a pressure detector attached to the wind tunnel wall.
a startup determination device that determines completion of wind tunnel startup based on a signal from the pressure detector; an ultrasonic sensor attached to the test model; an ultrasonic transmitter attached to the wind tunnel wall; An intermittent blowing wind tunnel test device comprising: a flutter determining device that determines the occurrence of flutter based on a signal; and a control device that operates the actuator based on signals from the determining device and the flutter determining device.
JP21933290A 1990-08-21 1990-08-21 Intermittently blow-out type apparatus for testing wind tunnel Pending JPH04102040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21933290A JPH04102040A (en) 1990-08-21 1990-08-21 Intermittently blow-out type apparatus for testing wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21933290A JPH04102040A (en) 1990-08-21 1990-08-21 Intermittently blow-out type apparatus for testing wind tunnel

Publications (1)

Publication Number Publication Date
JPH04102040A true JPH04102040A (en) 1992-04-03

Family

ID=16733807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21933290A Pending JPH04102040A (en) 1990-08-21 1990-08-21 Intermittently blow-out type apparatus for testing wind tunnel

Country Status (1)

Country Link
JP (1) JPH04102040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839686B1 (en) 2008-09-17 2014-09-23 Jeffrey L. Lindner Wind tunnel test apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839686B1 (en) 2008-09-17 2014-09-23 Jeffrey L. Lindner Wind tunnel test apparatus

Similar Documents

Publication Publication Date Title
Srikant et al. Unstart detection in a simplified-geometry hypersonic inlet-isolator flow
US4201092A (en) Method of detecting and monitoring a leak caused by a through wall crack in a high pressure fluid system
Kim et al. Study of the discharge of weak shocks from an open end of a duct
CN110953487B (en) Pipeline leakage detection method and equipment
KR960008584A (en) Integrated sonic leak detection processing system
JPH04102040A (en) Intermittently blow-out type apparatus for testing wind tunnel
Cocking et al. Subsonic jet noise in flight based on some recent wind-tunnel tests
JPH07325018A (en) Method and apparatus for estimating thrust of ram jet
JPH02159533A (en) Intermittent diffusion type tunnel tester
JPH0367142A (en) Intermittent blowout type wind tunnel testing device
JPH02221837A (en) Intermittent blowout type wind tunnel testing device
JPH0367143A (en) Intermittent blowout type wind tunnel testing device
JPH07260620A (en) Impact wind tunnel
JPH01267432A (en) Intermittent blowoff type air tunnel tester
US2824444A (en) Device for producing mechanical shocks
JPH02221835A (en) Intermittent blowout type wind tunnel testing device
JPH0365630A (en) Intermittent blow type wind-tunnel test apparatus
JPH0365631A (en) Wind-tunnel test apparatus of intermittent blow type
Jones Some performance characteristics of the LRC 3 3/4-inch pilot expansion tube using an unheated hydrogen driver
JPH02159532A (en) Intermittent blowoff type air tunnel tester
Juhany et al. AT0 Ludwieg tube wind tunnel at KAU
JPH02221836A (en) Intermittent blowout type wind tunnel testing device
JPH03272430A (en) High enthalpy supersonic wind tunnel apparatus and operation thereof
Dey et al. Design procedure for a blast wave generator and its validation with shock tube experiments
JP2001264302A (en) Method and apparatus for inspecting concrete structure in non-contact state