JPH07260620A - Impact wind tunnel - Google Patents

Impact wind tunnel

Info

Publication number
JPH07260620A
JPH07260620A JP5709894A JP5709894A JPH07260620A JP H07260620 A JPH07260620 A JP H07260620A JP 5709894 A JP5709894 A JP 5709894A JP 5709894 A JP5709894 A JP 5709894A JP H07260620 A JPH07260620 A JP H07260620A
Authority
JP
Japan
Prior art keywords
compression
wind tunnel
pressure chamber
pipe
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5709894A
Other languages
Japanese (ja)
Inventor
Sueji Ohashi
末治 大橋
Kenji Togami
健治 戸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5709894A priority Critical patent/JPH07260620A/en
Publication of JPH07260620A publication Critical patent/JPH07260620A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a strong incoming shock wave by traveling a free piston to increase the temperature in a high pressure chamber through adiabatic compression. CONSTITUTION:A compression pipe 2 is arranged perpendicularly to a shock wave pipe 8 generating high temperature high pressure stagnation, an ultrasonic nozzle 9, and a measuring section 10 for setting a sample disposed concentrically. Free pistons 1 each compressing the gas in a high pressure chamber 13 of the shack wave pipe 8 adiabatically are operated synchronously for respective compression pipes. Consequently, the inertial forces of the free pistons 1 are canceled each other and a moving mechanism for relaxing the inertial force can be eliminated in the wind tunnel facility. This structure eliminates the need of resetting the facility for each test and the adjustment of the installing position of a model thus suppressing damage on the sensors. Troublesome aseismatic countermeasures are also eliminated for a moving body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、初期設定圧力に増加さ
せるため、重いピストンを高速で作動させ、高圧室の気
体を断熱圧縮し、極超音速流を発生させる自由ピストン
型の衝撃風洞に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-piston-type impact wind tunnel in which a heavy piston is operated at high speed to adiabatically compress a gas in a high-pressure chamber in order to increase a pressure to an initial set pressure, and a hypersonic flow is generated. .

【0002】[0002]

【従来の技術】空力加熱の試験装置として、衝撃風洞が
広く利用されている。衝撃風洞は、衝撃波管にそれぞれ
設けられた、高圧室と低圧室との間に設けられた隔膜を
除去することによって、低圧室内で発生する入射衝撃波
および反射衝撃波によって、高温、高圧で一様なよどみ
点状態の気体を低圧室内に発生させて、これを極超音速
ノズルに通すことによって、測定部に極超音速流を発生
させ、試験に供するようにしたものである。また、強い
入射衝撃波を得るため高圧室の温度を高めておくこと
は、試験上効果的であり、重いピストンを用いて高圧室
の気体を断熱圧縮するようにした自由ピストン型の衝撃
風洞がある。
2. Description of the Related Art An impact wind tunnel is widely used as a test device for aerodynamic heating. The impact wind tunnel is uniform at high temperature and high pressure due to the incident shock wave and the reflected shock wave generated in the low pressure chamber by removing the diaphragm provided between the high pressure chamber and the low pressure chamber, which is provided in each shock wave tube. The gas in the stagnation point is generated in the low pressure chamber and passed through a hypersonic nozzle to generate a hypersonic flow in the measurement section for use in the test. In addition, raising the temperature of the high-pressure chamber in order to obtain a strong incident shock wave is effective in testing, and there is a free-piston-type shock wind tunnel that uses a heavy piston to adiabatically compress the gas in the high-pressure chamber. .

【0003】図2は、米国カリフォルニア工科大で使用
されている、自由ピストン型の衝撃風洞設備の全体レイ
アウトで、図2(A)は平面図、図2(B)は側面図で
ある。図に示すように、自由ピストン01を含む圧縮管
02、隔壁(ダイヤフラム)07により高圧室04およ
び低圧室05が画成された衝撃波管08、ノズル09、
および供試体012を設置する計測部010を同一直線
上に配し、圧縮管02に隣接して、圧縮管02と並行に
高圧タンク03を配置したレイアウトとなっている。
2A and 2B are an overall layout of a free piston type impact wind tunnel facility used in California Institute of Technology, USA. FIG. 2A is a plan view and FIG. 2B is a side view. As shown in the drawing, a compression tube 02 including a free piston 01, a shock wave tube 08 in which a high pressure chamber 04 and a low pressure chamber 05 are defined by a partition wall (diaphragm) 07, a nozzle 09,
The measurement unit 010 for installing the sample 012 is arranged on the same straight line, and the high pressure tank 03 is arranged adjacent to the compression pipe 02 and in parallel with the compression pipe 02.

【0004】そして、高圧タンク03と圧縮管02との
間は、導入管014で連結されており、高圧タンク03
からの圧縮空気により、圧縮管02に嵌挿された重い自
由ピストン01を作動させて、衝撃波管08に画成され
た高圧室04内の気体を断熱圧縮して、温度を高めてお
くようにしている。
The high pressure tank 03 and the compression pipe 02 are connected by an introduction pipe 014, and the high pressure tank 03 is connected.
The heavy compressed free air 01 fitted in the compression tube 02 is operated by the compressed air from, and the gas in the high pressure chamber 04 defined by the shock tube 08 is adiabatically compressed to keep the temperature high. ing.

【0005】この様に構成され、作動させるようにし
た、自由ピストン型の衝撃風洞では、圧縮管02内の自
由ピストン01を高速で走行させた時、その慣性力によ
り圧縮管02、衝撃波管08、ノズル09、および計測
部010はピストン01の走行方向と反対方向に移動す
る。また高圧タンク03は圧縮管02内へ高速で噴出す
る圧縮空気の反力により、ピストン01の走行方向に移
動するため、ピストン01の走行方向と反対方向に移動
する、圧縮管02との相対変移量が大きくなる。このた
め、設備全体を床面011より持ち上げて、車輪06の
付いた遊動架台016上に固定し、移動できるようにし
て慣性力の緩和を行うとともに、圧縮管02と導入管0
14との接続部、およびノズル09と計測部010との
間には、それぞれスライド機構013,015を設ける
ようにしている。
In the free-piston type impact wind tunnel constructed and operated as described above, when the free piston 01 in the compression tube 02 is run at high speed, the inertial force of the free piston 01 causes the compression tube 02 and the shock wave tube 08 to move. The nozzle 09 and the measuring unit 010 move in the direction opposite to the traveling direction of the piston 01. Further, the high-pressure tank 03 moves in the traveling direction of the piston 01 by the reaction force of the compressed air jetted into the compression pipe 02 at a high speed, and therefore moves in the direction opposite to the traveling direction of the piston 01, and the relative displacement with the compression pipe 02. The amount increases. For this reason, the entire equipment is lifted from the floor 011 and fixed on the floating base 016 with wheels 06 so that the equipment can be moved to reduce the inertial force, and the compression pipe 02 and the introduction pipe 0
Sliding mechanisms 013 and 015 are provided between the connecting portion with the nozzle 14 and the nozzle 09 and the measuring portion 010, respectively.

【0006】このようにして、自由ピストン01が高速
走行することによって生じる反力を吸収させるため、設
備全体を浮かして移動できるようにしたことにより、風
洞稼動上の問題点は解消される反面、次に示す問題点が
生じている。 (1)試験毎に設備全体が10cm程度移動するため、
次の試験を始める前に、設備全体を元の位置に移動さ
せ、位置決めする必要があり、メインテナンス時間が多
大にかかる。 (2)試験条件に応じて、設備全体の移動量が変わるた
め、供試体012設置位置も、これに応じて変える必要
がある。 (3)各部に取り付けた圧力センサ、温度センサに、設
備全体の移動に伴う負荷がかかり、これらのセンサ寿命
を縮める原因となり、設備メインテナンス費用の増加に
つながる。 (4)設備全体重量が約100tonにもなり重く、し
かも移動できるようしなければならず、地震対策上の安
全装置が過大なものとなる。
In this way, since the reaction force generated by the free piston 01 traveling at a high speed is absorbed, the entire equipment can be floated and moved, so that the problem in operating the wind tunnel is solved, but The following problems have occurred. (1) Since the entire equipment moves about 10 cm for each test,
Before starting the next test, it is necessary to move and position the entire equipment to its original position, which requires a lot of maintenance time. (2) Since the amount of movement of the entire equipment changes depending on the test conditions, it is necessary to change the installation position of the sample 012 accordingly. (3) The pressure sensor and the temperature sensor attached to each part are loaded with the movement of the entire equipment, which shortens the service life of these sensors and leads to an increase in equipment maintenance cost. (4) The entire equipment weighs about 100 tons and is heavy, and it is necessary to be able to move the equipment.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の自由
ピストン型の衝撃風洞の問題点が、すべて圧縮管内の自
由ピストンの高速走行によって、設備全体が移動するこ
とに起因するものであることに鑑み、自由ピストンの高
速走行によっても、設備全体が移動しないようにして、
上記問題点を解決できる、衝撃風洞を提供することを課
題とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention According to the present invention, all the problems of the conventional free piston type impact wind tunnel are caused by the fact that the entire equipment moves due to the high speed running of the free piston in the compression pipe. In view of this, even if the free piston travels at high speed, the entire equipment should not move,
An object is to provide an impact wind tunnel that can solve the above problems.

【0008】[0008]

【課題を解決するための手段】このため、本発明の衝撃
風洞は次の手段とした。設備全体の移動をもたらす、自
由ピストンの高速走行が衝撃波管の軸心方向と直交する
方向になるように、自由ピストンがその内部で移動す
る、圧縮管の方向を定めるとともに、この圧縮管を対向
して設け、各圧縮管内を自由ピストンが同期して作動す
るようにした。
Therefore, the impact wind tunnel of the present invention has the following means. The direction of the compression tube in which the free piston moves is determined so that the high speed travel of the free piston, which causes the movement of the entire equipment, is in the direction orthogonal to the axial direction of the shock tube, and the compression tube is opposed to this direction. The free pistons operate synchronously in each compression tube.

【0009】[0009]

【作用】本発明の衝撃風洞は、上記手段により、衝撃波
管の軸心方向と直交し、対向させて配設された圧縮管内
を、同期して作動する自由ピストンの高速走行によって
生じる反力は、互いに相殺されて外力として発生するこ
とはなく、従って設備全体の移動に伴う問題を解消する
ことができる。
In the impact wind tunnel of the present invention, by the above means, the reaction force generated by the high speed running of the free pistons that operate synchronously in the compression pipes which are orthogonal to the axial direction of the shock wave pipe and are opposed to each other is eliminated. , They do not cancel out each other and are not generated as external forces, and therefore the problems associated with the movement of the entire equipment can be eliminated.

【0010】[0010]

【実施例】以下、本発明の衝撃風洞の実施例を図面にも
とづき説明する。図1は、本発明の衝撃風洞の一実施例
を示す全体構成図で、図1(A)は平面図、図1(B)
は側面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an impact wind tunnel according to the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram showing an embodiment of an impact wind tunnel of the present invention. FIG. 1 (A) is a plan view and FIG. 1 (B).
Is a side view.

【0011】同一軸20上に、ダイヤフラム7で区画さ
れた高圧室13、および低圧室14が画成された衝撃波
管8、低圧室14で生じた高温高圧のよどみ点状態の気
体で極超音速流を発生させるノズル9、内部に計測を行
う模型12を設置する計測部10をそれぞれ配置し、こ
の軸20と直交する軸21上に、2本の圧縮管2を対向
させて設置し、この圧縮管2内に自由ピストン1を嵌挿
し、高圧室13内の気体を断熱圧縮するようにしてい
る。また、自由ピストン1は軸20からの距離が、略同
一になるように同期して作動するようにされている。
A shock wave tube 8 having a high pressure chamber 13 and a low pressure chamber 14 defined by a diaphragm 7 on the same shaft 20 and a gas in a stagnation point of high temperature and high pressure generated in the low pressure chamber 14 produces hypersonic velocity. A nozzle 9 for generating a flow and a measuring unit 10 for installing a model 12 for measuring inside are respectively arranged, and two compression pipes 2 are installed so as to face each other on a shaft 21 orthogonal to the shaft 20. The free piston 1 is inserted into the compression pipe 2 so that the gas in the high pressure chamber 13 is adiabatically compressed. Further, the free piston 1 is adapted to operate synchronously so that the distance from the shaft 20 is substantially the same.

【0012】また、この圧縮管2と平行に高圧タンク3
が設置されており、高圧タンク3と圧縮管2は導入管B
4によって連結されている。圧縮管2の自由ピストン1
の圧縮側と衝撃波管8の高圧室13とは導入管A5で連
結された構造にされるとともに、対向して設けられた、
圧縮管2の自由ピストン1による圧縮側は調圧管6で連
通されている。さらに、圧縮管2、高圧タンク3、衝撃
波管8、ノズル9、および計測部10からなる設備全体
は、床15に固定された架台11に固定されている。
A high pressure tank 3 is provided in parallel with the compression pipe 2.
Is installed, and the high pressure tank 3 and the compression pipe 2 are the introduction pipe B.
4 are connected. Free piston 1 of compression tube 2
The compression side and the high pressure chamber 13 of the shock wave tube 8 are connected by the introduction pipe A5 and are provided so as to face each other.
The compression side of the compression pipe 2 by the free piston 1 is communicated with the pressure adjustment pipe 6. Further, the entire equipment including the compression pipe 2, the high-pressure tank 3, the shock wave pipe 8, the nozzle 9, and the measuring unit 10 is fixed to a pedestal 11 fixed to a floor 15.

【0013】高圧タンク3に貯められた気体を、導入管
B4を通して2つの圧縮管2に導入することにより、2
つの自由ピストン1を同時に発射させ、断熱圧縮するこ
とによって、高圧室13内に高温、高圧の気体を貯留で
きるとともに、自由ピストン1の移動により生ずる反力
を相殺させて、設備全体を移動させない構造とすること
ができる。
By introducing the gas stored in the high pressure tank 3 into the two compression pipes 2 through the introduction pipe B4,
By firing two free pistons 1 simultaneously and performing adiabatic compression, high-temperature and high-pressure gas can be stored in the high-pressure chamber 13, and the reaction force generated by the movement of the free pistons 1 can be offset to prevent the entire equipment from moving. Can be

【0014】また、高圧タンク3も圧縮管2と同様に衝
撃波管8と直交して配設され、対向して作動する自由ピ
ストン1後方の圧縮管2内に高圧空気が流入するように
しているので、高圧空気の流出により生じる反力も相殺
されて、高圧タンク3には、軸20方向の力は勿論、軸
21の方向の力も発生しない。
Similarly to the compression tube 2, the high-pressure tank 3 is also disposed orthogonally to the shock wave tube 8 so that high-pressure air flows into the compression tube 2 behind the free piston 1 that operates in opposition. Therefore, the reaction force generated by the outflow of high-pressure air is also canceled out, so that the high-pressure tank 3 does not generate a force in the direction of the shaft 20 but a force in the direction of the shaft 21.

【0015】以上により、設備全体を床に固定すること
が可能となり、風洞のメインテナンスも簡単で短時間で
済み、供試体12のセット位置も一定位置にすることが
でき、センサ類を痛めることもない。また、移動体の安
全装置を施す場合と異り、地盤15に設備全体が固定で
きるので、地震対策のための安全装置も不要となる。
As described above, the entire equipment can be fixed to the floor, the maintenance of the wind tunnel is simple and the time is short, the set position of the sample 12 can be set to a fixed position, and the sensors can be damaged. Absent. Further, unlike the case where a safety device for a mobile body is provided, the entire equipment can be fixed to the ground 15, so a safety device for earthquake countermeasures is not required.

【0016】[0016]

【発明の効果】以上述べたように、本発明の衝撃風洞に
よれば、特許請求の範囲に示す簡素な構成により、以下
の効果が得られる。 (1)自由ピストンの高速走行によって生ずる反力を相
殺させ、設備全体を移動しないようにできるので、試験
毎の設備全体の復帰が不要となり、位置決め等のメイン
テナンス要する時間を少くできる。 (2)風洞各部に取り付ける各種センサ(圧力、温度)
の寿命を伸ばすことができる。 (3)設備全体を床固定式とすることで、運用効率向上
が可能となる。 (4)設備を床に固定するための架台に移動機構を設け
る必要がなくなり、コスト的に安価となる。
As described above, according to the impact wind tunnel of the present invention, the following effects can be obtained with the simple structure shown in the claims. (1) Since the reaction force generated by the high speed travel of the free piston can be canceled and the entire equipment can be prevented from moving, it is not necessary to restore the entire equipment for each test, and the time required for maintenance such as positioning can be reduced. (2) Various sensors (pressure, temperature) attached to each part of the wind tunnel
Can extend the life of the. (3) Operation efficiency can be improved by fixing the entire equipment to the floor. (4) It is not necessary to provide a moving mechanism on the pedestal for fixing the equipment to the floor, and the cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝撃風洞の一実施例を示す全体構成図
で、図1(A)は平面図、図1(B)は側面図である。
FIG. 1 is an overall configuration diagram showing an embodiment of an impact wind tunnel of the present invention, FIG. 1 (A) is a plan view, and FIG. 1 (B) is a side view.

【図2】従来の自由ピストンを具える衝撃風洞の一例を
示す全体構成図で、図2(A)は平面図、図2(B)は
側面図である。
FIG. 2 is an overall configuration diagram showing an example of a conventional impact wind tunnel including a free piston, FIG. 2 (A) is a plan view, and FIG. 2 (B) is a side view.

【符号の説明】[Explanation of symbols]

1 自由ピストン 2 圧縮管 3 高圧タンク 4 導入管B 5 導入管A 6 調圧管 7 ダイヤフラム 8 衝撃波管 9 ノズル 10 計測部 11 架台 12 模型 13 高圧室 14 低圧室 1 Free Piston 2 Compression Pipe 3 High Pressure Tank 4 Inlet Pipe B 5 Inlet Pipe A 6 Pressure Control Pipe 7 Diaphragm 8 Shock Wave Tube 9 Nozzle 10 Measuring Section 11 Platform 12 Model 13 High Pressure Chamber 14 Low Pressure Chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮管に嵌挿した重い自由ピストンによ
り断熱圧縮し、高温高圧にした気体を衝撃波管に画成し
た高圧室に導入し、極超音速流を発生させるようにした
自由ピストン型の衝撃風洞において、前記衝撃波管と直
交する方向に、前記圧縮管を対向して配設し、前記圧縮
管内に同期して作動する前記自由ピストンを各々嵌挿し
たことを特徴とする衝撃風洞。
1. A free-piston type in which a hypersonic flow is generated by adiabatic compression by a heavy free piston fitted in a compression tube and introducing a high-temperature and high-pressure gas into a high-pressure chamber defined by a shock tube. In the impact wind tunnel, the compression wind pipes are arranged so as to face each other in a direction orthogonal to the shock wave pipes, and the free pistons that operate in synchronism with each other are respectively inserted into the compression wind pipes.
JP5709894A 1994-03-28 1994-03-28 Impact wind tunnel Withdrawn JPH07260620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5709894A JPH07260620A (en) 1994-03-28 1994-03-28 Impact wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5709894A JPH07260620A (en) 1994-03-28 1994-03-28 Impact wind tunnel

Publications (1)

Publication Number Publication Date
JPH07260620A true JPH07260620A (en) 1995-10-13

Family

ID=13046040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5709894A Withdrawn JPH07260620A (en) 1994-03-28 1994-03-28 Impact wind tunnel

Country Status (1)

Country Link
JP (1) JPH07260620A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023410A (en) * 2002-09-11 2004-03-18 현대모비스 주식회사 The apparatus of test for ram jet engine
US7442034B2 (en) 2003-12-11 2008-10-28 Shocksystem, Inc. Detonative cleaning apparatus
KR100935659B1 (en) * 2007-12-18 2010-01-07 재단법인서울대학교산학협력재단 Testing equipment by using hypersonic flow
CN103969020A (en) * 2013-08-23 2014-08-06 中国人民解放军国防科学技术大学 Supersonic airflow generation system beneficial to uniform scattering of nano particles
CN106017852A (en) * 2016-05-17 2016-10-12 中国人民解放军63820部队吸气式高超声速技术研究中心 Parallel wind tunnel extruding air supply system
CN106840579A (en) * 2016-12-07 2017-06-13 中国航天空气动力技术研究院 A kind of variable cross-section weight piston compressor
CN108760221A (en) * 2018-05-31 2018-11-06 北京空天技术研究所 Wind tunnel test guiding device
CN111238760A (en) * 2020-01-19 2020-06-05 中国空气动力研究与发展中心超高速空气动力研究所 Low-density wind tunnel overall layout structure based on electric arc heating
CN114235326A (en) * 2021-11-30 2022-03-25 中国航天空气动力技术研究院 Free piston shock tunnel quality buffer mechanism

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023410A (en) * 2002-09-11 2004-03-18 현대모비스 주식회사 The apparatus of test for ram jet engine
US7442034B2 (en) 2003-12-11 2008-10-28 Shocksystem, Inc. Detonative cleaning apparatus
KR100935659B1 (en) * 2007-12-18 2010-01-07 재단법인서울대학교산학협력재단 Testing equipment by using hypersonic flow
CN103969020A (en) * 2013-08-23 2014-08-06 中国人民解放军国防科学技术大学 Supersonic airflow generation system beneficial to uniform scattering of nano particles
CN106017852A (en) * 2016-05-17 2016-10-12 中国人民解放军63820部队吸气式高超声速技术研究中心 Parallel wind tunnel extruding air supply system
CN106840579A (en) * 2016-12-07 2017-06-13 中国航天空气动力技术研究院 A kind of variable cross-section weight piston compressor
CN108760221A (en) * 2018-05-31 2018-11-06 北京空天技术研究所 Wind tunnel test guiding device
CN108760221B (en) * 2018-05-31 2020-05-19 北京空天技术研究所 Wind tunnel test guiding device
CN111238760A (en) * 2020-01-19 2020-06-05 中国空气动力研究与发展中心超高速空气动力研究所 Low-density wind tunnel overall layout structure based on electric arc heating
CN114235326A (en) * 2021-11-30 2022-03-25 中国航天空气动力技术研究院 Free piston shock tunnel quality buffer mechanism

Similar Documents

Publication Publication Date Title
CN107976295B (en) 2 m-magnitude free piston driven high-enthalpy shock wave wind tunnel
Annamalai et al. Evaluation of the performance of supersonic exhaust diffuser using scaled down models
JPH07260620A (en) Impact wind tunnel
CN105486441A (en) Attitude-control engine vector thrust measurement and calibration integrated device and measurement method
CN112444368A (en) Ground simulation test device for ultrahigh-speed reentry test airflow
WO2021135524A1 (en) Rolling simulation platform, test platform and test system
Heltsley et al. Design and characterization of the Stanford 6 inch expansion tube
Verma et al. Relation between shock unsteadiness and the origin of side-loads inside a thrust optimized parabolic rocket nozzle
Erdos et al. Dual mode shock-expansion/reflected-shock tunnel
CN110749445B (en) Ramjet direct-connected test device utilizing detonation driving technology
JPH07325018A (en) Method and apparatus for estimating thrust of ram jet
CN213688867U (en) Ground simulation test device for ultrahigh-speed reentry test airflow
CN107215490B (en) A kind of small-sized high rigidity vacuum environment simulator
US3205705A (en) Gas turbine jet and rocket engine ground test exhaust system
Panesci et al. An analysis of second-throat diffuser performance for zero-secondary-flow ejector systems
RU2621367C1 (en) Hypersonic shock aerodynamic pipe
KR101109249B1 (en) Apparatus for Regulating Concentricity of Pipe and System having the Same
Verma et al. Cold gas dual-bell tests in high-altitude simulation chamber
JP2001289123A (en) Pressure reducing device for high-altitude test
RU2770320C1 (en) Gas-dynamic pressure chamber
RU167393U1 (en) Hypersonic shock aerodynamic installation
JP3678841B2 (en) Wave generator
RU2008641C1 (en) Test stand for mine fans
CN210802913U (en) Supersonic engine test bed thrust measurement exhaust apparatus
Juhany et al. AT0 Ludwieg tube wind tunnel at KAU

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605